首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The 1989 Loma Prieta, California earthquake (moment magnitude, M=6.9) generated landslides throughout an area of about 15,000 km2 in central California. Most of these landslides occurred in an area of about 2000 km2 in the mountainous terrain around the epicenter, where they were mapped during field investigations immediately following the earthquake. The distribution of these landslides is investigated statistically, using regression and one-way analysis of variance (ANOVA) techniques to determine how the occurrence of landslides correlates with distance from the earthquake source, slope steepness, and rock type. The landslide concentration (defined as the number of landslide sources per unit area) has a strong inverse correlation with distance from the earthquake source and a strong positive correlation with slope steepness. The landslide concentration differs substantially among the various geologic units in the area. The differences correlate to some degree with differences in lithology and degree of induration, but this correlation is less clear, suggesting a more complex relationship between landslide occurrence and rock properties.  相似文献   

2.
On June 19, 1996, an extremely heavy rainstorm hit a restricted area in the Apuan Alps (northwestern Tuscany, Italy). Its max intensity concentrated over an area of about 150 km2 astride the Apuan chain, where 474 mm was recorded in about 12 h (21% of the mean annual precipitation, with an intensity up to 158 mm/h). The storm caused floods and hundreds of landslides and debris flows, which produced huge damage (hundreds of millions of Euros), partially destroyed villages and killed 14 people. This paper reports the results obtained from a detailed field survey and aerial view interpretation. In the most severely involved area, 647 main landslides were investigated, mapped and related to the geologic, geomorphic and vegetational factors of the source areas. This was in order to define the influence of these factors and contribute to an evaluation of the landslide hazard in the study area. An assessment was also made of the total area and volume of material mobilised by landsliding. The study area, about 46 km2 wide, includes three typically mountainous basins, characterised by narrow, deep cut valleys and steep slopes, where many rock types outcrop. Most of the landslides were shallow and linear, referable to complex, earth and debris translational slide, which quickly developed into flow (soil slip–debris flow). Usually, they involved colluvium and started in hollows underlain by metamorphic rock (metasandstone and phyllite), often dipping downslope. Therefore, bedrock lithology and impermeability appeared to be important factors in the localisation of the landslide phenomena. The investigation of the geomorphic and land use features in the source areas also frequently highlighted a rectilinear profile of the slope, a high slope gradient (31–45°) and dense chestnut wood cover. In the area, about 985,000 m2 (2.1% of 46 km2) was affected by landsliding and about 700,000 m2 of this area was covered by chestnut forest. The landslides removed about 7000 trees. The volume of mobilised material was about 1,360,000 m3; about 220,000 m3 remained on the slopes, while the rest poured into the streams. In addition, about 945,000 m3 was mobilised by the torrential erosion in the riverbeds.  相似文献   

3.
The 1999 Chi–Chi earthquake triggered the catastrophic Tsaoling landslide in central Taiwan. We mapped the landslide area and estimated the landslide volume, using a high-resolution digital elevation model from airborne LiDAR (Light Detection And Ranging), aerial photographs and topographic maps. The comparison between scar and deposit volumes, about 0.126 km3 and 0.150 km3 respectively, suggests a coseismic volume increase of 19% due to decompaction during landsliding. In July 2003, the scar and deposit volumes were about 0.125 km3 and 0.110 km3 respectively. These estimates suggest that 4 years after the event, the volume of landslide debris removed by river erosion was nearly 0.040 km3. These determinations are confirmed by direct comparison between the most accurate topographic models of the post-landslide period, indicating a very high erosion rate at the local scale (0.01 km3/year) for the deposit area of the landslide. Such a large value highlights the importance of landslide processes for erosion and long-term denudation in the Taiwan mountain belt.  相似文献   

