首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We review recent observational and theoretical results concerning the presence of actinide nuclei on the surfaces of old halo stars and their use as an age determinant. We present model calculations which show that the observed universality of abundances for 56<Z<75 elements in these stars does not necessarily imply a unique astrophysical site for the r-process. Neither does it imply a universality of abundances of nuclei outside of this range. In particular, we show that a variety of astrophysical r-process models can be constructed which reproduce the same observed universal r-process curve for 56<Z<75 nuclei, yet have vastly different abundances for Z≥75 and possibly Z<56 as well. This introduces an uncertainty into the use of the Th/Eu chronometer as a means to estimate the ages of the metal deficient stars. We do find, however, that the U/Th ratio is a robust chronometer. This is because the initial production ratio of U to Th is almost independent of the astrophysical nucleosynthesis environment. The largest remaining uncertainties in the U/Th initial production ratio are due to the input nuclear physics models.  相似文献   

2.
李冀  赵刚 《天文学进展》2003,21(1):70-86
确定银河系的年龄是现代天体物理学的一项基本任务。其方法之一是核纪年法,即通过恒星中某一长寿命放射性元素的丰度随时间的变化来确定恒星的年龄,并以此作为银河系年龄的下限,其中目前的观测丰度来自恒星的光谱分析,恒星形成时的初始丰度来自理论模型的预言。这种方法最初是利用元素对Th/Nd来确定G矮星的年龄,近年来开始利用元素对Th/Eu和U/Th来确定晕族场星和球状星团内恒星的年龄。简要介绍了核纪年法确定银河系年龄的原理,回顾了恒星中Th和U的观测研究,其中着重介绍了极贫金属星的研究。详细讨论了用核纪年法估计银河系年龄的不确定性。作为与核纪年法的比较,简单介绍了确定银河系年龄的其他方法。提出了今后需要进一步研究的几项工作。  相似文献   

3.
We present an analysis of UBVRI data from the selected area SA 141. By applying recalibrated methods of measuring ultraviolet excess (UVX), we approximate abundances and absolute magnitudes for 368 stars over 1.3 deg2 out to distances over 10 kpc. With the density distribution constrained from our previous photometric parallax investigations and with sufficient accounting for the metallicity bias in the UVX method, we are able to compare the vertical abundance distribution to those measured in previous studies. We find that the abundance distribution has an underlying uniform component consistent with previous spectroscopic results that posit a monometallic thick disc and halo with abundances of  [Fe/H]=−0.8  and −1.4, respectively. However, there are a number of outlying data points that may indicate contamination by more metal-rich halo streams. The absence of vertical abundance gradients in the Galactic stellar populations and the possible presence of interloping halo streams would be consistent with expectations from merger models of Galaxy formation. We find that our UVX method has limited sensitivity in exploring the metallicity distribution of the distant Galactic halo, owing to the poor constraint on the UBV properties of very metal-poor stars. The derivation of metallicities from broad-band UBV photometry remains fundamentally sound for the exploration of the halo but is in need of both improved calibration and superior data.  相似文献   

