首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
Recent studies have shown that the vertical component of ground motion can be quite destructive on a variety of structural systems. Development of response spectrum for design of buildings subjected to vertical component of earthquake needs ground motion prediction equations (GMPEs). The existing GMPEs for northern Iranian plateau are proposed for the horizontal component of earthquake, and there is not any specified GMPE for the vertical component of earthquake in this region. Determination of GMPEs is mostly based on regression analyses on earthquake parameters such as magnitude, site class, distance, and spectral amplitudes. In this study, 325 three-component records of 55 earthquakes with magnitude ranging from M w 4.1 to M w 7.3 are used for estimation on the regression coefficients. Records with distances less than 300 km are selected for analyses in the database. The regression analyses on earthquake parameters results in determination of GMPEs for peak ground acceleration and spectral acceleration for both horizontal and vertical components of the ground motion. The correlation between the models for vertical and horizontal GMPEs is studied in details. These models are later compared with some other available GMPEs. According to the result of this investigation, the proposed GMPEs are in agreement with the other relationships that were developed based on the local and regional data.  相似文献   

2.
The use of seismic direct hydrocarbon indicators is very common in exploration and reservoir development to minimise exploration risk and to optimise the location of production wells. DHIs can be enhanced using AVO methods to calculate seismic attributes that approximate relative elastic properties. In this study, we analyse the sensitivity to pore fluid changes of a range of elastic properties by combining rock physics studies and statistical techniques and determine which provide the best basis for DHIs. Gassmann fluid substitution is applied to the well log data and various elastic properties are evaluated by measuring the degree of separation that they achieve between gas sands and wet sands. The method has been applied successfully to well log data from proven reservoirs in three different siliciclastic environments of Cambrian, Jurassic, and Cretaceous ages. We have quantified the sensitivity of various elastic properties such as acoustic and extended elastic (EEI) impedances, elastic moduli (K sat and K satμ), lambda–mu–rho method (λρ and μρ), P-to-S-wave velocity ratio (V P/V S), and Poisson’s ratio (σ) at fully gas/water saturation scenarios. The results are strongly dependent on the local geological settings and our modeling demonstrates that for Cambrian and Cretaceous reservoirs, K satμ, EEI, V P/V S, and σ are more sensitive to pore fluids (gas/water). For the Jurassic reservoir, the sensitivity of all elastic and seismic properties to pore fluid reduces due to high overburden pressure and the resultant low porosity. Fluid indicators are evaluated using two metrics: a fluid indicator coefficient based on a Gaussian model and an overlap coefficient which makes no assumptions about a distribution model. This study will provide a potential way to identify gas sand zones in future exploration.  相似文献   

3.
We applied the g CAP algorithm to determine239 focal mechanism solutions 3:0 M We 6:0T with records of dense Chin Array stations deployed in Yunnan,and then inverted 686 focal mechanisms(including 447 previous results) for the regional crustal stress field with a damped linear inversion. The results indicate dominantly strike-slip environment in Yunnan as both the maximum(r1) and minimum(r3) principal stress axes are sub-horizontal. We further calculated the horizontal stress orientations(i.e., maximum and minimum horizontal compressive stress axes: S H and S h, respectively) accordingly and found an abrupt change near *26°N. To the north, S H aligns NW-SE to nearly E-W while S h aligns nearly N-S. In contrast, to the south, both S H and S h rotate laterally and show dominantly fan-shaped patterns. The minimum horizontal stress(i.e., maximum strain axis) S h rotates from NW-SE to the west of Tengchong volcano gradually to nearly E-W in west Yunnan, and further toNE-SW in the South China block in the east. The crustal strain field is consistent with the upper mantle strain field indicated by shear-wave splitting observations in Yunnan but not in other regions. Therefore, the crust and upper mantle in Yunnan are coupled and suffering vertically coherent pure-shear deformation in the lithosphere.  相似文献   

