首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
This paper presents the first detailed study of a late Pleistocene marine tephra sequence from the NW Pacific, downwind from the Kamchatka volcanic arc. Sediment core SO201-2-40, located on the Meiji Rise ~400 km offshore the peninsula, includes 25 tephras deposited within the last 215 ka. Volcanic glass from the tephras was characterized using single-shard electron microprobe analysis and laser ablation inductively coupled mass spectrometry. The age of tephras was derived from a new age model based on paleomagnetic and paleoclimate studies. Geochemical correlation of distal tephras to Kamchatkan pyroclastic deposits allowed the identification of tephras from the Karymsky, Gorely, Opala and Shiveluch eruptive centers. Three of these tephras were also correlated to other marine and terrestrial sites and hence are identified as the best markers for the north-west Pacific region. These are an early Holocene tephra from the Karymsky caldera (~8.7 ka) and two tephras falling into the Marine Isotope Stage (MIS) 6 glacial time: an MIS 6.4 tephra from Shiveluch (~141 ka) and the MIS 6.5 Rauchua tephra (~175 ka) from Karymsky. The data presented in this study can be used in paleovolcanological and paleoceanographic reconstructions.  相似文献   

2.
Cryptotephrochronology, the use of hidden, diminutive volcanic ash layers to date sediments, has rarely been applied outside western Europe but has the potential to improve the tephrochronology of other regions of the world. Here we present the first comprehensive cryptotephra study in Alaska. Cores were extracted from five peatland sites, with cryptotephras located by ashing and microscopy and their glass geochemistry examined using electron probe microanalysis. Glass geochemical data from nine tephras were compared between sites and with data from previous Alaskan tephra studies. One tephra present in all the cores is believed to represent a previously unidentified eruption of Mt. Churchill and is named here as the ‘Lena tephra’. A mid-Holocene tephra in one site is very similar to Aniakchak tephra and most likely represents a previously unidentified Aniakchak eruption, ca. 5300-5030 cal yr BP. Other tephras are from the late Holocene White River eruption, a mid-Holocene Mt. Churchill eruption, and possibly eruptions of Redoubt and Augustine volcanoes. These results show the potential of cryptotephras to expand the geographic limits of tephrochronology and demonstrate that Mt. Churchill has been more active in the Holocene than previously appreciated. This finding may necessitate reassessment of volcanic hazards in the region.  相似文献   

3.
Clearly defined distal tephras are rare in rockshelter sediment records. Crvena Stijena, a Palaeolithic site in Montenegro, contains one of the longest (> 20 m) rockshelter sediment records in Europe with deposits ranging in age from Middle Pleistocene to mid-Holocene. A distinctive tephra is clearly exposed within the well stratified record approximately 6.5 m below the present land surface. We present geochemical data to confirm that this tephra is a distal equivalent of the Campanian Ignimbrite deposits and a product of the largest Late Pleistocene eruption in Europe. Originating in the Campanian volcanic province of southwest Italy, this tephra has been independently dated to 39.3 ka. It is a highly significant chronostratigraphic marker for southern Europe. Macrostratigraphic and microstratigraphic observations, allied with detailed particle size data, show that the tephra layer is in a primary depositional context and was transported into the rockshelter by aeolian processes. This site is unique because the tephra forms an abrupt boundary between the Middle and Upper Palaeolithic records. Before they can be used as chronostratigraphic markers in rockshelter and cave-mouth environments, it is essential to establish the stratigraphic integrity of distal tephras and the mechanisms and pathways involved in their transport and deposition.  相似文献   

4.
The Azores Archipelago is one of the most active volcanic areas in the North Atlantic region. Approximately 30 eruptions have been reported over the last 600 years with some major VEI 5 (Volcanic Explosivity Index) eruptions further back in time. The geochemical composition of associated tephra-derived glass, however, is not well characterized. An Azorean origin of cryptotephras found in distal areas such as North Africa, the British Isles and Greenland has been suggested, but proximal data from the Azores are scarce and the correlations have only been tentative. These tephras have a traychtic composition, which excludes an Icelandic origin. In a previous study, we presented major element analyses of proximal tephra-derived glass from five Holocene eruptions on the Azores Islands. There is a striking geochemical similarity between tephras from volcanoes on São Miguel and Irish cryptotephras, and especially with eruptives from the Furnas volcano. Here we present new analyses of proximal tephras that confirm and strengthen a link between Furnas and cryptotephras found in south-west Ireland. We also suggest a correlation between a previously unsourced tephra found in a Swedish bog with an eruption of the Sete Cidades volcano c. 3880 a cal BP.  相似文献   

