首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Site effects are one of the most predictable factors of destructive earthquake ground motion but results depend on the type of model chosen. We compare simulations of ground motion for a 3D model of the Mygdonian basin in northern Greece (Euroseistest) using different approximation for this basin. Site effects predicted using simple 1D models at many points inside the basin are compared to site effects predicted using four different 2D cross sections across the basin and with results for a full 3D simulation. Surface topography was neglected but anelastic attenuation was included in the simulations. We show that lateral heterogeneity may increase ground motion amplification by 100 %. Larger amplification is distributed in a wide frequency range, and amplification may occur at frequencies different from the expected resonant frequencies for the soil column. In contrast, on a different cross section, smaller conversion of incident energy into surface waves and larger dispersion leads to similar amplitudes of ground motion for 2D and 1D models. In general, results from 2D simulations are similar to those from a complete 3D model. 2D models may overestimate local surface wave amplitudes, especially when the boundaries of the basin are oblique to the selected cross section. However, the differences between 2D and 3D site effects are small, especially in regard of the difficulties and uncertainties associated to building a reliable 3D model for a large basin.  相似文献   

2.
We study site effects using 520 weak motion earthquake records from a vertical array in Aegion, Greece. The array is inside a basin, has four stations in soil, and one in bedrock (178 m depth). The site is marked by high seismicity and complex surface geology. We first use the records to establish the downhole accelerometer orientations and their evolution with time. Then we estimate site effects using empirical spectral ratios with and without a reference site (standard and horizontal-to-vertical spectral ratio). We find significant site amplification which cannot be accounted for by 1D model predictions, along with a significant difference in the amplification level between the two horizontal components. These are indications of 2D effects, namely surface waves generated at the basin edge. The difference in amplification between the horizontal components is maximised when these are rotated with respect to the orientation of the basin edge. The strongest amplification takes place in the direction parallel to the basin edge (SH, or out-of-plane motion), and is up to 2 times higher than in the perpendicular direction (SV, or in-plane motion). This directional effect on the amplification is corroborated by numerical 2D modelling using incident SH and SV waves, with the former possibly generating strong Love waves. In the records, the directionality is clear for windows containing the largest amplitudes of the records (S waves and strong surface waves), while it tends to vanish for coda-wave windows. This directionality is also observed when using response spectral ratios rather than Fourier ratios. We compute soil-to-rock amplification factors for peak ground acceleration (PGA) and find it is significantly higher than what is predicted by current design codes. We attribute this difference to the basin edge amplification, linear soil behaviour, and to the inability of simple scalar values like PGA to describe complex amplification effects. Finally, we analyse the earthquake records at a surface station near the slope crest and do not observe significant topographic amplification.  相似文献   

3.
The Gubbio basin in Central Italy is a intermountain basin of extensional tectonic origin, typical of Central and Southern Apennines, characterized by moderate seismicity. The strongest recorded event within the area is a magnitude 5.7 earthquake which occurred on 29 April 1984 along the Gubbio fault, bordering the eastern side of the basin. The main objective of this study is to analyze the features of earthquake ground motion as related to basin-edge effects, by performing physics-based numerical simulations of the 1984 earthquake through a high-performance spectral element code. The simulated ground motions are found in reasonable agreement with the recorded motions when using the kinematic source model developed by Ameri et al. (Bull Seismol Soc Am 99:647–663, 2009), with a rise-time equal to 1 s and a nucleation point located in the middle of the fault. Pronounced differences were noted between records from the basin and adjacent sites at outcropping bedrock, owing to both the strong impedance contrast between soft alluvial sites and bedrock formations (lithostratigraphic amplification), as well as lateral discontinuities related to the 2D/3D geometry of the basin (generation of surface waves). Since the fault was located beneath the basin, 1D amplification effects were found to be more relevant than those associated with the generation of surface waves from the basin edge. Finally, an envelope delay spectrum was computed for the simulated ground motions, showing that surface waves are excited in the frequency band of 0.2–0.8 Hz with a significant increase of ground motion duration within the basin.  相似文献   

