首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 738 毫秒
1.
We present ISOPHOT observations of eight interstellar regions in the 60–200 μm wavelength range. The regions belong to mostly quiescent high-latitude clouds and have optical extinction peaks from   AV ∼1–6 mag  . From the 150- and 200-μm emission, we derived colour temperatures for the classical big grain component which show a clear trend of decreasing temperature with increasing 200-μm emission. The 200-μm emission per unit   AV   , however, does not drop at lower temperatures. This fact can be interpreted in terms of an increased far-infrared (FIR) emissivity of the big grains. We developed a two-component model including warm dust with the temperature of the diffuse interstellar medium (ISM) of   T = 17.5 K  , and cold dust with   T = 13.5 K  and FIR emissivity increased by a factor of >4. A mixture of the two components can reproduce the observed colour variations and the ratios   I 200/ AV   and  τ200/ AV   . The relative abundance of small grains with respect to the big grains shows significant variations from region to region at low column densities. However, in lines of sight of higher column density, our data indicate the disappearance of small grains, perhaps a signature of adsorption/coagulation of dust. The larger size and porous structure could also explain the increased FIR emissivity. Our results from eight independent regions suggest that these grains might be ubiquitous in the galactic ISM.  相似文献   

2.
Whether or not supernovae contribute significantly to the overall dust budget is a controversial subject. Submillimetre (sub-mm) observations, sensitive to cold dust, have shown an excess at 450 and 850 μm in young remnants Cassiopeia A (Cas A) and Kepler. Some of the sub-mm emission from Cas A has been shown to be contaminated by unrelated material along the line of sight. In this paper, we explore the emission from material towards Kepler using sub-mm continuum imaging and spectroscopic observations of atomic and molecular gas, via H  i , 12CO( J = 2–1) and 13CO( J = 2–1). We detect weak CO emission (peak   T *A  = 0.2–1 K, 1–2 km s−1 full width at half-maximum) from diffuse, optically thin gas at the locations of some of the sub-mm clumps. The contribution to the sub-mm emission from foreground molecular and atomic clouds is negligible. The revised dust mass for Kepler's remnant is  0.1–1.2 M  , about half of the quoted values in the original study by Morgan et al., but still sufficient to explain the origin of dust at high redshifts.  相似文献   

3.
We present new data taken at 850 μm with SCUBA at the James Clerk Maxwell Telescope for a sample of 19 luminous infrared galaxies. Fourteen galaxies were detected. We have used these data, together with fluxes at 25, 60 and 100 μm from IRAS , to model the dust emission. We find that the emission from most galaxies can be described by an optically thin, single temperature dust model with an exponent of the dust extinction coefficient ( k λ ∝ λ − β ) of β ≃1.4–2. A lower β ≃1 is required to model the dust emission from two of the galaxies, Arp 220 and NGC 4418. We discuss various possibilities for this difference and conclude that the most likely is a high dust opacity. In addition, we compare the molecular gas mass derived from the dust emission, M 850 μm, with the molecular gas mass derived from the CO emission, M CO, and find that M CO is on average a factor 2–3 higher than M 850 μm.  相似文献   

4.
We present millimetre photometry and submillimetre imaging of the central core and two hotspots in the radio lobes of the galaxy Cygnus A. For both hotspots and the central core, the synchrotron spectrum continues smoothly from the radio to a frequency of 677 GHz. The spectral index of the hotspots is constant over our frequency range, with a spectral index of α ≈ −1.0 ( S ν ∝ να), which is steeper than at lower frequencies and represents the emission from an aged population of electrons. The core is significantly flatter, with α = −0.6 ± 0.1, suggestive of an injected spectrum with no ageing, but some evidence for steepening exists at our highest observing frequency. Although IRAS data suggest the presence of dust in Cygnus A, our 450-μm data show no evidence of cold dust, therefore the dust component must have a temperature lying between 85 and 37 K, corresponding to dust masses of 1.4 × 106 and 1.0 × 108 M respectively.  相似文献   

