首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The record of historic earthquakes in lake sediments of Central Switzerland   总被引:1,自引:0,他引:1  
Deformation structures in lake sediments in Central Switzerland can be attributed to strong historic earthquakes. The type and spatial distribution of the deformation structures reflect the historically documented macroseismic intensities thus providing a useful calibration tool for paleoseismic investigations in prehistoric lake sediments.The Swiss historical earthquake catalogue shows four moderate to strong earthquakes with moment magnitudes of Mw=5.7 to Mw=6.9 and epicentral intensities of I0=VII to I0=IX that affected the area of Central Switzerland during the last 1000 years. These are the 1964 Alpnach, 1774 Altdorf, 1601 Unterwalden, and 1356 Basel earthquakes. In order to understand the effect of these earthquakes on lacustrine sediments, four lakes in Central Switzerland (Sarner See, Lungerer See, Baldegger See, and Seelisberg Seeli) were investigated using high-resolution seismic data and sediment cores. The sediments consist of organic- and carbonate-rich clayey to sandy silts that display fine bedding on the centimeter to millimeter scale. The sediments are dated by historic climate and environmental records, 137Cs activity, and radiocarbon ages. Deformation structures occur within distinct zones and include large-scale slumps and rockfalls, as well as small-scale features like disturbed and contorted lamination and liquefaction structures. These deformations are attributed to three of the abovementioned earthquakes. The spatial distribution of deformation structures in the different lakes clearly reflects the historical macroseismic dataset: Lake sediments are only affected if they are situated within an area that underwent groundshaking not smaller than intensity VI to VII. We estimate earthquake size by relating the epicentral distance of the farthest liquefaction structure to earthquake magnitude. This relationship is in agreement with earthquake size estimations based on the historical dataset.  相似文献   

2.
A multiarchive approach has been applied to the investigation of the late Pleistocene and Holocene record of strong earthquakes in Switzerland. The geological archives used for this study include active faults, lake deposits, slope instabilities, and caves. In the Basle area, eight trenches were opened across the Basle–Reinach fault, nearby rockfall deposits were systematically investigated, sediment cores were taken from two lakes, and nine caves were studied. In Central Switzerland, five lakes were investigated by means of high-resolution seismic lines and sediment cores. Furthermore, three caves were studied in Central Switzerland. Altogether, the investigations are based on more than 350 km of high-resolution reflection seismic lines, 450 m of core samples, 260 m of trenches, and 245 radiocarbon age determinations. The measured co-seismic displacements along the Basle–Reinach fault supply independent information for the magnitude of the AD 1356 Basle earthquake exclusively based on geological evidence. Deformation features related to three well-documented strong historic earthquake shocks were identified. Deformation features of the AD 1774 Altdorf and AD 1601 Unterwalden earthquakes can be used to calibrate paleoseismic evidence in Central Switzerland. Altogether, traces of 13 earthquakes could be found in the two study areas, all of them with magnitudes Mw  6 or greater. For the first time, the earthquake catalogue for Switzerland can be extended back beyond historic records, into the late Pleistocene, spanning 15,000 years.  相似文献   

3.
《Geodinamica Acta》1999,12(3-4):179-191
The study of growth anomalies of speleothems in a karstic environment can provide potential evidence for palaeoearthquakes. These data are used to study the recurrence times of major earthquakes in areas where evidence for historic seismicity is lacking. A study has been carried out in the epicentral area of the 1356 Basel earthquake (epicentral intensity = VII–VIII, macroseismic magnitude = 6.2). The Bättlerloch and Dieboldslöchli caves, situated in the area of greatest damage, show growth anomalies of speleothems possibly related to a seismic event (several breaks of speleothems and offsets of the axis of the regrowths). The first U/Th disequilibrum measurements by alpha spectrometry show recent ages (less than several tens of thousands of years and probably historic). 14C dating by AMS of carbonate laminations taken on both sides of the anomalies confirm the evidence of a seismic event around 1300 AD. More accurate darings by U/Th TIMS are carried out in order to compare the information provided by the two different dating methods.  相似文献   