4.
A key component in seismic hazard assessment is the estimation of ground motion for hard rock sites, either for applications to installations built on this site category, or as an input motion for site response computation. Empirical ground motion prediction equations (GMPEs) are the traditional basis for estimating ground motion while VS30 is the basis to account for site conditions. As current GMPEs are poorly constrained for VS30 larger than 1000 m/s, the presently used approach for estimating hazard on hard rock sites consists of “host-to-target” adjustment techniques based on VS30 and κ0 values. The present study investigates alternative methods on the basis of a KiK-net dataset corresponding to stiff and rocky sites with 500 < VS30 < 1350 m/s. The existence of sensor pairs (one at the surface and one in depth) and the availability of P- and S-wave velocity profiles allow deriving two “virtual” datasets associated to outcropping hard rock sites with VS in the range [1000, 3000] m/s with two independent corrections: 1/down-hole recordings modified from within motion to outcropping motion with a depth correction factor, 2/surface recordings deconvolved from their specific site response derived through 1D simulation. GMPEs with simple functional forms are then developed, including a VS30 site term. They lead to consistent and robust hard-rock motion estimates, which prove to be significantly lower than host-to-target adjustment predictions. The difference can reach a factor up to 3–4 beyond 5 Hz for very hard-rock, but decreases for decreasing frequency until vanishing below 2 Hz.  相似文献   

5.
This paper presents the effects of impedance contrast (IC) across the basin edge, velocity contrast between the basin and underlying bedrock, Poisson’s ratio and soil thickness on the characteristics of basin-transduced Rayleigh (BTR) waves and associated differential ground motion (DGM). Analysis of simulated results for a two-dimensional (2D) basin revealed complex mode transformation of Rayleigh waves after entering the basin. Excellent correlation of frequencies corresponding to different spectral ratio peaks in ellipticity curves of BTR waves and spectral amplification peaks was obtained. However, such correlation was not observed between values of peaks in ellipticity curves and spectral amplification at the corresponding frequencies. An increase of spectral amplification with IC was obtained. The largest spectral amplification was more than twice the IC in the horizontal component and more than the IC in the vertical component in the case of large and same impedance contrast for P- and S-waves. It was concluded that the frequency corresponding to the largest spectral amplification was greater than the fundamental frequency of soil by around 14% and 44% in the vertical and horizontal components, respectively. Spectral amplification of the vertical component was negligible when soil thickness was less than around 15–20 times the S-wave wavelength in the basin. The largest values of peak ground displacement (PGD) and peak differential ground motion (PDGM) were obtained very near the basin edge, and their values with offset from the edge were strongly dependent on the IC across the basin edge, Poisson’s ratio, velocity contrast between the basin and underlying bedrock (dispersion), damping and soil thickness. The obtained value of PDGM for a span of 50 m in the horizontal and vertical components due to the BTR wave was of the order of 0.75 × 10?3 and 1.32 × 10?3 for unit amplitude (1.0 cm) in the horizontal component of the Rayleigh wave at rock very near the basin edge.  相似文献   

6.
渭河盆地中土层场地对地震动的放大作用   总被引:11,自引:1,他引:10       下载免费PDF全文
土层场地对地震动的影响较大,建(构)筑物的选址及其抗震设防必须考虑土层场地的放大作用,以避免或减轻其震害.汶川地震中,布设在渭河盆地中的数字强震动台网共有27个台站(包括2个基岩台站和25个土层台站)获得良好的主震加速度时程.利用这些加速度时程,选择汤峪台做为参考场地,基于考虑几何衰减的传统谱比法分析研究了25个土层场...  相似文献   