4.
On November 1, 1970, an earthquake of magnitude 7.0 occurred 32 km north of Madang on the north coast of Papua New Guinea, and on the fringes of the Adelbert Range. Dense landsliding occurred over an area of 240 km2. Debris avalanches removed shallow soil and forest vegetation from slopes of 45°. Earthflows occurred on deeper soils and lower-angled slopes. The nature of the landslides and disposition of the vegetation debris suggest that falling trees triggered the landslides during the earthquake. Logs in the deposits were an important influence on the movement of landslide debris in the channel systems.  相似文献   

5.
From mid-October to 22 November 2000, the western Liguria Region of Italy experienced prolonged and intense rainfall, with cumulative values exceeding 1000 mm in 45 days. The severe rainfall sequence ended on November 23 with a high-intensity storm that dumped more than 180 mm of rain in 24 h. The high-intensity event caused flooding and triggered more than 1000 soils slips and debris flows and a few large, complex landslides. Slope failures caused three fatalities and severe damage to roads, private homes, and agriculture. Large (1:13,000) and very large (1:5000) scale colour aerial photographs were taken 45 days after the event over the areas most affected by the landslides. Through the interpretation of the 334 photographs covering an area of 500 km2, we prepared a landslide inventory map that shows 1204 landslides, for a total landslide area of 1.6 km2. We identified the rainfall conditions that triggered landslides in the Armea valley using cumulative- and continuous-rainfall data, combined with detailed information on the time of landslide occurrence. Landslide activity initiated 8 to 10 h after the beginning of the storm, and the most abundant activity occurred in response to rainfall intensities of 8 to 10 mm per hour. For the Ceriana Municipality, an area where the landslides were numerous in November 2000, we also collected information about a historical event that occurred on 8–11 December 1910 and triggered abundant landslides resulting in severe economic damage. A comparison of the damage caused by the historical and the recent landslide events indicated that damage caused by the 1910 historical event was more diffused but less costly than the damage caused by the 2000 event.  相似文献   

6.
The August 1, 1975 earthquake near Oroville, California, occurred along the Sierra foothills in a region characterized by occasional moderate earthquakes. Several earthquakes in the general region, including those in 1869, 1875, and 1909, appear to have had significant aftershock sequences. The general character of the aftershock sequence of the Oroville earthquake thus does not appear to be anomalous when measured against the known seismic history of this area.

Four smoked-paper micro-earthquake recorders were deployed immediately following the occurrence of the main earthquake to attempt to define the structural associations of the principal earthquake by location and analysis of aftershocks. Focal locations for 243 micro-earthquakes in the magnitude range of 1–3 were selected from the 30-day period (August 2–September 1), during which monitoring was continued. The aftershocks clearly define a planar surface striking north–south and dipping west at 62° from the surface to a depth of about 12 km. Aftershocks during the first two days of monitoring defined a surface of active faulting of approximately 100 km2. Extension of this surface both to the north and south began on August 5 at focal depths of 5–10 km, resulting in a total ruptured area of approximately 125 km2. The number of aftershocks per day decreased at the rate oft−1.1, but the decay curve was punctuated by several secondary aftershock sequences. No. direct relationship between the aftershock sequence and the presence of Oroville Reservoir was observed.  相似文献   


7.
The Kashmir Earthquake of the 8 October killed an estimated 87 350 people, 25 500 through co-seismic landslides. The largest landslide associated with the earthquake was the 68 × 106 m3 Hattian Bala rock avalanche that destroyed a village and killed around 1000 people. The deposit blocks the valley to a depth of 130 m impounding a lake that reached the dam-crest in April 2007. An outburst flood now threatens a major settlement 3 km downstream. A series of space images reveals landslide clusters in the rock avalanche source area prior to the earthquake. The images also reveal a large slow-moving landslide with its toe in the lake, failure of this landslide may induce dam failure through overtopping and scour. Eighty five landslides in the Hattian Bala catchment predate the shaking of 8 October 2005, a further 73 are co-seismic with the main shock, and 21 postdate it in the period up to October 2006. Landslide magnitude–frequency distribution plots derived from satellite images allow an assessment of the contribution of seismically triggered events as compared to background rates of activity.  相似文献   