4.
5.
The Maule, Chile, (Mw 8.8) earthquake on 27 February 2010 triggered deformation events over a broad area, allowing investigation of stress redistribution within the upper crust following a mega-thrust subduction event. We explore the role that the Maule earthquake may have played in triggering shallow earthquakes in northwestern Argentina and Chile. We investigate observed ground deformation associated with the Mw 6.2 (GCMT) Salta (1450 km from the Maule hypocenter, 9 h after the Maule earthquake), Mw 5.8 Catamarca (1400 km; nine days), Mw 5.1 Mendoza (350 km; between one to five days) earthquakes, as well as eight additional earthquakes without an observed geodetic signal. We use seismic and Interferometric Synthetic Aperture Radar (InSAR) observations to characterize earthquake location, magnitude and focal mechanism, and characterize how the non-stationary, spatially correlated noise present in the geodetic imagery affects the accuracy of our parameter estimates. The focal mechanisms for the far-field Salta and Catamarca earthquakes are broadly consistent with regional late Cenozoic fault kinematics. We infer that dynamic stresses due to the passage of seismic waves associated with the Maule earthquake likely brought the Salta and Catamarca regions closer to failure but that the involved faults may have already been at a relatively advanced stage of their seismic cycle. The near-field Mendoza earthquake geometry is consistent with triggering related to positive static Coulomb stress changes due to the Maule earthquake but is also aligned with the South America-Nazca shortening direction. None of the earthquakes considered in this study require that the Maule earthquake reactivated faults in a sense that is inconsistent with their long-term behavior.  相似文献   

6.
Abstract

The study of growth anomalies of speleothems in a karstic environment can provide potential evidence or palaeoearthquakes. These data are used to study the recurrence times of major earthquakes in areas where evidence for historic seismicity is lacking. A study has been carried out in the epicentral area of the 1356 Basel earthquake (epicentral intensity = VII-VIII, macroseismic magnitude = 6.2). The Bättlerloch and Dieboldslöchli caves, situated in the area of greatest damage, show growth anomalies of speleothems possibly related to a seismic event (several breaks of speleothems an offsets of the axis of the regrowths). The first U/Th disequilibrum measurements by alpha spectrometry show recent ages (less than several tens of thousands of years and pro a y historic). 14C dating by AMS of carbonate laminations taken on both sides of the anomalies confirm the evidence of a seismic event around 1300 AD. More accurate datings by U/Th TIMS are carried out in order to compare the information provided by the two different dating methods. © Elsevier, Paris  相似文献   

7.
Seismicity of Gujarat   总被引:2,自引:2,他引:0  
Paper describes tectonics, earthquake monitoring, past and present seismicity, catalogue of earthquakes and estimated return periods of large earthquakes in Gujarat state, western India. The Gujarat region has three failed Mesozoic rifts of Kachchh, Cambay, and Narmada, with several active faults. Kachchh district of Gujarat is the only region outside Himalaya-Andaman belt that has high seismic hazard of magnitude 8 corresponding to zone V in the seismic zoning map of India. The other parts of Gujarat have seismic hazard of magnitude 6 or less. Kachchh region is considered seismically one of the most active intraplate regions of the World. It is known to have low seismicity but high hazard in view of occurrence of fewer smaller earthquakes of M????6 in a region having three devastating earthquakes that occurred during 1819 (M w7.8), 1956 (M w6.0) and 2001 (M w7.7). The second in order of seismic status is Narmada rift zone that experienced a severely damaging 1970 Bharuch earthquake of M5.4 at its western end and M????6 earthquakes further east in 1927 (Son earthquake), 1938 (Satpura earthquake) and 1997 (Jabalpur earthquake). The Saurashtra Peninsula south of Kachchh has experienced seismicity of magnitude less than 6.  相似文献   