4.
The abundances of heavy elements in EMP stars are not well explained by the simple view of an initial basic “rapid” process. In a careful and homogeneous analysis of the “First Stars” sample (eighty per cent of the stars have a metallicity [Fe/H] ≃ –3.1 ± 0.4), it has been shown that at this metallicity [Eu/Ba] is constant, and therefore the europium‐rich stars (generally called “r‐rich”) are also Ba‐rich. The very large variation of [Ba/Fe] (existence of “r‐poor” and “r‐rich” stars) induces that the early matter was not perfectly mixed. On the other hand, the distribution of the values of [Sr/Ba] vs. [Ba/Fe] appears with well defined upper and lower envelopes. No star was found with [Sr/Ba] < –0.5 and the scatter of [Sr/Ba] increases regularly when [Ba/Fe] decreases. To explain this behavior, we suggest that an early “additional” process forming mainly first peak elements would affect the initial composition of the matter. For a same quantity of accreted matter, this additional Sr production would barely affect the r‐rich matter (which already contains an important quantity of Sr) but would change significantly the composition of the r‐poor matter. The abundances found in the CEMP‐r+s stars reflect the transfer of heavy elements from a defunct AGB companion. But the abundances of the heavy elements in CEMP‐no stars present the same characteristics as the the abundances in the EMP stars. Direct stellar ages may be found from radioactive elements, the precision is limited by the precision in the measurements of abundances from faint lines in faint stars, and the uncertainty in the initial abundances of the radioactive elements. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We have collected nearly all the available observed data of the elements from Ba to Dy in halo and disk stars in the metallicity range -4.0 <[Fe/H]< 0.5. Based on the observed data of Ba and Eu, we evaluated the least-squares regressions of [Ba/Fe] on [Fe/H], and [Eu/H] on [Ba/H]. Assuming that the heavy elements (heavier than Ba) are produced by a combination of the main components of s- and r-processes in metal-poor stars, and choosing Ba and Eu as respective representative elements of the main s- and the main r-processes, a statistical model for predicting the Galactic chemical evolution of the heavy elements is presented. With this model, we calculate the mean abundance trends of the heavy elements La, Ce, Pr, Nd, Sm, and Dy with the metallicity. We compare our results with the observed data at various metallicities, showing that the predicted trends are in good agreement with the observed trends, at least for the metallicity range [Fe/H]> -2.5. Finally, we discuss our results and deduce some importa  相似文献   

6.
快中子俘获过程(r过程)可以解释大约一半比铁重的稳定(和一些长寿命放射性的)富中子核素的产生,这已经被太阳系及各种金属丰度下恒星的观测结果所证实.为建立r过程模型,需要大量的核物理信息:涉及到β稳定谷与中子滴线之间的各种核素的稳定特性及β衰变分支等物理参数,实验和理论都面临巨大的挑战.综述了近年来贫金属星r过程核合成理...  相似文献   

7.
Based on a large amount of observed data of element abundances in metal-poor stars, taking the abundance distribution of heavy elements in the solar system as a standard, and selecting Sr, Ba and Eu as the typical elements of the three nucleosynthetic processes in metal-poor stars, namely the weak sprocess, main s-process and r-process, we have studied the contributions of the three kinds of neutron-capture processes to the abundance distribution of heavy elements in metal-poor stars, with the parameterization method. It is found that the higher the metal abundance, the greater the contributions of the weak s-process and the chief s-process to the abundances of lighter neutron-capture elements. The heavier neutron-capture elements are mainly produced by the r-process and the chief s-process; and that at low metallicity, the abundances of heavy neutron-capture elements are mainly produced by the r-process. In the early Galaxy, the weak s-process has almost no contribution to the element abundance.  相似文献   

8.
High-resolution spectra of five candidate metal-weak thick-disc stars suggested by Beers & Sommer-Larsen are analysed to determine their chemical abundances. The low abundance of all the objects has been confirmed, with metallicity reaching [Fe/H]=−2.9. However, for three objects the astrometric data from the Hipparcos catalogue suggest they are true halo members. The remaining two, for which proper-motion data are not available, may have disc-like kinematics. It is therefore clear that it is useful to address properties of putative metal-weak thick-disc stars only if they possess full kinematic data. For CS 22894−19 an abundance pattern similar to those of typical halo stars is found, suggesting that chemical composition is not a useful discriminant between thick-disc and halo stars. CS 29529−12 is found to be C-enhanced with [C/Fe]=+1.0; other chemical peculiarities involve the s-process elements: [Sr/Fe]=−0.65 and [Ba/Fe]=+0.62, leading to a high [Ba/Sr], considerably larger than that found in more metal-rich carbon-rich stars, but similar to those in LP 706-7 and LP 625-44, discussed by Norris et al. Hipparcos data have been used to calculate the space velocities of 25 candidate metal-weak thick-disc stars, thus allowing us to identify three bona fide members, which support the existence of a metal-poor tail of the thick disc, at variance with a claim to the contrary by Ryan & Lambert.  相似文献   