5.
Late Pleistocene tephras derived by large explosive volcanic eruptions are widespread in the Mediterranean and surrounding areas. They are important isochronous markers in stratigraphic sections and therefore it is important to constrain their sources. We report here tephrochronology results using multiple criteria to characterize the volcanic products of the Late Pleistocene Ciomadul volcano in eastern–central Europe. This dacitic volcano had an explosive eruption stage between 57 and 30 ka. The specific petrological character (ash texture, occurrence of plagioclase and amphibole phenocrysts and their compositions), the high-K calc-alkaline major element composition and particularly the distinct trace element characteristics provide a strong fingerprint of the Ciomadul volcano. This can be used for correlating tephra and cryptotephra occurrences within this timeframe. Remarkably, during this period several volcanic eruptions produced tephras with similar glass major element composition. However, they differ from Ciomadul tephras by glass trace element abundances, ratios of strongly incompatible trace elements and their mineral cargo that serve as discrimination tools. We used (U-Th)/He zircon dates combined with U-Th in situ rim dates along with luminescence and radiocarbon dating to constrain the age of the explosive eruptions of Ciomadul that yielded distal tephra layers but lack of identified proximal deposits.  相似文献   

6.
Five cores from the southern Tyrrhenian and Ionian seas were studied for their tephra and cryptotephra content in the 4.4–2.0 ka time interval. The chronological framework for each core was obtained by accelerator mass spectrometry 14C dating, the occurrence of distinct marker tephra and stratigraphic correlation with adjacent records. Tephrochronology allowed us to correlate the analyzed deposits with tephra markers associated with Somma-Vesuvius (79 ad ), Ischia Island (Cretaio), Mt Etna (FG, FL and FS) and Campi Flegrei (Astroni-Agnano Monte Spina) events. For the first time in the marine setting, a large single glass data set is provided for the Late Holocene Etnean marker beds including the FS tephra (ca. 4.3 ka). Moreover, unknown deposits from Lipari (ca. 2.2–2.0 ka) and Vulcano (3.6–3.3 ka) are also recognized at more distal sites than previously reported. These results contribute to improve the high-resolution tephrostratigraphic framework of the central Mediterranean Sea. They also provide new insights into the chemical composition and dispersal pattern of tephras that can be used as inter-archive tools for regional and ‘local’ stratigraphic correlations and for addressing paleoclimate research.  相似文献   

7.
Tephra, emplaced as a result of Pleistocene eruption of the Indonesian ‘supervolcano’ Toba, occurs at many localities in India. However, the ages of these deposits have hitherto been contentious; some workers have argued that these deposits mark the most recent eruption (eruption A, ca 75 ka), although at some sites they are stratigraphically associated with Acheulian (Lower Palaeolithic) artefacts. Careful examination of the geochemical composition of the tephras, which are composed predominantly of shards of rhyolitic glass, indicates that discrimination between the products of eruption A and eruption D (ca 790 ka) of Toba is difficult. Nonetheless, this comparison favours eruption D as the source of the tephra deposits at some sites in India, supporting the long-held view that the Lower Palaeolithic of India spans the late Early Pleistocene. In principle, these tephra deposits should be dateable using the K–Ar system; however, previous experience indicates contamination by a small proportion of ancient material, resulting in apparent ages that exceed the true ages of the tephras. We have established the optimum size-fraction in which the material from Toba is concentrated, 53–61 μm, and have considered possible origins for the observed contamination. We also demonstrate that Ar–Ar analysis of four out of five of our samples has yielded material with an apparent age similar to that expected for eruption D. These numerical ages, of 809 ± 51, 714 ± 62, 797 ± 45 and 827 ± 39 ka for the tephras at Morgaon, Bori, Gandhigram and Simbhora, provide a weighted mean age for this eruption of 799 ± 24 ka (plus-or-minus two standard deviations). However, these numerical ages are each derived from no more than 10–20% of the argon release in each sample, which is not ideal. Nonetheless, our results demonstrate that it is feasible, in principle, to date this difficult material using the Ar–Ar technique; future follow-up studies will therefore be able to refine our preparation and analysis procedures to better optimize the dating.  相似文献   