8.
This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2006. During this period, 572 earthquakes and 91 quarry blasts were detected and located in the region under consideration. Of these earthquakes, two occurred in conjunction with the construction of the new Gotthard railway tunnel and 165 were induced artificially by the stimulation of a proposed geothermal reservoir beneath the city of Basel. With 20 events with M L ≥ 2.5, five of which were artificially induced, the seismic activity in the year 2006 was far below the average over the previous 31 years. Nevertheless, six events were felt by the public, most prominently the strongest of the induced Basel events (M L 3.4), which caused some non-structural building damage. Noteworthy are also the two earthquakes near Cortaillod (M L 3.2), on the shore of Lake Neuchatel, and in Val Mora (M L 3.5), between the Engadin and Val Müstair, as well as the 42 aftershocks of the M L 4.9 Vallorcine earthquake, between Martigny and Chamonix, of September 2005. Editorial handling: Stefan Bucher  相似文献   

9.
10.
In this paper the features of seismic process in the southern depression of Lake Baikal are considered. By the data on focal mechanisms of the earthquakes of February 25, 1999 (M w = 6.0), and August 27, 2008 (M w = 6.3), as well as based on configuration of their aftershock fields, it is determined that foci of strong seismic events in southern Baikal are controlled by the greatest structural elements of sublatitudinal and submeridional strikes. It has been shown that a substantial role in the formation of focal zones is played by low-scale destruction of the Earth’s crust, revealed by geological-geophysical data and proved by clustering of seismic shocks. New data on the August 27, 2008, earthquake have proved the high level of seismic danger of this part of the Baikal Rift Zone and allowed us to determine generation conditions of strong earthquakes more precisely.  相似文献   

11.
Paleoseismological studies confirm that the Uimon basin is thrust by its northern mountain border along the active South Terekta fault. The latest motion along the fault in the 7-8th centuries AD induced an earthquake with a magnitude of Mw= 7.4-7.7 and a shaking intensity of I = 9-11 on the MSK-64 scale. The same fault generated another event (M > 7, I = 9-10), possibly, about 16 kyr ago, which triggered gravity sliding. The rockslide dammed the Uimon valley and produced a lake, where lacustrine deposition began about 14 ± 1 kyr ago, and a later M > 7 (I = 9-10) earthquake at ~ 6 ka caused the dam collapse and the lake drainage. Traces of much older earthquakes that occurred within the Uimon basin are detectable from secondary deformation structures (seismites) in soft sediments deposited during the drainage of a Late Pleistocene ice-dammed lake between 100 and 90 ka and in ~ 77 ka alluvium. The magnitude and intensity of these paleoearthquakes were at least M > 5.0-5.5 and I > 6-7.  相似文献   

12.
Characteristics of the seismicity in depth ranges 0–33 and 34–70 km before ten large and great (M w = 7.0−9.0) earthquakes of 2000–2008 in the Sumatra region are studied, as are those in the seismic gap zones where no large earthquakes have occurred since at least 1935. Ring seismicity structures are revealed in both depth ranges. It is shown that the epicenters of the main seismic events lie, as a rule, close to regions of overlap or in close proximity to “shallow” and “deep” rings. Correlation dependences of ring sizes and threshold earthquakes magnitudes on energy of the main seismic event in the ring seismicity regions are obtained. Identification of ring structures in the seismic gap zones (in the regions of Central and South Sumatra) suggests active processes of large earthquake preparation proceed in the region. The probable magnitudes of imminent seismic events are estimated from the data on the seismicity ring sizes.  相似文献   

13.
This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2009. During this period, 450 earthquakes and 68 quarry blasts were detected and located in the region under consideration. The three strongest events occurred about 15 km NW of Basel in southern Germany (ML 4.2), near Wildhaus in the Toggenburg (ML 4.0) and near Bivio in Graubünden (ML 3.5). Although felt by the population, they were not reported to have caused any damage. With a total of 24 events with ML ≥ 2.5, the seismic activity in the year 2009 was close to the average over the previous 34 years.  相似文献   