9.
High-resolution, high signal-to-noise ratio spectra have been obtained for 32 metal-poor stars. The equivalent widths of Li A6708 A were measured and the lithium abundances were derived. The average lithium abundance of 21 stars on the lithium plateau is 2.33±0.02 dex. The Lithium plateau exhibits a marginal trend along metallicity, dA(Li)/d[Fe/H] ?0.12±0.06, and no clear trend with the effective temperature. The trend indicates that the abundance of lithium plateau may not be primordial and that a part of the lithium was produced in Galactic Chemical Evolution (GCE).  相似文献   

10.
HE1005-1439是一颗金属丰度极低([Fe/H] ~ - 3.0)的碳增丰贫金属星(Carbon Enhanced Metal-Poor,CEMP), 该星的s-过程元素显著超丰([Ba/Fe] = 1.16±0.31, [Pb/Fe] = 1.98±0.19), 而r-过程元素温和超丰([Eu/Fe] = 0.46±0.22), 使用单一的s-过程模型和i-过程模型均不能拟合该星中子俘获丰度分布. 采用丰度分解的方法探究该星化学元素的天体物理来源可有助于理解CEMP星的形成和化学演化. 利用s-过程和r-过程的混合模型对其中子俘获元素的丰度分布进行拟合, 发现该星的中子俘获元素主要来源于低质量低金属丰度AGB伴星的s-过程核合成, 而r-过程核合成也有贡献.  相似文献   

11.
We have identified 317 stars included in the Hipparcos astrometric catalogue that have parallaxes measured to a precision of better than 15 per cent, and the location of which in the ( M V ,( B − V ) T ) diagram implies a metallicity comparable to or less than that of the intermediate-abundance globular cluster M5. We have undertaken an extensive literature search to locate Strömgren, Johnson/Cousins and Walraven photometry for over 120 stars. In addition, we present new UBV ( RI )C photometry of 201 of these candidate halo stars, together with similar data for a further 14 known metal-poor subdwarfs. These observations provide the first extensive data set of R C I C photometry of metal-poor, main-sequence stars with well-determined trigonometric parallaxes. Finally, we have obtained intermediate-resolution optical spectroscopy of 175 stars.
47 stars still lack sufficient supplementary observations for population classification; however, we are able to estimate abundances for 270 stars, or over 80 per cent of the sample. The overwhelming majority have near-solar abundance, with their inclusion in the present sample stemming from errors in the colours listed in the Hipparcos catalogue. Only 44 stars show consistent evidence of abundances below [Fe/H]=−1.0 . Nine are additions to the small sample of metal-poor subdwarfs with accurate photometry. We consider briefly the implication of these results for cluster main-sequence fitting.  相似文献   

12.
The abundance patterns of the most metal‐poor stars in the Galactic halo and small dwarf galaxies provide us with a wealth of information about the early Universe. In particular, these old survivors allow us to study the nature of the first stars and supernovae, the relevant nucleosynthesis processes responsible for the formation and evolution of the elements, early star‐ and galaxy formation processes, as well as the assembly process of the stellar halo from dwarf galaxies a long time ago. This review presents the current state of the field of “stellar archaeology” – the diverse use of metal‐poor stars to explore the high‐redshift Universe and its constituents. In particular, the conditions for early star formation are discussed, how these ultimately led to a chemical evolution, and what the role of the most iron‐poor stars is for learning about Population III supernovae yields. Rapid neutron‐capture signatures found in metal‐poor stars can be used to obtain stellar ages, but also to constrain this complex nucleosynthesis process with observational measurements. Moreover, chemical abundances of extremely metal‐poor stars in different types of dwarf galaxies can be used to infer details on the formation scenario of the halo and the role of dwarf galaxies as Galactic building blocks. I conclude with an outlook as to where this field may be heading within the next decade. A table of ~ 1000 metal‐poor stars and their abundances as collected from the literature is provided in electronic format (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
High-resolution, high signal-to-noise ratio, blue-violet spectra of three red giant branch tip stars in M15 have been obtained with the Keck I High-Resolution Echelle Spectrograph. These spectra have been analyzed to determine the abundances of several neutron-capture elements, including the radioactive chronometer element thorium. There are two principal results of this study. First, the abundances of the heavier (Z>/=56) elements for each of the three stars is well matched by a scaled solar system r-process abundance distribution. Second, a weighted mean-observed Th/Eu ratio for the stars implies an age for the neutron-capture material in M15 stars of 14+/-3 Gyr, in reasonable agreement with other recent age estimates for Galactic globular clusters.  相似文献   