5.
A follow-up survey using the Submillimetre High-Angular Resolution Camera (SHARC-II) at 350 μm has been carried out to map the regions around several 850-μm-selected sources from the Submillimetre HAlf Degree Extragalactic Survey (SHADES). These observations probe the infrared (IR) luminosities and hence star formation rates in the largest existing, most robust sample of submillimetre galaxies (SMGs). We measure 350-μm flux densities for 24 850-μm sources, seven of which are detected at ≥2.5σ within a 10 arcsec search radius of the 850-μm positions. When results from the literature are included the total number of 350-μm flux density constraints of SHADES SMGs is 31, with 15 detections. We fit a modified blackbody to the far-IR (FIR) photometry of each SMG, and confirm that typical SMGs are dust-rich  ( M dust≃ 9 × 108 M)  , luminous  ( L FIR≃ 2 × 1012 L)  star-forming galaxies with intrinsic dust temperatures of ≃35 K and star formation rates of  ≃400 M yr−1  . We have measured the temperature distribution of SMGs and find that the underlying distribution is slightly broader than implied by the error bars, and that most SMGs are at 28 K with a few hotter. We also place new constraints on the 350-μm source counts, N 350(>25 mJy) ∼ 200–500 deg−2.  相似文献   

6.
We report the possible detection of V4334 Sgr (Sakurai's Object) at 450 and 850 μm with SCUBA on the James Clerk Maxwell Telescope. The submillimetre photometry, combined with a  1–5 μm  spectrum and  8–10 μm  photometry obtained nearly contemporaneously, suggests that the submillimetre emission originates in material ejected during the 1995 event. The dust mass is a  few×10-7 M  , the average mass-loss in the form of dust is  few×10-8 M yr-1  , and the integrated luminosity is  log( L /L)=3.66  for a distance of 2 kpc. The ejected shell had angular diameter ∼55 mas in 2001 August, and should by now be resolvable in the mid-infrared by  8–10 m  class telescopes.  相似文献   

7.
We investigate the molecular bands in carbon-rich asymptotic giant branch (AGB) stars in the Large Magellanic Cloud (LMC), using the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope ( SST ) over the 5–38 μm range. All 26 low-resolution spectra show acetylene (C2H2) bands at 7 and 14 μm. The hydrogen cyanide (HCN) bands at these wavelengths are very weak or absent. This is consistent with low nitrogen abundances in the LMC. The observed 14 μm C2H2  band is reasonably reproduced by an excitation temperature of 500 K. There is no clear dilution of the 14 μm C2H2  band by circumstellar dust emission. This 14-μm band originates from molecular gas in the circumstellar envelope in these high mass-loss rate stars, in agreement with previous findings for Galactic stars. The C2H2 column density, derived from the 13.7 μm band, shows a gas mass-loss rate in the range 3 × 10−6 to 5 × 10−5 M yr−1. This is comparable with the total mass-loss rate of these stars estimated from the spectral energy distribution. Additionally, we compare the line strengths of the 13.7 μm C2H2  band of our LMC sample with those of a Galactic sample. Despite the low metallicity of the LMC, there is no clear difference in the C2H2  abundance among LMC and Galactic stars. This reflects the effect of the third dredge-up bringing self-produced carbon to the surface, leading to high carbon-to-oxygen ratio at low metallicity.  相似文献   