8.
Four stratigraphic sections in the southern part of the Columbia Basin preserve a sequence of aeolian and non-aeolian sediments ranging in age from 9·43 to >47·0 14C ka based on accelerator mass spectrometry radiocarbon dating of fossil molluscs, geochemistry of Cascade Mountain-sourced tephra and association with formally recognized pedostratigraphic units (the Washtucna and Old Maid Coulee soils). Study sections are interpreted as representing concurrent deposition of loess and distal Missoula Flood rhythmites in valleys tributary to main drainages backflooded during the Missoula Floods, and formation of carbonate and iron-rich soils. Sediments belong to the formally recognized L-1 and L-2 loess units established for the Palouse loess, which were deposited in the Columbia Basin subsequent to events of glacial outburst flooding. Sediments associated with the Mount Saint Helens set S and set C tephras in the study sections preserve a fauna of five species of gastropod mollusc which have not been reported previously from sediments of late Pleistocene age in the Palouse region. The fossils comprise two distinct faunules stratigraphically separated by the Mount Saint Helens So tephra. Accelerator mass spectrometry radiocarbon dating of the fossils collected above the tephra in two of the sections yielded ages of 12·48 ± 0·06 and 9·43 ± 0·05 14C kyr. These ages suggest that independent determinations of the 13·35 14C kyr age of the So tephra in other areas where Missoula Flood sediments are preserved are probably accurate, and help to refine the age of the latest events in the most recent sequence of catastrophic glacial outburst flooding.  相似文献   

9.
The Tiscapa maar in the center of Managua city formed by a phreatomagmatic eruption <3 ka ago. The eruption excavated a crater deep into the basement exposing a coherent Pleistocene to Holocene volcaniclastic succession that we have divided into four formations. The lowermost, >60 ka old basaltic–andesitic formation F1 comprises mafic ignimbrites and phreatomagmatic tephras derived from the Las Sierras volcanic complex south of Managua. Formation F2 contains the ~60 ka basaltic–andesitic Fontana tephra erupted from the Las Nubes Caldera of the Las Sierras complex 15 km to the S, the 25 ka Upper Apoyo tephra from the Apoyo Caldera 35 km to the SE, and the Lower (~17 ka) and Upper (12.4 ka) Apoyeque tephras from the Chiltepe volcanic complex 15 km to the NW. These tephras are separated by weathering horizons and paleosols indicating dry climatic conditions. Fluvial deposits of a SSW-NNE running paleo-river system build formation F3. The fluvial sediments contain, from bottom to top, scoriae from the ~6 ka basaltic San Antonio tephra, pumice lapilli from the Apoyo and Apoyeque tephras and the 6.1 ka Xiloà tephra, and scoriae derived from the Fontana tephra. The fluvial sediment succession thus reflects progressively deeper carving erosion in the southern highlands (where a large-amplitude regional erosional unconformity exists at the appropriate stratigraphic level) that began after ~6 ka. This suggests that the mid-Holocene tropical high-precipitation climatic phase affected western Nicaragua about a thousand years later than other circum-Caribbean regions. The end of the wet climate phase ~3 ka ago is recorded by a deep weathering zone and paleosol atop formation F3 prior to the Tiscapa eruption. Formation F4 is the Tiscapa tuffring composed of pyroclastic surge and fallout deposits that cover a minimum area of 1.2 km2. The 4 × 109 kg of erupted basaltic magma is compositionally and genetically related to the low-Ti basalts of the N–S striking Nejapa-Miraflores volcanic–tectonic alignment 5 km to the West of Tiscapa. Ascent and eruption mode of the Tiscapa magma were controlled by the Tiscapa fault that has a very active seismic history as it achieved 12 m displacement in about 3000 years. Managua city is thus exposed to continued seismic and volcanic risks.  相似文献   

10.
Here we present the results of a detailed cryptotephra investigation through the Lateglacial to early Holocene transition, from a new sediment core record obtained from Lake Hämelsee, Germany. Two tephra horizons, the Laacher See Tephra (Eifel Volcanic Field) and the Saksunarvatn Ash (Iceland), have been previously described in this partially varved sediment record, indicating the potential of the location as an important Lateglacial tephrochronological site in northwest Europe. We have identified three further tephra horizons, which we correlate to: the c. 12.1 ka BP Vedde Ash (Iceland), the c. 11 ka BP Ulmener Maar tephra (Eifel Volcanic Field) and the c. 10.8 ka BP Askja‐S tephra (Iceland). Three additional cryptotephra deposits have been found (locally named HÄM_T1616, HÄM_T1470 and HÄM_T1456‐1455), which cannot be correlated to any known eruption at present. Geochemical analysis of the deposits suggests that these cryptotephras most likely have an Icelandic origin. Our discoveries provide age constraints for the new sediment records from Lake Hämelsee and enable direct stratigraphical correlations to be made with other tephra‐bearing sites across Europe. The new tephrostratigraphical record, within a partially varved Lateglacial sediment record, highlights the importance of Lake Hämelsee as a key site within the European tephra lattice.  相似文献   