8.
The applicability of the Permanent Scatterers Synthetic Aperture Radar Interferometry (PSInSAR) technique for detecting and monitoring ground displacements was tested in the Oltrepo Pavese territory (Northern Italy, southern Lombardia), which could be representative of similar geological contexts in the Italian Apennines. The study area, which extends for almost 1100 km2, is characterized by a complex geological and structural setting and the presence of clay-rich sedimentary formations. These characteristics make the Oltrepo Pavese particularly prone to several geological hazards: shallow and deep landslides, subsidence and swelling/shrinkage of the clayey soils. The PSInSAR technique used in this study overcomes most of the limitations of conventional interferometric approaches by identifying, within the area of interest, a set of “radar benchmarks” (PS), where very precise displacement measurements can be carried out. More than 90,000 PS were identified by processing Synthetic Aperture Radar (SAR) images acquired from 1992 to 2001 by the European Remote Sensing satellites (ERS). The PSInSAR application at a sub-regional scale detected slow ground deformations ranging from + 5 to − 16 mm/year, and resulting from various processes (landslides, swelling/shrinkage of clay soils and water pumping). The PS displacements were analysed by collecting data obtained through geological, geomorphologic field surveys, geotechnical analysis of the soils and the information was integrated within a landslide inventory and the damaged building inventory. Despite the limited number of landslide bodies with PS (7% of the inventoried landslides), the PS data helped to revise the state of activity of several landslides. Furthermore, some previously unknown unstable slopes were detected. Two areas of uplift and two areas of subsidence were identified.  相似文献   

9.
The 1.78 Ga Xiong'er Volcanic Province (XVP) and coeval North China giant mafic Dyke Swarm (NCDS) are the most important magmatic events occurring after the amalgamation of the North China craton (NCC). The XVP consists of 3–7 km of extrusive volcanics and some feeder dykes/sills located along the southern margin of the NCC and extending over an area > 0.06 M km2. Compositions vary from basalt to rhyolite, but are predominantly intermediate in terms of silica content. There are also minor sedimentary intercalations and pyroclastic units. The sedimentary interlayers indicate an environment changing from continental-facies to oceanic-facies up-section. The XVP is characterized by fractional crystallization from an EM I type mantle source, and both continental arc (Andean-type) and rift environments have been proposed. The NCDS is widespread in the central NCC with an outcrop area > 0.1 M km2, and are exposed at variable depths up to 20 km (deepest in the north). Dyke compositions vary from basalt to andesite and dacite, but are dominantly mafic, and comprise two series of magmatism. Previous studies revealed that the NCDS recorded assimilation and fractional crystallization of an EM I type magma source, with a minor DM contribution in the younger magmas. Both syn-collisional and intra-continental anorogenic environments have been proposed. Spatial and petrogenic correlations suggest a cogenetic relationship between the NCDS and XVP, and considered together, they define a Large Igneous Province (LIP) of > 0.1 M km2 in area and > 0.1 M km3 in volume, which is also notable for its continuous compositional range from mafic to felsic (with no gap at intermediate compositions). The petrology is explained by a common magma source that undergoes a silica-poor and iron-enriched fractionation trend at depth followed by a silica-rich and iron-poor fractionation trend in shallow-level magma conduits (dykes) and surface lavas. A mantle plume is favored as the cause of this  1.78 Ga North China LIP.  相似文献   