8.
We present evidence for interaction between the supernova remnant (SNR) G357.7+0.3 and nearby molecular clouds, leading to the formation of wind-swept structures and bright emission rims. These features are not observed at visual wavelengths, but are clearly visible in mid-infrared mapping undertaken using the Spitzer Space Telescope . Analysis of one of these clouds, the bright cometary structure G357.46+0.60, suggests that it contains strong polycyclic aromatic hydrocarbon emission features in the 5.8 and 8.0 μm photometric bands, and that these are highly variable over relatively small spatial scales. The source is also associated with strong variations in electron density; a far-infrared continuum peak associated with dust temperatures of ∼30 K; and has previously been observed in the 1720 MHz maser transition of OH, known to be associated with SNR shock excitation of interstellar clouds. This source also appears to contain a young stellar object (YSO) within the bright rim structure, with a steeply rising spectrum between 1.25 and 24 μm. If the formation of this star has been triggered recently by the SNR, then YSO modelling suggests a stellar mass  ∼5–10 M  , and luminosity   L YSO∼102–2 × 103 L  .
Finally, it is noted that a further, conical emission region appears to be associated with the Mira V1139 Sco, and it is suggested that this may represent the case of a Mira outflow interacting with a SNR. If this is the case, however, then the distance to the SNR must be ∼half of that determined from CS   J = 2–1  and 3–2 line radial velocities.  相似文献   

9.
We present submillimetre observations of the   J = 3 → 2  rotational transition of 12CO, 13CO and C18O across over 600 arcmin2 of the Perseus molecular cloud, undertaken with the Heterodyne Array Receiver Programme (HARP), a new array spectrograph on the James Clerk Maxwell Telescope. The data encompass four regions of the cloud, containing the largest clusters of dust continuum condensations: NGC 1333, IC348, L1448 and L1455. A new procedure to remove striping artefacts from the raw HARP data is introduced. We compare the maps to those of the dust continuum emission mapped with the Submillimetre Common-User Bolometer Array (SCUBA; Hatchell et al.) and the positions of starless and protostellar cores (Hatchell et al.). No straightforward correlation is found between the masses of each region derived from the HARP CO and SCUBA data, underlining the care that must be exercised when comparing masses of the same object derived from different tracers. From the 13CO/C18O line ratio the relative abundance of the two species  ([13CO]/[C18O]∼ 7)  and their opacities (typically τ is 0.02–0.22 and 0.15–1.52 for the C18O and 13CO gas, respectively) are calculated. C18O is optically thin nearly everywhere, increasing in opacity towards star-forming cores but not beyond  τ18∼ 0.9  . Assuming the 12CO gas is optically thick, we compute its excitation temperature, T ex (around 8–30 K), which has little correlation with estimates of the dust temperature.  相似文献   

10.
Determining temperatures in molecular clouds from ratios of CO rotational lines or from ratios of continuum emission in different wavelength bands suffers from reduced temperature sensitivity in the high-temperature limit. In theory, the ratio of far-infrared (FIR), submillimetre or millimetre continuum to that of a 13CO (or C18O) rotational line can place reliable upper limits on the temperature of the dust and molecular gas. Consequently, FIR continuum data from the COBE /Diffuse Infrared Background Experiment (DIRBE) instrument and Nagoya 4-m  13CO  J = 1 → 0  spectral line data were used to plot  240 μm/13CO  J = 1 → 0  intensity ratios against 140/240 μm dust colour temperatures, allowing us to constrain the multiparsec-scale physical conditions in the Orion A and B molecular clouds.
The best-fitting models to the Orion clouds consist of two components: a component near the surface of the clouds that is heated primarily by a very large scale (i.e. ∼1 kpc) interstellar radiation field and a component deeper within the clouds. The former has a fixed temperature and the latter has a range of temperatures that vary from one sightline to another. The models require a dust–gas temperature difference of 0 ± 2 K and suggest that 40–50 per cent of the Orion clouds are in the form of dust and gas with temperatures between 3 and 10 K. The implications are discussed in detail in later papers and include stronger dust–gas thermal coupling and higher Galactic-scale molecular gas temperatures than are usually accepted, and an improved explanation for the N (H2)/ I (CO) conversion factor. It is emphasized that these results are preliminary and require confirmation by independent observations and methods.  相似文献   