14.
Following the 1999 Mw 7.6 Chi-Chi earthquake, a large amount of seismicity occurred in the Nantou region of central Taiwan. Among the seismic activities, eight Mw  5.8 earthquakes took place following the Chi-Chi earthquake, whereas only four earthquakes with comparable magnitudes took place from 1900 to 1998. Since the seismicity rate during the Chi-Chi postseismic period has never returned to the background level, such seismicity activation cannot simply be attributed to modified Omori’s Law decay. In this work, we attempted to associate seismic activities with stress evolution. Based on our work, it appears that the spatial distribution of the consequent seismicity can be associated with increasing coseismic stress. On the contrary, the stress changes imparted by the afterslip; lower crust–upper mantle viscoelastic relaxation; and sequent events resulted in a stress drop in most of the study region. Understanding seismogenic mechanisms in terms of stress evolution would be beneficial to seismic hazard mitigation.  相似文献   

15.
Palaeoseismological studies were performed within the Yaloman graben (Gorny Altai). Five Quaternary sections with coseismic deformation structures (seismites) have been recognized in the lower course of the Malyi Yaloman River. Traces of ancient earthquakes are localized at two levels (Late Pleistocene-Holocene). The most likely mechanisms of the seismite formation are brittle failure, liquefaction, and fluidization. The types of coseismic deformations and their sizes suggest that the Yaloman graben was the locus of prehistoric earthquakes with M > 5–7, although modern-day seismic activity consists of smaller-magnitude earthquakes. This should be taken into account in assessing the seismic hazards during construction of gas pipeline to China and tourism infrastructure facilities.  相似文献   

16.
17.
Earthquakes in Kenya are common along the Kenya Rift Valley because of the slow divergent movement of the rift and hydrothermal processes in the geothermal fields. This implies slow but continuous radiation of seismic energy, which relieves stress in the subsurface rocks. On the contrary, the NW-SE trending rift/fault zones such as the Aswa-Nyangia fault zone and the Muglad-Anza-Lamu rift zone are the likely sites of major earthquakes in Kenya and the East African region. These rift/fault zones have been the sites of a number of strong earthquakes in the past such as the M w = 7.2 southern Sudan earthquake of 20 May 1990 and aftershocks of M w = 6.5 and 7.1 on 24 May 1990, the 1937 M s = 6.1 earthquake north of Lake Turkana close to the Kenya-Ethiopian border, and the 1913 M s = 6.0 Turkana earthquake, among others. Source parameters of the 20 May 1990 southern Sudan earthquake show that this earthquake consists of only one event on a fault having strike, dip, and rake of 315°, 84°, and ?3°. The fault plane is characterized by a left-lateral strike slip fault mechanism. The focal depth for this earthquake is 12.1 km, seismic moment M o = 7.65 × 1019 Nm, and moment magnitude, M w = 7.19 (?7.2). The fault rupture started 15 s earlier and lasted for 17 s along a fault plane having dimensions of ?60 km × 40 km. The average fault dislocation is 1.1 m, and the stress drop, , is 1.63 MPa. The distribution of historical earthquakes (M w ≥ 5) from southern Sudan through central Kenya generally shows a NW-SE alignment of epicenters. On a local scale in Kenya, the NW–SE alignment of epicenters is characterized by earthquakes of local magnitude M l ≤ 4.0, except the 1928 Subukia earthquake (M s = 6.9) in central Kenya. This NW–SE alignment of epicenters is consistent with the trend of the Aswa-Nyangia Fault Zone, from southern Sudan through central Kenya and further southwards into the Indian Ocean. We therefore conclude that the NW–SE trending rift/fault zones are sites of strong earthquakes likely to pose the greatest earthquake hazard in Kenya and the East African region in general.  相似文献   