10.
On October 23, 2004, a series of powerful earthquakes with a maximum M w = 6.6 located near the western coast of northern Honshu struck parts of northern Japan, particularly Niigata Prefecture; these earthquakes were known as the Chuetsu event. Thousands of landslides, as a secondary geotechnical hazard associated with these earthquakes, were triggered over a broad area; these landslides were of almost all types. The purpose of this study was to detect correlations between landslide occurrence with geologic and geomorphologic conditions, slope geometry, and earthquake parameters using two indexes based on Geographic Information Systems (GIS). In the study area, the landslide–area ratio (LAR), which is defined as the percentage of the area affected by landslides, was 2.9%, and the landslide concentration (LC), the number of landslides per square kilometer, was 4.4 landslides/km2, which is much more than other reported cases of seismic activity with the same magnitude. This was possibly due to heavy rainfall just before the Chuetsu earthquakes. Statistical analyses show that LAR has a positive correlation with slope steepness and distance from the epicenter, while LC is inversely correlated with distance from the epicenter. The Wanazu Formation had the most concentrated landslide activity, followed by the Kawaguchi, Ushigakubi, Shiroiwa and Oyama Formations, although the Wanazu Formation occupied only 4.5% of the total area of geological units. With 8.2% of the area affected by seismic landslides, the Kawaguchi Formation had the highest LAR. It was followed by the Shiroiwa, Ushigakubi and Wanazu Formations with LAR ranging from 4.6% to 6.0%. For lots of geological subunits, landslides are more frequent in a range of slope angles between 15° and 40°. The susceptibility to landsliding of each geologic unit was thus evaluated to correlate with slope steepness. It was also noted that the effects of the earthquakes were made far worse by antecedent rainfall conditions induced by a␣typhoon, and further research emphasizing the role of antecedent rainfall was discussed.  相似文献   

11.
川藏铁路工程是国家重大基础设施建设项目,保障铁路的顺利建设和后期安全运营十分重要。铁路沿线发育广泛、危害严重的大型滑坡已成为全线的关键控制性问题,关乎工程建设的成败。以川藏铁路工程沿线大型滑坡作为主要研究对象,采用历史数据分析、实地调查、遥感解译的研究方法,基于ArcGIS平台,采用贡献率权重模型对铁路沿线区域进行了大型滑坡危险性评价,并利用自然断点法对危险性评价结果进行分区及统计分析。研究结果表明:川藏铁路沿线共发育大型、特大型滑坡共147处,其中大型滑坡106处,特大型滑坡41处,主要分布于白玉至江达段、昌都至八宿段、朗县至加查段等区段;铁路沿线处于高中低度三个等级危险区的面积分别为35918.5 km2、95484.3 km2和12039.7 km2,高度危险区大型滑坡分布密度为0.00199处/km?2,约为中度或低度危险区的2倍,高度危险区主要集中在邦达—八宿段、古乡—拉月段、白玉—江达段。根据贡献率权重模型求得的川藏铁路沿线大型滑坡危险度等级与野外实地调查的大型滑坡分布密度是一致的。相关研究成果可以为川藏铁路工程建设提供科学参考与依据。  相似文献   

12.
Photogrammetric analysis of aerial photographs is used to investigate morphological changes in two large landslides located adjacent to the active Marathias normal fault along the Gulf of Corinth, Greece. This E–W trending fault intersects at almost right angles a series of west-verging and east-dipping thrust faults, and has a clear geomorphic expression. The fault's structural signature, such as the trace length, displacement, segmentation, and scarp freshness resembles other normal faults within the Gulf of Corinth. Along this fault we mapped a series of landslides that are mainly concentrated at the near tip areas. Two of them are hosted in the damage zone formed by the intersecting normal and reverse faults. The Marathias and Sergoula landslides show a significant geomorphic evolution on aerial photographs from 1945 to 1991.

Evolution of landslides in the study area appears to be correlated with two earthquake clusters that drive mass wasting in the order of 106 m3, significant drainage adjustment, and triggering of post-landslide river incision. We infer the following process sequence for these presumably earthquake-triggered landslides in the region: eroded material in Marathias landslide and reactivation of movement within the main body of the Sergoula landslide were observed in 1969 aerial photographs. Both landslides are deep-seated rotational rockslides. Obstruction or abandonment of channels due to the landslides establishes river incision and a dramatic increase of the rate of fan-delta progradation in the order of 1 m/yr. These large landslides are related to strong (M > 6.5) earthquakes concentrated along faults, and their reactivation period is almost a century, based on seismological or paleoseismological analyses.  相似文献   