11.
This is the second in a series of papers presenting results from the SCUBA Local Universe Galaxy Survey. In our first paper we provided 850-μm flux densities for 104 galaxies selected from the IRAS Bright Galaxy Sample and we found that the 60-, 100-μm ( IRAS ) and 850-μm (SCUBA) fluxes could be adequately fitted by emission from dust at a single temperature. In this paper we present 450-μm data for the galaxies. With the new data, the spectral energy distributions of the galaxies can no longer be fitted with an isothermal dust model – two temperature components are now required. Using our 450-μm data and fluxes from the literature, we find that the 450/850-μm flux ratio for the galaxies is remarkably constant, and this holds from objects in which the star formation rate is similar to our own Galaxy, to ultraluminous infrared galaxies (ULIRGs) such as Arp 220. The only possible explanation for this is if the dust emissivity index for all of the galaxies is ∼2 and the cold dust component has a similar temperature in all galaxies     . The 60-μm luminosities of the galaxies were found to depend on both the dust mass and the relative amount of energy in the warm component, with a tendency for the temperature effects to dominate at the highest L 60. The dust masses estimated using the new temperatures are higher by a factor of ∼2 than those determined previously using a single temperature. This brings the gas-to-dust ratios of the IRAS galaxies into agreement with those of the Milky Way and other spiral galaxies which have been intensively studied in the submm.  相似文献   

12.
We have detected the   v = 1 → 0 S(1) (λ= 2.1218 μm)  and   v = 2 → 1 S(1) (λ= 2.2477 μm)  lines of H2 in the Galactic Centre, in a  90 × 27 arcsec2  region between the north-eastern boundary of the non-thermal source Sgr A East, and the giant molecular cloud (GMC)  M−0.02 − 0.07  . The detected  H2 v = 1 → 0  S(1) emission has an intensity of  1.6–21 × 10−18 W m−2 arcsec−2  and is present over most of the region. Along with the high intensity, the large linewidths  (FWHM = 40–70 km s−1)  and the  H2 v = 2 → 1 S(1)  to   v = 1 → 0 S(1)  line ratios (0.3–0.5) can be best explained by a combination of C-type shocks and fluorescence. The detection of shocked H2 is clear evidence that Sgr A East is driving material into the surrounding adjacent cool molecular gas. The H2 emission lines have two velocity components at ∼+50 and  ∼0 km s−1  , which are also present in the NH3(3, 3) emission mapped by McGary, Coil & Ho. This two-velocity structure can be explained if Sgr A East is driving C-type shocks into both the  GMC M−0.02 − 0.07  and the northern ridge of McGary et al.  相似文献   

13.
We present SCUBA 850-μm, JCMT  CO( J =2→1)  , B -band imaging and VLA H  i observations of the NGC 7465/4/3 group of galaxies. The 850-μm emission associated with NGC 7465 extends to at least ∼2 R 25 and is well correlated with the H  i . We investigate a range of possible mechanisms by which dust beyond R 25 may be heated to give the observed extended submillimetre emission. By modelling the dust heating by stars in two extreme geometries, we fail to find any reasonable star formation scenario that is consistent with both the 850-μm and optical data. Furthermore, we do not detect any  CO( J =2→1)  emission coincident with the extended dust and atomic gas as would be expected if significant star formation were occurring. We show that shock-heating of dust via cloud–cloud collisions in the stripped interstellar medium of NGC 7465 could be sufficient to explain the extended 850-μm emission and lack of optical emission in the stripped gas, and suggest that cloud–cloud collisions may be an important dust heating mechanism in gas-rich systems.  相似文献   

14.
Radiative transfer modelling of the Infrared Space Observatory ( ISO ) spectrum of IRAS 22036+5306 has shown that its unusual 11-μm band can be suitably modelled with an alumina-olivine mixture substantially dominated by the former. The results of this work add further credence to recent findings that significant amounts of Al  2O3  dust grains are present in the dust shells of stars near or beyond the tip of the asymptotic giant branch. Indeed, in the case of IRAS 22036+5306, Al  2O3  dominates the dust composition to the extent that it shifts the 9.8-μm band due to amorphous silicates to 11 μm. IRAS 22036+5306 may be an unusual case in that the inner dust torus is maintained at a sufficiently high temperature for Al  2O3  condensation, but not silicate.  相似文献   