4.
Advancement in the seismic networks results in formulation of different functional forms for developing any new ground motion prediction equation (GMPE) for a region. Till date, various guidelines and tools are available for selecting a suitable GMPE for any seismic study area. However, these methods are efficient in quantifying the GMPE but not for determining a proper functional form and capturing the epistemic uncertainty associated with selection of GMPE. In this study, the compatibility of the recent available functional forms for the active region is tested for distance and magnitude scaling. Analysis is carried out by determining the residuals using the recorded and the predicted spectral acceleration values at different periods. Mixed effect regressions are performed on the calculated residuals for determining the intra- and interevent residuals. Additionally, spatial correlation is used in mixed effect regression by changing its likelihood function. Distance scaling and magnitude scaling are respectively examined by studying the trends of intraevent residuals with distance and the trend of the event term with magnitude. Further, these trends are statistically studied for a respective functional form of a ground motion. Additionally, genetic algorithm and Monte Carlo method are used respectively for calculating the hinge point and standard error for magnitude and distance scaling for a newly determined functional form. The whole procedure is applied and tested for the available strong motion data for the Himalayan region. The functional form used for testing are five Himalayan GMPEs, five GMPEs developed under NGA-West 2 project, two from Pan-European, and one from Japan region. It is observed that bilinear functional form with magnitude and distance hinged at 6.5 M w and 300 km respectively is suitable for the Himalayan region. Finally, a new regression coefficient for peak ground acceleration for a suitable functional form that governs the attenuation characteristic of the Himalayan region is derived.  相似文献   

5.
The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake’s location (30.546° N, 79.063° E), depth (H?=?19 km), the seismic moment (M0?=?1.12×1017 Nm, M w 5.3), the focal mechanism (φ?=?280°, δ?=?14°, λ?=?84°), the source radius (a?=?1.3 km), and the static stress drop (Δσ s ~22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω?2 source model) by attenuation parameters Q(f)?=?500f0.9, κ?=?0.04 s, and fmax?=?infinite, and a stress drop of Δσ?=?70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤?200 km during five other earthquakes in the region (4.6?≤?M w ?≤?6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.  相似文献   

6.
This study analyzes and compares the P- and S-wave displacement spectra from local earthquakes and explosions of similar magnitudes. We propose a new approach to discrimination between low-magnitude shallow earthquakes and explosions by using ratios of P- to S-wave corner frequencies as a criterion. We have explored 2430 digital records of the Israeli Seismic Network (ISN) from 456 local events (226 earthquakes, 230 quarry blasts, and a few underwater explosions) of magnitudes Md?=?1.4–3.4, which occurred at distances up to 250 km during 2001–2013 years. P-wave and S-wave displacement spectra were computed for all events following Brune’s source model of earthquakes (1970, 1971) and applying the distance correction coefficients (Shapira and Hofstetter, Teconophysics 217:217–226, 1993; Ataeva G, Shapira A, Hofstetter A, J Seismol 19:389-401, 2015), The corner frequencies and moment magnitudes were determined using multiple stations for each event, and then the comparative analysis was performed.The analysis showed that both P-wave and especially S-wave displacement spectra of quarry blasts demonstrate the corner frequencies lower than those obtained from earthquakes of similar magnitudes. A clear separation between earthquake and explosion populations was obtained for ratios of P- to S-wave corner frequency f 0(P)/f 0(S). The ratios were computed for each event with corner frequencies f 0 of P- and S-wave, which were obtained from the measured f 0 I at individual stations, then corrected for distance and finally averaged. We obtained empirically the average estimation of f 0(P)/f 0(S)?=?1.23 for all used earthquakes, and 1.86 for all explosions. We found that the difference in the ratios can be an effective discrimination parameter which does not depend on estimated moment magnitude M w .The new multi-station Corner Frequency Discriminant (CFD) for earthquakes and explosions in Israel was developed based on ratios P- to S-wave corner frequencies f 0(P)/f 0(S), with the empirical threshold value of the ratio for Israel as 1.48.  相似文献   

7.
Average spectral acceleration, AvgSA, is defined as the geometric mean of spectral acceleration values over a range of periods and it is a ground motion intensity measure used for structural response prediction. One of its advantages stands on the assumption that its distribution is computable from the available GMPEs for spectral acceleration, GMPE-SA, (called here indirect method) without the need for deriving new specific GMPEs for AvgSA, GMPE-AvgSA, (called here direct method). To what extent this assumption is valid, however, has never been verified. As such, we derived an empirical GMPE-AvgSA based on RESORCE ground motion dataset and we compared its predicted values with those from a GMPE-SA via the indirect approach. As expected, the results show that the indirect approach yields median AvgSA estimates that are identical to those of the direct approach. However, the estimates of AvgSA variance of the two methods are identical only if both the GMPE-SA and their empirical correlation coefficients among different SA ordinates are derived from the same record dataset.  相似文献   