13.
The Songpan–Garze fold belt covers a huge triangular area (> 200,000 km2), confined by the South China (Yangtze), North China and Tibetan Plateau continental blocks. In the Songpan–Garze fold belt, Triassic adakitic granitoids have been identified. However, whether there are Triassic A-type granites is unclear. Here, we report our first finding of an A-type granite (Nianbaoyeche), which occurs in the central part of the Songpan–Garze fold belt. The Nianbaoyeche granite ( 820 km2) is characterized by arfvedsonite in its mineral assemblage. Using both LA-ICPMS and TIMS U–Pb zircon dating methods, we obtain a magma crystallization age of 211 ± 1 Ma, which is slightly younger than Triassic adakitic granitoids (216–221 Ma) in the Songpan–Garze fold belt. The Nianbaoyeche granite is enriched in Si, K, Na, Rb, REE, HFSE (Nb, Ta, Zr, Hf), with elevated FeOtot/(FeOtot + MgO) and Ga/Al ratios, but is depleted in Al, Mg, Ca, Ba and Sr. The REE compositions show moderately fractionated patterns with (La/Yb)N = 2.67–7.54 and Eu/Eu = 0.09–0.34. These geochemical characteristics indicate that the Nianbaoyeche granite has an A-type affinity. Geochemical data and U–Pb zircon age, combined with regional studies, show that the Nianbaoyeche granite formed in a post-collisional tectonic setting. Sr–Nd isotopic data for the granite exhibit ISr = 0.7090–0.7123 and εNd(t) = − 2.72 to − 4.26 with TDM = 1.15–1.51 Ga, suggesting that the magma has a dominantly crustal source, though a minor contribution from the mantle cannot be ruled out. Melting to produce an A-type granite may have resulted from Triassic lithospheric delamination after Triassic crustal thickening of the Songpan–Garze fold belt due to convergence between the Yangtze, North China and North Tibet continental blocks. The lithospheric delamination model also helps to explain the Triassic adakitic magma generation in the Songpan–Garze belt. We conclude that association of A-type granite and adakitic granitoids in post-collisional environment could be a useful indicator of lithospheric delamination.  相似文献   

14.
The October 2005 earthquake triggered several thousand landslides in the Lesser Himalaya of Kashmir in northern Pakistan and India. Analyses of ASTER satellite imagery from 2001 were compared with a study undertaken in 2005; the results show the extent and nature of pre- and co-/post-seismic landsliding. Within a designated study area of ~2,250 km2, the number of landslides increased from 369 in 2001 to 2,252 in October 2005. Assuming a balanced baseline landsliding frequency over the 4 years, most of the new landslides were likely triggered by the 2005 earthquake and its aftershocks. These landslides mainly happened in specific geologic formations, along faults, rivers and roads, and in shrubland/grassland and agricultural land. Preliminary results from repeat photographs from 2005 and 2006 after the snowmelt season reveal that much of the ongoing landsliding occurred along rivers and roads, and the extensive earthquake-induced fissuring. Although the susceptibility zoning success rate for 2001 was low, many of the co-/post-seismic landsliding in 2005 occurred in areas that had been defined as being potentially dangerous on the 2001 map. While most of the area in 2001 was (very) highly susceptible to future landsliding, most of the area in 2005 was only moderate to low susceptible, that is, most of the landsliding in 2005 actually occurred in the potentially dangerous areas on the 2001 map. This study supports the view that although susceptibility zoning maps represent a powerful tool in natural hazard management, caution is needed when developing and using such maps.  相似文献   