11.
The Palisades Site is an extensive silt-loam bluff complex on the central Yukon River preserving a nearly continuous record of the last 2 myr. Volcanic ash deposits present include the Old Crow (OCt; 140,000 yr), Sheep Creek (SCt; 190,000 yr), PA (2.02 myr), EC (ca. 2 myr), and Mining Camp (ca. 2 myr) tephras. Two new tephras, PAL and PAU, are geochemically similar to the PA and EC tephras and appear to be comagmatic. The PA tephra occurs in ice-wedge casts and solifluction deposits, marking the oldest occurrence of permafrost in central Alaska. Three buried forest horizons are present in association with dated tephras. The uppermost forest bed occurs immediately above the OCt; the middle forest horizon occurs below the SCt. The lowest forest bed occurs between the EC and the PA tephras, and correlates with the Dawson Cut Forest Bed. Plant taxa in all three peats are common elements of moist taiga forest found in lowlands of central Alaska today. Large mammal fossils are all from common late Pleistocene taxa. Those recovered in situ came from a single horizon radiocarbon dated to ca. 27,000 14C yr B.P. The incongruous small mammal assemblage in that horizon reflects a diverse landscape with both wet and mesic environments.  相似文献   

12.
The major and trace element concentrations of volcanic glass shards from visible tephra layers in the SG93 and SG06 cores from Lake Suigetsu, central Japan, were determined by femtosecond laser ablation–inductively coupled plasma–mass spectrometry. The glass-shard analyses, together with the petrographic properties of the tephra samples, allow the Suigetsu tephra layers to be broadly classified into tephras derived from calderas on Kyushu Island, and from Daisen and Sambe volcanoes in the Chugoku district of southwest Japan. The layers correlated with tephras from Kuju caldera and Daisen volcano, and with the younger Sambe tephras, have adakitic elemental features. A Suigetsu tephra sample correlated with the Sambe−Kisuki tephra based on petrographic properties has an elemental pattern similar to that of the Toya tephra from Hokkaido Island, northeast Japan. This match implies that tephras from northeast Japan, as well as Kyushu–Chugoku tephras, are possible correlatives of the Suigetsu tephra layers. Both petrographic properties and major–trace element data of volcanic glass shards are essential for robust tephra correlations, and hierarchical cluster analysis proved additionally useful in statistically evaluating relationships among the tephras.  相似文献   

13.
Due to a lack of visible tephras in the Dead Sea record, this unique palaeoenvironmental archive is largely unconnected to the well-established Mediterranean tephrostratigraphy. Here we present first results of the ongoing search for cryptotephras in the International Continental Drilling Program (ICDP) sediment core from the deep Dead Sea basin. This study focusses on the Lateglacial (~15–11.4 cal. ka BP), when Lake Lisan – the precursor of the Dead Sea – shrank from its glacial highstand to the Holocene low levels. We developed a glass shard separation protocol and counting procedure that is adapted to the extreme salinity and sediment recycling of the Dead Sea. Cryptotephra is abundant in the Dead Sea record (up to ~100 shards cm-3), but often glasses are physically and/or chemically altered. Six glass samples from five tephra horizons reveal a heterogeneous geochemical composition, with mainly rhyolitic and some trachytic glasses potentially sourced from Italian, Aegean and Anatolian volcanoes. Most shards likely originate from the eastern Anatolian volcanic province and can be correlated using major element analyses with tephra deposits from swarm eruptions of the Süphan Volcano ~13 ka BP and with ashes from Nemrut Volcano, presumably the Lake Van V-16 volcanic layer at ~13.8 ka BP. In addition to glasses that match the TM-10-1 from Lago Grande di Monticchio (15 820±790 cal. a BP) tentatively correlated with the St. Angelo Tuff of Ischia, we further identified a cryptotephra with glass analyses which are chemically identical with those of the PhT1 tephra in the Philippon peat record (13.9–10.5 ka BP), and also a compositional match for the glass analyses of the Santorini Cape Riva Tephra (Y-2 marine tephra, 22 024±642 cal. a BP). These first results demonstrate the great potential of cryptotephrochronology in the Dead Sea record for improving its chronology and connecting the Levantine region to the Mediterranean tephra framework.  相似文献   