8.
Pressure effect on the electrical conductivity of San Carlos olivine was investigated by the newly installed electrical conductivity measurement system at China University of Geosciences. Electrical conductivity of San Carlos olivine aggregates was measured up to 12 GPa and 1475 K using the Walker-type multi-anvil apparatus equipped with eight WC cubes as the second-stage anvils. The pressure generation against applied load for the experimental assemblage was examined by phase transition of Bi,quartz, forsterite under different P-T conditions. To check the data validity of this new system, electrical conductivities of the serpentinites and talc samples were measured. The results are consistent with the published data of the same samples. Electrical conductivity(σ) of the San Carlos olivine aggregates and temperature(T) satisfy the Arrhenian formula: σ=σ0exp[.(ΔE+PΔV)/kT].The pre-exponential factor(σ0), activation energy(ΔE) and activation volume(ΔV) yield value of 7.74 S/m, 0.85 eV and 0.94cm3/mol, respectively. Electrical conductivities of the San Carlos olivine aggregates decline with increasing pressure at same temperatures. The negative pressure effect can be interpreted by strain energy model of defect energy together with the lattice deformation. In addition, the electrical conductivity-depth 1-D profile of the upper mantle was constructed based on our results and some assumptions. The calculated profile is concordant with the geophysical observation at the depth of 180–350 km beneath Europe, which indicates that the upper mantle beneath Europe might be dry.  相似文献   

9.
The thermal structure of continental lithosphere (the temperature, heat flows, and heat generation in the crust and lithosphere) is reconstructed from geothermal, seismic, and petrologic data. The first step is the determination of the temperature profile from absolute P and S wave velocities (T P, S ). The T P, S profile is then adjusted to a thermophysical model of conductive transfer. In addition, the surface heat flow and the T P, S profile are used to determine heat generation, thicknesses of crustal layers, and heat flow components in the crust and lithosphere. A feature inherent in the solution of the thermophysical inverse problem obtained in this paper is the use of constraints derived from the temperature reconstruction by seismic data inversion. As a result, the analytical dependence of the temperature on depth, the intensity of radiogenic heat sources in the crust, and heat flow components in the crust and lithosphere are determined.  相似文献   

10.
Accurate determination of seismic velocity of the crust is important for understanding regional tectonics and crustal evolution of the Earth. We propose a stepwise joint linearized inversion method using surface wave dispersion, Rayleigh wave ZH ratio (i.e., ellipticity), and receiver function data to better resolve 1D crustal shear wave velocity (v S) structure. Surface wave dispersion and Rayleigh wave ZH ratio data are more sensitive to absolute variations of shear wave speed at depths, but their sensitivity kernels to shear wave speeds are different and complimentary. However, receiver function data are more sensitive to sharp velocity contrast (e.g., due to the existence of crustal interfaces) and v P/v S ratios. The stepwise inversion method takes advantages of the complementary sensitivities of each dataset to better constrain the v S model in the crust. We firstly invert surface wave dispersion and ZH ratio data to obtain a 1D smooth absolute v S model and then incorporate receiver function data in the joint inversion to obtain a finer v S model with better constraints on interface structures. Through synthetic tests, Monte Carlo error analyses, and application to real data, we demonstrate that the proposed joint inversion method can resolve robust crustal v S structures and with little initial model dependency.  相似文献   

11.
The reaction of the lower ionosphere to the solar proton events that occurred in 2011–2012 is studied in this paper based on the results of measurements of the propagation velocity and the E z /H τ ratio of the low-frequency electromagnetic pulses (atmospherics) in the ELF range at the high-latitude observatories Lovozero and Barentsburg. With numerical modeling methods, it is shown that horizontal local irregularities of the lower ionosphere conductivity profile could be a cause of the splashes in the E z /H τ ratio observed in the experiment during the solar proton event of March 7, 2012, which was a unique event in both the proton flux value and energy.  相似文献   