15.
The Ms8.0 Wenchuan earthquake that occurred on 12 May 2008 in southwestern China and triggered numerous landslides is one of the stronger ones in the steep eastern margins of the Tibetan Plateau. The surfaces of these landslides have recovered gradually with vegetation, which provide useful information about the evolution of geologic environment as well as the long-term assessment of landslides after earthquake. The Mianyuanhe watershed shows many co-seismic landslides. The active fault passing through its center is selected as a study area aiming to analyze the annual surface recovery rate (SRR) of landslides by interpretation of remote-sensing images in five periods from 2008 to 2013. The results are here described. (1) Although a large amount of loose deposits were transformed into debris flows, the surfaces of the landslides recovered rapidly with vegetation and almost no landslides occurred at new sites after the Wenchuan earthquake. In the year 2008, the exposed surface projected area (ESPA) of the landslides showed a total area of 56.3 km2 and covered 28.9 % of the study area, which was reduced rapidly to 19.1 % in 2011 and 15.8 % in 2013. (2) The study area was divided into four geologic units, including clastic rocks, melange zone, carbonate rocks, and magmatic rocks. Smaller ESPAs and higher SRRs were found in the former two units versus the latter ones. (3) A single large landslide shows an SRR lower than a group of smaller ones having an equal total surface, while the SRRs of debris flows are lower than those of rockfalls and landslides. (4) The vegetation cover would return to the pre-earthquake level in 2020 approximately, which indicates that the impact of the Wenchuan earthquake on landslides and debris-flows activities would cease almost completely.  相似文献   

16.
Mass movements varying in type and size, some of which are periodically reactivated, affect the urban area of Avigliano. The disturbed and remoulded masses consist of sandy–silty or silty–clayey plastic material interbedded with stone fragments and conglomerate blocks. Five landslides that were markedly liable to rainfall-associated instability phenomena were selected.

The relationships between landslides and rainfall were investigated using a hydrological and statistical model based on long-term series of daily rainfall data. The model was used to determine the return period of cumulative daily rainfall over 1–180 days. The resulting hydrological and statistical findings are discussed with the aim of identifying the rainfall duration most critical to landslides.

The concept of a precipitation threshold was generalized by defining some probability classes of cumulative rainfall. These classes indicate the thresholds beyond which reactivation is likely to occur. The probability classes are defined according to the return period of the cumulative rainfall concomitant with landslide reactivation.  相似文献   


17.
This paper both describes and discusses landslides and other ground effects induced by the September–October 1997 seismic sequence, which struck the Umbria and Marche regions (Central Italy). Three main events occurred on 26 September at 00:33 and 09:40 GMT, and 14 October with magnitude Mw equal to 5.8, 6.0 and 5.4, respectively; furthermore hundreds of minor but significant events were also recorded. The authors examined an area of some 700 km2 around the epicentre (Colfiorito). Primary and secondary effects were observed, including surface faulting phenomena, landslides, ground fractures, compaction and various hydrological phenomena. Surface evidence of faulting reactivation was found along the well-known capable faults, to a total length of ca. 30 km. Landslides, which were the most recurrent among the phenomena induced, consisted mainly of rock falls and subordinately of rotational and translational slides, which were generally mobilised by the inertia forces during the seismic motion. The percentage of reactivated old landslides decreased as the distance from the epicentral zone increased; a similar decrease had been observed for the 1980 Irpinia earthquake (Southern Italy). The ground fracture distribution was consistent with the regional structural setting and the general pattern of macroseismic field. Numerous episodes of hydrological changes were observed within the most severely damaged area. All this evidence confirms the relevance of the study of ground surface effects for achieving a more complete evaluation of seismic hazard.  相似文献   