15.
We present the first results of a submillimetre continuum survey of Lynds dark clouds. Submillimetre surveys of star-forming regions are an important tool with which to obtain representative samples of the very first phases of star formation. Maps of 24 small clouds were obtained with SCUBA, the bolometer array receiver at the James Clerk Maxwell Telescope, and 19 clouds were detected. The total dark cloud area surveyed was ∼130 arcmin2, and a total gas mass of 90 M was detected. The dust emission is in general in good agreement with the extinction of optical starlight. The observed clouds contain a newly discovered protostar in L944, and a previously known protostar IRAS 23228+4320 in L1246. Another eight starless cores, either gravitationally unbound or pre-stellar in nature, were also detected. All starless cores and protostars were detected in only seven clouds, and the remaining 17 clouds seem quiescent and do not show any signs of recent star formation activity. The 850-μm images of all detected clouds are presented, as well as 450-μm images of L328, L944, L1014 and L1262. The outflows of the protostars in L944 and L1246 were also discovered and were mapped in 12CO J =2→1. The detection of the young protostar in L944, which is not present in the IRAS Point Source Catalog, shows the capacity of submillimetre surveys to detect unknown protostars.  相似文献   

16.
We discuss wide-field near-infrared (near-IR) imaging of the NGC 1333, L1448, L1455 and B1 star-forming regions in Perseus. The observations have been extracted from a much larger narrow-band imaging survey of the Taurus–Auriga–Perseus complex. These H2 2.122-μm observations are complemented by broad-band K imaging, mid-IR imaging and photometry from the Spitzer Space Telescope , and published submillimetre CO   J = 3–2  maps of high-velocity molecular outflows. We detect and label 85 H2 features and associate these with 26 molecular outflows. Three are parsec-scale flows, with a mean flow lobe length exceeding 11.5 arcmin. 37 (44 per cent) of the detected H2 features are associated with a known Herbig–Haro object, while 72 (46 per cent) of catalogued HH objects are detected in H2 emission. Embedded Spitzer sources are identified for all but two of the 26 molecular outflows. These candidate outflow sources all have high near-to-mid-IR spectral indices (mean value of  α∼ 1.4  ) as well as red IRAC 3.6–4.5 μm and IRAC/MIPS 4.5–24.0 μm colours: 80 per cent have [3.6]–[4.5] > 1.0 and [4.5]–[24] > 1.5. These criteria – high α and red [4.5]–[24] and [3.6]–[4.5] colours – are powerful discriminants when searching for molecular outflow sources. However, we find no correlation between α and flow length or opening angle, and the outflows appear randomly orientated in each region. The more massive clouds are associated with a greater number of outflows, which suggests that the star formation efficiency is roughly the same in each region.  相似文献   

17.
Wide-field mapping of Serpens in submillimetre continuum emission and CO J =2–1 line emission is here complemented by optical imaging in [S  ii ] λλ 6716, 6731 line emission. Analysis of the 450- and 850-μm continuum data shows at least 10 separate sources, along with fainter diffuse background emission and filaments extending to the south and east of the core. These filaments describe 'cavity-like' structures that may have been shaped by the numerous outflows in the region. The dust opacity index, β , derived for the identifiable compact sources is of the order of 1.0±0.2, with dust temperatures in excess of 20 K. This value of β is somewhat lower than for typical class I YSOs; we suggest that the Serpens sources may be 'warm', late class 0 or early class I objects.
With the combined CO and optical data we also examine, on large scales, the outflows driven by the embedded sources in Serpens. In addition to a number of new Herbig–Haro flows (here denoted HH 455–460), a number of high-velocity CO lobes are observed; these extend radially outwards from the cluster of submillimetre sources in the core. A close association between the optical and molecular flows is also identified. The data suggest that many of the submillimetre sources power outflows. Collectively, the outflows traced in CO support the widely recognized correlation between source bolometric luminosity and outflow power, and imply a dynamical age for the whole protostellar cluster of ∼3×104 yr. Notably, this is roughly equal to the proposed duration of the 'class 0' stage in protostellar evolution.  相似文献   