7.
Synthetic seismograms (P-SV and SH waves) have been calculated along six profiles in Santiago de Cuba basin, with a cutoff frequency of 5 Hz, by using a hybrid approach (modal summation for a regional 1D structure plus finite differences for a local 2D structure embedded in the first). They correspond to a scenario earthquake of MS=7 that may occur in Oriente fault zone, directly south of the city. As initial data for a seismic microzoning, the characterisation of earthquake effects has been made considering several relative (2D/1D) quantities (PGDR, PGVR, PGAR, DGAR, IAR—ratios of peak ground values of displacement, velocity and acceleration, and of design ground acceleration and Arias intensity-, etc.) and functions representative of the ground motion characteristics in soil (2D) with respect to bedrock (1D). The functions are the response spectra ratio RSR(f), already routinely used in this kind of work, and the elastic energy input ratio EIR(f), defined, for the first time, in this paper. These data, sampled at 115 sites within all the profiles have been classified in two steps, using logical combinatory algorithms: connected components and compact sets. In the first step, from the original ground motion parameters or functions extracted from the synthetic seismograms, nine sets have been classified and the partial results show the spatial distribution of the soil behaviour as a function of the component of motion. In the second step, the results of the classification of the nine sets have been used as input for a further classification that shows a spatial distribution of sites with a quasi-homogeneous integral ground motion behaviour. By adding the available geological surface data, a microzoning scheme of Santiago de Cuba basin has been obtained.  相似文献   

8.
Lebanon is situated on the 1000 km long Levant transform fault that separates the Arabic from the African tectonic plates. In Lebanon, the Levant fault splits up into a set of ramifications that had, in the past, generated major destructive earthquakes causing a lot of destruction and thousands of casualties. The most devastating one was the 551 A.D. offshore earthquake that destroyed Beirut, the capital of Lebanon. This paper presents a site effect study in Beirut, aimed at proposing a framework for future microzonation works in the city. It includes two complementary parts. A 6-month, temporary seismological experiment was first conducted to estimate the site response at 10 sites sampling the main geological units of Beirut on the basis of local and regional earthquake recordings. This spatially sparse information was then complemented by a large number (615) of microtremor measurements covering the Beirut municipality and part of its suburbs with a 400 m dense grid. The recordings were analysed with the standard site-to-reference and horizontal-to-vertical spectral ratio methods for earthquake recordings, and the horizontal-to-vertical ratio for ambient noise recordings. Significant ground motion amplification effects (up to a factor of 8) are found in a few areas corresponding to recent deposits. The consistency between results from earthquake and microtremor recordings allows proposing a map of the resonance frequencies within the city and its suburbs, with frequencies ranging from 0.5 to 5 Hz for the deepest deposits, and 5–10 Hz for shallow areas. Finally, the results are discussed and a way to combine the results obtained from the temporary stations to the great number of recordings coming from the permanent Lebanese network is proposed.  相似文献   

9.
Coherency functions are used to describe the spatial variation of seismic ground motions at multiple supports of long span structures. Many coherency function models have been proposed based on theoretical derivation or measured spatial ground motion time histories at dense seismographic arrays. Most of them are suitable for modelling spatial ground motions on flat‐lying alluvial sites. It has been found that these coherency functions are not appropriate for modelling spatial variations of ground motions at sites with irregular topography (Struct. Saf. 1991; 10 (1):1–13). This paper investigates the influence of layered irregular sites and random soil properties on coherency functions of spatial ground motions on ground surface. Ground motion time histories at different locations on ground surface of the irregular site are generated based on the combined spectral representation method and one‐dimensional wave propagation theory. Random soil properties, including shear modulus, density and damping ratio of each layer, are assumed to follow normal distributions, and are modelled by the independent one‐dimensional random fields in the vertical direction. Monte‐Carlo simulations are employed to model the effect of random variations of soil properties on the simulated surface ground motion time histories. The coherency function is estimated from the simulated ground motion time histories. Numerical examples are presented to illustrate the proposed method. Numerical results show that coherency function directly relates to the spectral ratio of two local sites, and the influence of randomly varying soil properties at a canyon site on coherency functions of spatial surface ground motions cannot be neglected. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The accurate evaluation and appropriate treatment of uncertainties is of primary importance in modern probabilistic seismic hazard assessment (PSHA). One of the objectives of the SIGMA project was to establish a framework to improve knowledge and data on two target regions characterized by low-to-moderate seismic activity. In this paper, for South-Eastern France, we present the final PSHA performed within the SIGMA project. A new earthquake catalogue for France covering instrumental and historical periods was used for the calculation of the magnitude-frequency distributions. The hazard model incorporates area sources, smoothed seismicity and a 3D faults model. A set of recently developed ground motion prediction equations (GMPEs) from global and regional data, evaluated as adequately representing the ground motion characteristics in the region, was used to calculate the hazard. The magnitude-frequency distributions, maximum magnitude, faults slip rate and style-of-faulting are considered as additional source of epistemic uncertainties. The hazard results for generic rock condition (Vs30 = 800 m/s) are displayed for 20 sites in terms of uniform hazard spectra at two return periods (475 years and 10,000 years). The contributions of the epistemic uncertainties in the ground motion characterizations and in the seismic source characterization to the total hazard uncertainties are analyzed. Finally, we compare the results with existing models developed at national scale in the framework of the first generation of models supporting the Eurocode 8 enforcement, (MEDD 2002 and AFPS06) and at the European scale (within the SHARE project), highlighting significant discrepancies at short return periods.  相似文献   