18.
On July 22, 2013, an earthquake of Ms. 6.6 occurred at the junction area of Minxian and Zhangxian counties, Gansu Province, China. This earthquake triggered many landslides of various types, dominated by small-scale soil falls, slides, and topples on loess scarps. There were also a few deep-seated landslides, large-scale soil avalanches, and fissure-developing slopes. In this paper, an inventory of landslides triggered by this event is prepared based on field investigations and visual interpretation of high-resolution satellite images. The spatial distribution of the landslides is then analyzed. The inventory indicates that at least 2330 landslides were triggered by the earthquake. A correlation statistics of the landslides with topographic, geologic, and earthquake factors is performed based on the GIS platform. The results show that the largest number of landslides and the highest landslide density are at 2400 m–2600 m of absolute elevation, and 200 m–300 m of relative elevation, respectively. The landslide density does not always increase with slope gradient as previously suggested. The slopes most prone to landslides are in S, SW, W, and NW directions. Concave slopes register higher landslide density and larger number of landslides than convex slopes. The largest number of landslides occurs on topographic position with middle slopes, whereas the highest landslide density corresponds to valleys and lower slopes. The underlying bedrocks consisting of conglomerate and sandstone of Lower Paleogene (Eb) register both the largest number and area of landslides and the highest landslide number and area density values. Correlations of landslide number and landslide density with perpendicular- and along-strike distance from the epicenter show an obvious spatial intensifying character of the co-seismic landslides. The spatial pattern of the co-seismic landslides is strongly controlled by a branch of the Lintan-Dangchang fault, which indicates the effect of seismogenic fault on co-seismic landslides. In addition, the area affected by landslides related to the earthquake is compared to the relationship of “area affected by landslides vs. earthquake magnitude” constructed based on earthquakes worldwide, and it is shown that the area affected by landslides triggered by the Minxian–Zhangxian earthquake is larger than that of almost all other events with similar magnitudes.  相似文献   

19.
Tanyaş  Hakan  Görüm  Tolga  Fadel  Islam  Yıldırım  Cengiz  Lombardo  Luigi 《Landslides》2022,19(6):1405-1420

On November 14, 2016, the northeastern South Island of New Zealand was hit by the magnitude Mw 7.8 Kaikōura earthquake, which is characterized by the most complex rupturing mechanism ever recorded. The widespread landslides triggered by the earthquake make this event a great case study to revisit our current knowledge of earthquake-triggered landslides in terms of factors controlling the spatial distribution of landslides and the rapid assessment of geographic areas affected by widespread landsliding. Although the spatial and size distributions of landslides have already been investigated in the literature, a polygon-based co-seismic landslide inventory with landslide size information is still not available as of June 2021. To address this issue and leverage this large landslide event, we mapped 14,233 landslides over a total area of approximately 14,000 km2. We also identified 101 landslide dams and shared them all via an open-access repository. We examined the spatial distribution of co-seismic landslides in relation to lithologic units and seismic and morphometric characteristics. We analyzed the size statistics of these landslides in a comparative manner, by using the five largest co-seismic landslide inventories ever mapped (i.e., Chi-Chi, Denali, Wenchuan, Haiti, and Gorkha). We compared our inventory with respect to these five ones to answer the question of whether the landslides triggered by the 2016 Kaikōura earthquake are less numerous and/or share size characteristics similar to those of other strong co-seismic landslide events. Our findings show that the spatial distribution of the Kaikōura landslide event is not significantly different from those belonging to other extreme landslide events, but the average landslide size generated by the Kaikōura earthquake is relatively larger compared to some other large earthquakes (i.e., Wenchuan and Gorkha).

  相似文献   

20.
基于地震滑坡危险性评估的Newmark累积位移模型,利用震前获取的震区地形数据、区域地质资料,结合地震动近实时获取技术,开展了四川九寨沟M_s7.0级地震诱发滑坡的应急快速评估。地震滑坡位移分析结果表明,同震滑坡活动的中—高强度区分布在断层两侧宽约4 km的带状区域内,整体沿北西方向延伸。其中,极震区的丰雪塘、日则和干海子等城镇驻地及附近道路的滑坡强度相对较高;震前、震后影像对比表明九寨沟地震诱发的滑坡类型以浅表型碎屑流及小规模崩塌为主,且同震碎屑流多是在震前已有碎屑流的基础上进一步活动扩展而来,震后汛期泥石流隐患也不容忽视;通过典型地区滑坡位移分析结果与震前、震后影像对比,表明滑坡位移分析结果能够较好的反映同震滑坡的宏观分布特征,但在场地尺度上吻合程度欠佳,后续将通过提升岩性和地形等数据质量进行改进。研究结果可为灾情研判提供宝贵信息,对提高灾害应急救援效率具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号