18.
We have obtained wide-field thermal infrared (IR) images of the Carina nebula, using the SPIREX/Abu telescope at the South Pole. Emission from polycyclic aromatic hydrocarbons (PAHs) at 3.29 μm, a tracer of photodissociation regions (PDRs), reveals many interesting well-defined clumps and diffuse regions throughout the complex. Near-IR images  (1–2 μm)  , along with images from the Midcourse Space Experiment ( MSX ) satellite  (8–21 μm)  have been incorporated to study the interactions between the young stars and the surrounding molecular cloud in more detail. Two new PAH emission clumps have been identified in the Keyhole nebula, and have been mapped in  12CO(2–1)  and  (1–0)  using the Swedish–ESO Submillimetre Telescope (SEST). Analysis of their physical properties reveals that they are dense molecular clumps, externally heated with PDRs on their surfaces and supported by external pressure in a similar manner to the other clumps in the region. A previously identified externally heated globule containing IRAS 10430−5931 in the southern molecular cloud shows strong 3.29-, 8- and 21-μm emission, the spectral energy distribution (SED) revealing the location of an ultracompact (UC) H  ii region. The northern part of the nebula is complicated, with PAH emission intermixed with mid-IR dust continuum emission. Several point sources are located here, and through a two-component blackbody fit to their SEDs we have identified three possible UC H  ii regions as well as a young star surrounded by a circumstellar disc. This implies that star formation in this region is ongoing and not halted by the intense radiation from the surrounding young massive stars.  相似文献   

19.
To better understand the environment surrounding CO emission clumps in the Keyhole Nebula, we have made images of the region in H2 1–0 S(1) (2.122-μm) emission and polycyclic aromatic hydrocarbon (PAH) emission at 3.29 μm. Our results show that the H2 and PAH emission regions are morphologically similar, existing as several clumps, all of which correspond to CO emission clumps and dark optical features. The emission confirms the existence of photodissociation regions (PDRs) on the surface of the clumps. By comparing the velocity range of the CO emission with the optical appearance of the H2 and PAH emission, we present a model of the Keyhole Nebula whereby the most negative velocity clumps are in front of the ionization region, the clumps at intermediate velocities are in it and those which have the least negative velocities are at the far side. It may be that these clumps, which appear to have been swept up from molecular gas by the stellar winds from η  Car, are now being overrun by the ionization region and forming PDRs on their surfaces. These clumps comprise the last remnants of the ambient molecular cloud around η Car.  相似文献   

20.
We use an 850-μm SCUBA map of the Hubble Deep Field (HDF) to study the dust properties of optically-selected starburst galaxies at high redshift. The optical/infrared (IR) data in the HDF allow a photometric redshift to be estimated for each galaxy, together with an estimate of the visible star-formation rate. The 850-μm flux density of each source provides the complementary information: the amount of hidden, dust-enshrouded star formation activity. Although the 850-μm map does not allow detection of the majority of individual sources, we show that the galaxies with the highest UV star-formation rates are detected statistically, with a flux density of about S 850=0.2 mJy for an apparent UV star-formation rate of 1  h −2 M yr−1. This level of submillimetre output indicates that the total star-forming activity is on average a factor of approximately 6 times larger than the rate inferred from the UV output of these galaxies. The general population of optical starbursts is then predicted to contribute at least 25 per cent of the 850-μm background. We carry out a power-spectrum analysis of the map, which yields some evidence for angular clustering of the background source population, but at a level lower than that seen in Lyman-break galaxies. Together with other lines of argument, particularly from the NICMOS HDF data, this suggests that the 850-μm background originates over an extremely wide range of redshifts – perhaps 1≲ z ≲6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号