11.
In M S7.0 Lushan earthquake, a large amount of strong ground motion recordings were collected. In this paper, we analyze the recordings carefully. The abnormality of ground motion recordings is identified through a log linear regression. In the station of 51BXD, the PGA value has exceeded 1 g, which is the biggest peak ground acceleration (PGA) value obtained from all recordings in this earthquake. The log linear relation shows the PGA value in this station is abnormally large. As this station is located on the footage of a hill, the topographic amplification factor is explored in order to explain this abnormality. Through 3D numerical modeling using spectral element method with transmitting boundary conditions, the amplification factor is quantized. In this station, the topographic amplification is highly polarized in the direction of East–West which agrees with the empirical recordings. This research result suggests us in future directionality of topographic amplification should be considered in the aseismic design.  相似文献   

12.
以汶川地震中的非发震断层安宁河断裂带周边西昌地区所获取的加速度记录为依据,研究了这些记录在峰值、频谱之间的差异,并通过这些地区的局部场地条件差异进行了初步解释。在此基础上通过数值模拟方法,利用基于显式有限元和局部透射人工边界的二维有限元模型对该地区的地面运动进行了模拟。数值试验结果表明:这些简单的理想化模型对这一地区地震动的本质特征进行重现,并对产生地面运动差异的机理进行合理解释。通过分析,初步揭示了由深部断层构造所控制的断陷盆地对地震动影响显著。  相似文献   

13.
澳门地区建筑物设计地震动参数研究   总被引:1,自引:0,他引:1  
根据澳门地区地震环境、场地特点,利用本地区的工程地质钻孔资料和相似地区的场地设计地震动参数研究成果,结合少量工程地震钻孔剖面的土层反应分析结果,合理地确定了澳门地区不同建筑场地类别的设计地震动参数,对于Ⅱ、Ⅲ类场地,按存在或不存在成片淤泥两种情况进行了反应谱特征周期参数分组,为澳门地区一般建筑工程的抗震设计提供了参考依据。  相似文献   