18.
In this paper, we report that the ratio of broadband energy (0.01?C2?Hz) to high-frequency energy (0.3?C2?Hz), E r, estimated from regional seismograms of India, might be a useful parameter in estimating tsunami potential of earthquakes in the Sumatra?CAndaman region. E r is expected to be sensitive to the depth as well as to the source characteristics of an earthquake. Since a shallow and slow earthquake has a greater tsunamigenic potential, E r may be a useful diagnostic parameter. We base our analysis on broadband seismograms of the great earthquakes of Sumatra?CAndaman (2004, M w?~?9.2) and Nias (2005, M w 8.6), 41 of their aftershocks, and the earthquakes of north Sumatra (2010, M w 7.8) and Nicobar (2010, M w 7.4) recorded at VISK, a station located on the east coast of India. In the analysis, we also included the two recent, great strike-slip earthquakes of north Sumatra (2012, M w 8.6, 8.2) recorded at VISK and three south Sumatra earthquakes (2007, M w 8.5; 2007, M w 7.9; 2010, M w 7.8) recorded at PALK, a station in Sri Lanka. We find that E r is a function of depth; shallower earthquakes have higher E r values than the deeper ones. Thus, E r may be indicative of tsunamigenic potential of an earthquake. As M w and E r increase so does the tsunami potential. In addition to the parameter E r, the radiated seismic energy, E s, may be estimated from the regional seismograms in India using empirical Green??s function technique. The technique yields reliable E s for the great Sumatra and Nias earthquakes. E r and E s computed from VISK data, along with M w and focal mechanism, may be useful in estimating tsunami potential along the east coast of India from earthquakes in the Sumatra?CAndaman region in less than ~20?min.  相似文献   

19.
We refine the 1-D velocity model of the Central India Tectonic Zone (CITZ) using well-selected arrival times of P- and S-phases of 354 local earthquakes of magnitude (Mw) between 2.0 and 5.8, recorded by national seismic network from May 1997 to March 2016. Further, we have determined the source mechanisms of 26 selected local events using moment tensor inversion to characterize the dynamics beneath the CITZ. The best-fit simulation between observed and synthetic waveforms obtained the nodal and auxiliary planes of the each faults associated with the earthquake moment magnitude (Mw) for each event. Depth of the fault plane along the CITZ varies from 5 to 38 km. From this study, we found that the western part along the CITZ shows minimum focal depth and reaches maximum 38 kms at Jabalpur in the eastern part. This complex nature of earthquake dynamics occurrence along the CITZ. We propose that the curviplanar the CITZ dominated with sinistral curvature is subjected to compression along the longer ~E–W segments and transtension along shorter segments with ~NE–SW orientations. The occurrences of normal faulting, intrusion of mafic plutons and CLVD mechanisms for earthquakes are interpreted to be linked to the transtension zones and reverse mechanisms associated with the compressions along ~E–W segments.  相似文献   

20.
Sand- and gravel-filled clastic dikes of seismic liquefaction origin occur throughout much of southern Indiana and Illinois. Nearly all of these dikes originated from prehistoric earthquakes centered in the study area. In this area at least seven and probably eight strong prehistoric earthquakes have been documented as occurring during the Holocene, and at least one during the latest Pleistocene. The recognition of different earthquakes has been based mainly on timing of liquefaction in combination with the regional pattern of liquefaction effects, but some have been recognized only by geotechnical testing at sites of liquefaction.

Most paleo-earthquakes presently recognized lie in Indiana, but equally as many may have occurred in Illinois. Studies in Illinois have not yet narrowly bracketed the age of clastic dikes at many sites, which sometimes causes uncertainty in defining the causative earthquake, but even in Illinois the largest paleo-earthquakes probably have been identified.

Prehistoric magnitudes were probably as high as about moment magnitude M 7.5. This greatly exceeds the largest historic earthquake of M 5.5 centered in Indiana or Illinois. The strongest paleo-earthquakes struck in the vicinity of the concentration of strongest historic seismicity. Elsewhere, paleo-earthquakes on the order of M 6–7 have occurred even where there has been little or no historic seismicity.

Both geologic and geotechnical methods of analysis have been essential for verification of seismic origin for the dikes and for back-calculating prehistoric magnitudes. Methods developed largely as part of this study should be of great value in unraveling the paleoseismic record elsewhere.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号