12.
A 3D, two-time-level, σS-z-σB hybrid-coordinate Marine Science and Numerical Modeling numerical ocean circulation model (HyMOM) is developed in this paper. In HyMOM, the σ coordinate is employed in the surface and bottom regions, and the z coordinate is used in the intermediate layers. This method can overcome problems with vanishing surface cells and minimize the unwanted deviation in representing bottom topography. The connection between the σ and z layers vertically includes an expanded “ghost” method and the linear interpolation. The governing equations in the σS-z-σB hybrid coordinate based on the complete Reynolds-averaged Navier-Stokes equations are derived in detail. The two-level time staggered and Eulerian forward and backward schemes, which are of second-order of accuracy, are adopted for the temporal difference in internal and external mode, respectively. The computation of the baroclinic gradient force is tested in an analytic test problem; the errors for two methods in HyMOM, which are relatively large only in the bottom layers, are obviously smaller than those in the pure σ and z models in almost all of the vertical layers. A quasi-global climatologic numerical experiment is constructed to test the simulation performance of HyMOM. With the monthly mean Levitus climatology data as reference, the HyMOM can improve the simulating accuracy compared with its pure z or σ coordinate implementation.  相似文献   

13.
Thermal waters contain small amounts of dissolved sulfides which in places precipitate at or near the earth’s surface. Knowledge of the physical chemistry of hydrothermal solutions is needed at elevated temperatures and pressures. Therefore, solubilities of the epithermal minerals cinnabar, stibnite, quartz, and orpiment in aqueousNa 2 S solutions was determined from 25–250° C, 1–2000 bars, and at severalNa 2 S concentrations. All the minerals are appreciably soluble inNa 2 S solutions. Pressure increase decreases solubilities of metallic sulfides but slightly increases quartz solubility. Temperature increase causes increased solubility at temperatures above 150° C, but at lower temperatures, cinnabar, orpiment and quartz show solubility decreases with increasing temperatures. Quartz and cinnabar are mutually soluble, but in the presence of stibnite only a small amount of cinnabar dissolves. The second ionization constant ofH 2 S as calculated from the solubility data ranges from 10?16,21 at 0°C to 10?12,59 at 250°C. TheK 2 ofH 2 S is lower according to this study than any reported before, and the variation with temperature is several orders of magnitude greater than had been predicted.  相似文献   

14.
An alternative model for the nonlinear interaction term Snl in spectral wave models, the so called generalized kinetic equation (Janssen J Phys Oceanogr 33(4):863–884, 2003; Annenkov and Shrira J Fluid Mech 561:181–207, 2006b; Gramstad and Stiassnie J Fluid Mech 718:280–303, 2013), is discussed and implemented in the third generation wave model WAVEWATCH-III. The generalized kinetic equation includes the effects of near-resonant nonlinear interactions, and is therefore able, in theory, to describe faster nonlinear evolution than the existing forms of Snl which are based on the standard Hasselmann kinetic equation (Hasselmann J Fluid Mech 12:481–500, 1962). Numerical simulations with WAVEWATCH have been carried out to thoroughly test the performance of the new form of Snl, and to compare it to the existing models for Snl in WAVEWATCH; the DIA and WRT. Some differences between the different models for Snl are observed. As expected, the DIA is shown to perform less well compared to the exact terms in certain situations, in particular for narrow wave spectra. Also for the case of turning wind significant differences between the different models are observed. Nevertheless, different from the case of unidirectional waves where the generalized kinetic equation represents a obvious improvement to the standard forms of Snl (Gramstad and Stiassnie 2013), the differences seems to be less pronounced for the more realistic cases considered in this paper.  相似文献   

15.
A preliminary study of b value of rocks with two kinds of structural models has been made on the base of a new acoustic emission recording system. It shows that b value of the sample decreases obviously when the sample with compressive en echelon faults changes into a tensile one after interchange occurs between stress axis σ 1 and σ 2. A similar experiment is observed when the sample with tensile en echelon faults changes into that with a bend fault after two segments of the en echelon fault linking up. These facts indicate that the variation of b value may contain the information of the regional dominant structural model. Therefore, b-value analyses could be a new method for studying regional dominant structural models.  相似文献   

16.
In this study, continuous wavelet transform is applied to estimate the frequency-dependent quality factor of shear waves, Q S , in northwestern Iran. The dataset used in this study includes velocigrams of more than 50 events with magnitudes between 4.0 and 6.5, which have occurred in the study area. The CWT-based method shows a high-resolution technique for the estimation of S-wave frequency-dependent attenuation. The quality factor values are determined in the form of a power law as Q S (f)?=?(147?±?16)f 0.71?±?0.02 and (126?±?12)f 0.73?±?0.02 for vertical and horizontal components, respectively, where f is between 0.9 and 12 Hz. Furthermore, in order to verify the reliability of the suggested Q S estimator method, an additional test is performed by using accelerograms of Ahar-Varzaghan dual earthquakes on August 11, 2012, of moment magnitudes 6.4 and 6.3 and their aftershocks. Results indicate that the estimated Q S values from CWT-based method are not very sensitive to the numbers and types of waveforms used (velocity or acceleration).  相似文献   