14.
Tephra fingerprinting techniques contributing to volcanology and palaeoenvironmental studies have been developed using a combination of laser-ablation inductively coupled-plasma mass spectrometry (LA-ICP-MS) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS). In particular, femtosecond LA-ICP-MS can determine major- and trace element abundances in individual glass shards. On the basis of the major oxide and trace element composition of the glass shards, using those methods, we re-examined the identification of four lower Pleistocene tephras originating from north-east Japan. All trace element abundances exhibited the typical pattern of tephras from the Hokkaido–Tohoku area, and major element concentrations were distinct. As a result, we re-examined the correlation of the widespread Tmg-R4 tephra (2.0 Ma), and newly defined the widespread Kd44-Naka tephra (1.968–1.781 Ma), both originating from the Sengan geothermal region. Furthermore, we re-examined identifications of Sr-Asn-Kd8 (1.219 Ma) and Sr-Kc-U8 (0.922–0.910 Ma) in central Japan, both derived from the Aizu volcanic region. The extensive distributions of the former two tephras suggest the occurrence of two large caldera-forming eruptions (Volcanic Explosivity Index 7) during a short period. Also, the distributions and volumes of the latter two tephras are broader and larger than those previously assumed. The results provide insight into large volcanic eruption history and terrestrial and marine palaeoenvironmental history.  相似文献   

15.
Three distal tephra layers or cryptotephras have been detected within a sedimentary sequence from the Netherlands that spans the last glacial-interglacial transition. Geochemical analyses identify one as the Vedde Ash, which represents the southernmost discovery of this mid-Younger Dryas tephra so far. This tephra was found as a distinct horizon in three different cores sampled within the basin. The remaining two tephras have not been geochemically 'fingerprinted', partly due to low concentrations and uneven distributions of shards within the sequences sampled. Nevertheless, there is the potential for tracing these tephra layers throughout the Netherlands and into other parts of continental Europe. Accordingly, the possibilities for precise correlation of Dutch palaeoenvironmental records with other continental, marine and ice-core records from the North Atlantic region are highlighted.  相似文献   

16.
Discontinuous tephra layers were discovered at Burney Spring Mountain, northern California. Stratigraphic relationships suggest that they are two distinct tephras. Binary plots and standard similarity coefficients of electron probe microanalysis data have been supplemented with principal component analysis to correlate the two tephra layers to known regional tephras. Using principal component analysis, we are furthermore able to bound our uncertainty in the correlation of the two tephra layers. After removal of outliers, within the 95% prediction interval, we can say that one tephra layer is likely the Rockland tephra, aged 565–610 ka, and the second layer is likely from Mt. Mazama, the Trego Hot Springs tephra, aged ~ 29 ka. In the case of the Rockland tephra, the new findings suggest that dispersal to the north was highly restricted. For Trego Hot Springs ash, the new findings extend the distribution to the southwest, with a rapid thinning in that direction. Coupled with considerations of regular tephra dispersal patterns, the results suggest that the primary dispersal direction for both tephras was to the south, and that occurrences in other directions are unlikely or otherwise anomalous.  相似文献   