14.
We study local site effects with detailed geotechnical and geophysical site characterization to evaluate the site-specific seismic hazard for the seismic microzonation of the Chennai city in South India. A Maximum Credible Earthquake (MCE) of magnitude 6.0 is considered based on the available seismotectonic and geological information of the study area. We synthesized strong ground motion records for this target event using stochastic finite-fault technique, based on a dynamic corner frequency approach, at different sites in the city, with the model parameters for the source, site, and path (attenuation) most appropriately selected for this region. We tested the influence of several model parameters on the characteristics of ground motion through simulations and found that stress drop largely influences both the amplitude and frequency of ground motion. To minimize its influence, we estimated stress drop after finite bandwidth correction, as expected from an M6 earthquake in Indian peninsula shield for accurately predicting the level of ground motion. Estimates of shear wave velocity averaged over the top 30 m of soil (VS30) are obtained from multichannel analysis of surface wave (MASW) at 210 sites at depths of 30 to 60 m below the ground surface. Using these VS30 values, along with the available geotechnical information and synthetic ground motion database obtained, equivalent linear one-dimensional site response analysis that approximates the nonlinear soil behavior within the linear analysis framework was performed using the computer program SHAKE2000. Fundamental natural frequency, Peak Ground Acceleration (PGA) at surface and rock levels, response spectrum at surface level for different damping coefficients, and amplification factors are presented at different sites of the city. Liquefaction study was done based on the VS30 and PGA values obtained. The major findings suggest show that the northeast part of the city is characterized by (i) low VS30 values (<?200 m/s) associated with alluvial deposits, (ii) relatively high PGA value, at the surface, of about 0.24 g, and (iii) factor of safety and liquefaction below unity at three sites (no. 12, no. 37, and no. 70). Thus, this part of the city is expected to experience damage for the expected M6 target event.  相似文献   

15.
A criterion is developed for the simulation of realistic artificial ground motion histories at soft‐soil sites, corresponding to a detailed ground motion record at a reference firm‐ground site. A complex transfer function is defined as the Fourier transform of the ground acceleration time history at the soft‐soil site divided by the Fourier transform of the acceleration record at the firm‐ground site. Working with both the real and the imaginary components of the transfer function, and not only with its modulus, serves to keep the statistical information about the wave phases (and, therefore, about the time variation of amplitudes and frequencies) in the algorithm used to generate the artificial records. Samples of these transfer functions, associated with a given pair of soft‐soil and firm‐ground sites, are empirically determined from the corresponding pairs of simultaneous records. Each function included in a sample is represented as the superposition of the transfer functions of the responses of a number of oscillators. This formulation is intended to account for the contributions of trains of waves following different patterns in the vicinity of both sites. The properties of the oscillators play the role of parameters of the transfer functions. They vary from one seismic event to another. Part of the variation is systematic, and can be explained in terms of the influence of ground motion intensity on the effective values of stiffness and damping of the artificial oscillators. Another part has random nature; it reflects the random characteristics of the wave propagation patterns associated with the different events. The semi‐empirical model proposed recognizes both types of variation. The influence of intensity is estimated by means of a conventional one‐dimensional shear wave propagation model. This model is used to derive an intensity‐dependent modification of the values of the empirically determined model parameters in those cases when the firm‐ground earthquake intensity used to determine these parameters differs from that corresponding to the seismic event for which the simulated records are to be obtained. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
以汶川地震中的非发震断层安宁河断裂带周边西昌地区所获取的加速度记录为依据,研究了这些记录在峰值、频谱之间的差异,并通过这些地区的局部场地条件差异进行了初步解释。在此基础上通过数值模拟方法,利用基于显式有限元和局部透射人工边界的二维有限元模型对该地区的地面运动进行了模拟。数值试验结果表明:这些简单的理想化模型对这一地区地震动的本质特征进行重现,并对产生地面运动差异的机理进行合理解释。通过分析,初步揭示了由深部断层构造所控制的断陷盆地对地震动影响显著。  相似文献   

17.
Seismic characterization and monitoring of Fucino Basin (Central Italy)   总被引:1,自引:1,他引:0  
The Fucino basin (Central Italy) is one of the largest intramountain alluvial plain in the Apennines range. It has a tectonic origin related to the presence of important systems of faults located in its northern and eastern edges. Some of these faults are still active and capable of generating strong seismic events. Site effects related to the soft soils filling the basin can be very important. In this paper we show the preliminary results of a seismic network installed in the Fucino area in order to collect information about site amplification effects and geometry of the basin. We analyze ambient seismic vibrations and recordings of about 150 local earthquakes mainly related to the seismic sequence of the April 6th 2009 Mw 6.3 L’Aquila event. Moreover the strongest events of L’Aquila sequence were analyzed at the three permanent strong-motion stations operating in the area. Using standard spectral techniques we investigate the variation of resonance frequencies within the basin. The ground motion recorded in the Fucino plain is mainly characterized by strong energy at low-frequencies (f < 1 Hz) affecting both horizontal and vertical components. This is particularly evident for stations deployed in correspondence of very thick deposits of sedimentary filling, where a significant increase of ground-motion amplitude and duration is likely caused by locally generated surface waves. The amplification at low-frequencies (<1 Hz) on the horizontal components can reach up a factor of 10 in comparison to nearby stiff sites. However, we found evidences of seismic amplification phenomena also for stiff sites surrounding the basin, including stations of the Italian strong motion network. The independent geological information and the shallow shear-velocity profiles available for the basin can be combined with resonance frequencies for deriving representative geological sections to be used as base for future numerical 2D–3D modeling of the basin.  相似文献   