17.
Data on the amplitude of variations in the direction of the geomagnetic field and the frequency of reversals in the Vendian-Cambrian are presented. It has been established from these data that (a) distributions of variations in the direction of the geomagnetic field S p are bimodal (modes 9° and 11°); (b) the maximum of the average amplitude S p takes place by 5–10 Myr later than the Vendian-Cambrian boundary; (c) S p tends to increase as plume epicenters are approached; and (d) the plume formation is more often confined to intervals with different frequencies of geomagnetic reversals than to the interval of a stable state of the geomagnetic field without reversals (Vendian hyperchron). The listed features of the geomagnetic field behavior are repeated near all boundaries of geological eras of the Phanerozoic.  相似文献   

18.
Attenuation of P and S waves has been investigated in Alborz and north central part of Iran using the data recorded by two permanent and one temporary networks during October 20, 2009, to December 22, 2010. The dataset consists of 14,000 waveforms from 380 local earthquakes (2 < M L < 5.6). The extended coda normalization method (CNM) was used to estimate quality factor of P (Q P) and S waves (Q S) at seven frequency bands (0.375, 0.75, 1.5, 3, 6, 12, 24 Hz). The Q P and Q S values have been estimated at lapse times from 40 to 100 s. It has been observed that the estimated values of Q P and Q S are time independent; therefore, the mean values of Q P and Q S at different lapse times have been considered. The frequency dependence of quality factor was determined by using a power-law relationship. The frequency-dependent relationship for Q P was estimated in the form of (62 ± 7)f (1.03 ± 0.07) and (48 ± 5)f (0.95 ± 0.07) in Alborz region and North Central Iran, respectively. These relations for Q S for Alborz region and North Central Iran have estimated as (83 ± 8)f (0.99 ± 0.07) and (68 ± 5)f (0.96 ± 0.05), respectively. The observed low Q values could be the results of thermoelastic effects and/or existing fracture. The estimated frequency-dependent relationships are comparable with tectonically active regions.  相似文献   

19.
Temporal variations of the maximum (B max) and average (〈B〉) magnetic inductions, minimum (α min) and average (〈α〉) inclination angles of the field lines to the radial direction from the center of the Sun, and areas of the sunspot umbra S in the umbra of single sunspots during their passage across the solar disk are investigated. The variation of the properties of single sunspots has been considered at different stages of their existence, i.e., during formation, the “quiet” period, and the disappearance stage. It has been found that, for the majority of the selected single sunspots, there is a positive correlation between B max and S and between 〈B〉 and S defined at different times during the passage of sunspots across the solar disk. It is shown in this case that the nature of the dependence between the parameters α min and B max, α min and S, as well as between 〈α〉 and 〈B〉, 〈α〉 and S, can vary from sunspot to sunspot, but for many sunspots the inclination angle of the field lines decreases on average with the growth of the sunspot umbra area and the field strength.  相似文献   

20.
We propose a method that employs the squared displacement integral (ID2) to estimate earthquake magnitudes in real time for use in earthquake early warning (EEW) systems. Moreover, using τ c and P d for comparison, we establish formulas for estimating the moment magnitudes of these three parameters based on the selected aftershocks (4.0 ≤ M s  ≤ 6.5) of the 2008 Wenchuan earthquake. In this comparison, the proposed ID2 method displays the highest accuracy. Furthermore, we investigate the applicability of the initial parameters to large earthquakes by estimating the magnitude of the Wenchuan M s 8.0 mainshock using a 3-s time window. Although these three parameters all display problems with saturation, the proposed ID2 parameter is relatively accurate. The evolutionary estimation of ID2 as a function of the time window shows that the estimation equation established with ID2 Ref determined from the first 8-s of P wave data can be directly applicable to predicate the magnitudes of 8.0. Therefore, the proposed ID2 parameter provides a robust estimator of earthquake moment magnitudes and can be used for EEW purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号