17.
This paper presents one of the most extensive Holocene tephra records found to date in Scandinavia. Microtephra horizons originating from Icelandic eruptions were recorded in two ca. 2 m thick peat profiles at Klocka Bog in west‐central Sweden. Five of the microtephra horizons were geochemically correlated to the Askja‐1875, Hekla‐3, Kebister, Hekla‐4 and Lairg A tephras respectively. Radiocarbon‐based dating of these tephras broadly agree with previously published ages from Iceland, Sweden, Germany and the British Isles. The identification of the Lairg A tephra demonstrates a more widespread distribution than previously thought, extending the usefulness of Icelandic Holocene tephrochronology further north into west‐central Scandinavia. Long‐lasting snow cover and seasonal wind distribution in the lower stratosphere are suggested as factors that may be responsible for fragmentary tephra deposition patterns in peat deposits of subarctic Scandinavia. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
The sediment record from the Piànico palaeolake in the southern Alps is continuously varved, spans more than 15 500 years, and represents a key archive for interglacial climate variability at seasonal resolution. The stratigraphic position of the Piànico Interglacial has been controversial in the past. The identification of two volcanic ash layers and their microscopic analysis provides distinct marker layers for tephrochronological dating of these interglacial deposits. In addition to micro‐facies analyses reconstructing depositional processes of both tephra layers within the lake environment, their mineralogical and geochemical composition has been determined through major‐element electron probe micro‐analysis on glass shards. Comparison with published tephra data traced the volcanic source regions of the Piànico tephras to the Campanian volcanic complex of Roccamonfina (Italy) and probably the Puy de Sancy volcano in the French Massif Central. Available dating of near‐vent deposits from the Roccamonfina volcano provides a robust tephrochronological anchor point at around 400 ka for the Piànico Interglacial. These deposits correlate with marine oxygen isotope stage (MIS) 11 and thus are younger than Early to Middle Pleistocene previously suggested by K/Ar dating and older than the last interglacial as inferred from macrofloral remains and the geological setting. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Detection techniques for invisible tephra, known as cryptotephra, have been exploited to construct precise and high-resolution correlations for a broad range of sedimentary sequences. We demonstrate that continuous trace-element profiles are an effective means for detecting probable positions of distal cryptotephra in Holocene hemipelagic sediments. Instrumental neutron activation analyses were performed on specimens of bulk sediments from five piston and gravity cores (water depths: 300-1500 m) taken from the southern Japan/East Sea. The down-core variations in the Ta/Sc ratio identify the positions of one to three alkaline cryptotephra in four of these cores. The Cr/Sc profiles show the position of one rhyolitic cryptotephra in three of the cores. The existence of tephra-derived components (glass ± crystals) was confirmed by microscopic observation, SEM-EPMA analysis and refractive index measurement on grains extracted from these layers. Based on microscopic observation and the stratigraphic correlations between cores, we identified eruption ages of the cryptotephras at 6.3, 7.5 and 9.3 14C kyr BP, and two source volcanoes around 800 and 400 km from the study area.The tephra layers visible to the naked eye contained volcanic grains coarser than 200 μm, and the alkaline and rhyolitic tephra component comprised >20% and >33% of the sediment on weight basis, respectively. In contrast, the range of particle sizes of the cryptotephras detected in this study is finer than 125 μm, and almost all of the glass shards were finer than 40 μm. The alkaline and rhyolitic cryptotephras made up only 2-17% and 22-24%, respectively, of the sediment on weigh basis. The high sensitivity of this method stems from the significant difference in trace-element contents between the tephras and enclosing hemipelagic sediments in the core. Alkaline U-Oki tephra was enriched in Ta by one order of magnitude over that of the sediment, and depleted in Sc by one order. The rhyolitic tephra, K-Ah, was depleted by about one order in Cr relative to that of enclosing the sediment. The differences in chemical composition between within-plate alkaline tephras and hemipelagic sediments are usually so large that trace-element geochemical method is likely to be useful for alkaline cryptotephra detection in other areas with similar tectonic characteristics.  相似文献   

20.
The Mt. Edgecumbe Volcanic Field (MEVF), located on Kruzof Island near Sitka Sound in southeast Alaska, experienced a large multiple-stage eruption during the last glacial maximum (LGM)-Holocene transition that generated a regionally extensive series of compositionally similar rhyolite tephra horizons and a single well-dated dacite (MEd) tephra. Marine sediment cores collected from adjacent basins to the MEVF contain both tephra-fall and pyroclastic flow deposits that consist primarily of rhyolitic tephra and a minor dacitic tephra unit. The recovered dacite tephra correlates with the MEd tephra, whereas many of the rhyolitic tephras correlate with published MEVF rhyolites. Correlations were based on age constraints and major oxide compositions of glass shards. In addition to LGM-Holocene macroscopic tephra units, four marine cryptotephras were also identified. Three of these units appear to be derived from mid-Holocene MEVF activity, while the youngest cryptotephra corresponds well with the White River Ash eruption at ∼ 1147 cal yr BP. Furthermore, the sedimentology of the Sitka Sound marine core EW0408-40JC and high-resolution SWATH bathymetry both suggest that extensive pyroclastic flow deposits associated with the activity that generated the MEd tephra underlie Sitka Sound, and that any future MEVF activity may pose significant risk to local population centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号