18.
We have explored 1D S-wave velocity profiles of shallow and deep soil layers over a basement at strong motion stations in Eskisehir Province, Turkey. Microtremor array explorations were conducted at eight strong motion stations in the area to know shallow 1D S-wave velocity models. Rayleigh wave phase velocity at a frequency range from 3 to 30 Hz was estimated with the spatial autocorrelation analysis of array records of vertical microtremors at each station. Individual phase velocity was inverted to a shallow S-wave velocity profile. Low-velocity layers were identified at the stations in the basin. Site amplification factors from S-wave parts of earthquake records that had been estimated at the strong motion stations by Yamanaka et al. (2017) were inverted to the S-wave velocities and Q-values of the sedimentary layers. The depths to the basement with an S-wave velocity of 2.2 km/s are about 1 km in the central part of the basin, while the basement becomes shallow as 0.3 km in the marginal part of the basin. We finally discussed the effects of the shallow and deep sedimentary layers on the 1D S-wave amplification characteristics using the revealed profiles. It is found that the shallow soil layers have no significant effects in the amplification at a frequency range lower than 3 Hz in the area.  相似文献   

19.
On 24 May 2014, a Mw 6.9 earthquake occurred in the west of Gokceada Island, northern Aegean Sea. The earthquake was close to Canakkale, Enez, Tekirdag cities, and damaged 300 buildings in the Marmara Region, NW Turkey. We simulated its broadband (0.1–10 Hz) ground motions including 1D deep and shallow structures soil amplification effects at the 12 strong ground motion stations in the western Marmara Region. The 1D deep velocity structures from the focal layer to the engineering bedrock with an S-wave velocity of 0.78 km/s in different azimuthal directions were tuned by comparing the observed group-velocity dispersion curves of Rayleigh and Love waves from the mainshock with theoretical ones. We also added the shallow parts from previous surveys into the 1D models. Synthetic seismograms on the engineering bedrock were generated using the discrete wave number method with a source model and the 1D deep velocity structures. Then the surface motion was generated considering shallow soil amplification. The synthetic seismograms are generally in good agreement with the observed low and high-frequency parts at most of the stations indicating an appropriateness of the source model and the 1D structural model.  相似文献   

20.
In the present study ground motions for a Mw 8.5 scenario earthquake are estimated at 13 sites in Kumaun-Garhwal region using the empirical Green’s function technique. The recordings of 1991 Uttarkashi earthquake of Mw 6.8 at these sites are used as an element earthquake. A heterogeneous source model consisting of two asperities is considered for simulating the ground motions. The entire central seismic gap (CSG) can expect acceleration in excess of 100 cm/s2 with NW portion in excess of 400 cm/s2 and SE between 100 and 200 cm/s2. The central portion can expect peak ground acceleration (PGA) between 200 and 400 cm/s2. It has been observed from simulation of strong ground motion that sites located near the rupture initiation point can expect accelerations in excess of 1g. In the present analysis, Bhatwari and Uttarkashi can expect ground accelerations in excess of 1g. The estimates of the PGA are compared with earlier studies in the same region using different methodologies and it was found that the results are comparable. This has put constrains on the expected PGAs in this region. The obtained PGA values can be used in identifying the vulnerable areas in the central Himalaya, thereby facilitating the planning, design and construction of new structures and strengthening of the existing structures in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号