14.
We employ spectra of resolution 20–35000 of seven SC stars, four S stars, two Ba stars and two K–M stars to derive abundances of a variety of elements from Sr to Eu relative to iron. Special attention is paid to Rb and Tc, and to the ratio of the heavy s-process species to the light s-process elements. Abundances are derived in LTE, both by using model atmospheres in which the carbon and oxygen abundances are nearly equal and by using curves of growth. Spectrum synthesis is used for critical lines such as the 5924-Å line of Tc and the 7800-Å line of Rb. For most of the heavy-element stars the enhancement of the s-process elements is about a factor of 10. The ratio of the heavy to light s-process species is not far from solar, except for RR Her for which the same ratio is +0.45 dex. For Tc the blending by other lines is severe. While we have probably detected the 5924-Å line, we can only present abundances in the less-than-or-equal-to category. For Rb, whose abundance is sensitive to the 85Rb/87Rb ratio and hence to the neutron density during s-process production, we find a considerable range of abundances, indicating a neutron density from 106 to ≳108 cm−3 for the SC stars. For the four S stars the range is from 107 to ≳108 cm−3. Recent calculations by Gallino et al. show that neutron densities near 107 cm−3 favour the 13C source for neutrons, while densities greater than 108 cm−3 may be associated with neutrons from the 22Ne source.  相似文献   

15.
By means of a detailed chemical evolution model, we follow the evolution of barium (Ba) and europium (Eu) in four Local Group Dwarf Spheroidal (dSph) galaxies, in order to set constraints on the nucleosynthesis of these elements and on the evolution of this type of galaxies compared with the Milky Way. The model, which is able to reproduce several observed abundance ratios and the present-day total mass and gas mass content of these galaxies, adopts up-to-date nucleosynthesis and takes into account the role played by supernovae (SNe) of different types (II, Ia) allowing us to follow in detail the evolution of several chemical elements (H, D, He, C, N, O, Mg, Si, S, Ca, Fe, Ba and Eu). By assuming that Ba is a neutron-capture element produced in low-mass asymptotic giant branch stars by s-process but also in massive stars (in the mass range 10–30 M) by r-process, during the explosive event of SNe of Type II, and that Eu is a pure r-process element synthesized in massive stars also in the range of masses 10–30 M, we are able to reproduce the observed [Ba/Fe] and [Eu/Fe] as functions of [Fe/H] in all four galaxies studied. We confirm also the important role played by the very low star formation (SF) efficiencies (ν= 0.005–0.5 Gyr−1) and by the intense galactic winds (6–13 times the star formation rate) in the evolution of these galaxies. These low SF efficiencies (compared to the one for the Milky Way disc) adopted for the dSph galaxies are the main reason for the differences between the trends of [Ba/Fe] and [Eu/Fe] predicted and observed in these galaxies and in the metal-poor stars of our Galaxy. Finally, we provide predictions for Sagittarius galaxy for which data of only two stars are available.  相似文献   

16.
High-dispersion near-infrared spectra have been taken of seven highly evolved, variable, intermediate-mass (4–6 M) asymptotic giant branch (AGB) stars in the Large Magellanic Cloud and Small Magellanic Cloud in order to look for C, N and O variations that are expected to arise from third dredge-up and hot-bottom burning. The pulsation of the objects has been modelled, yielding stellar masses, and spectral synthesis calculations have been performed in order to derive abundances from the observed spectra. For two stars, abundances of C, N, O, Na, Al, Ti, Sc and Fe were derived and compared with the abundances predicted by detailed AGB models. Both stars show very large N enhancements and C deficiencies. These results provide the first observational confirmation of the long-predicted production of primary nitrogen by the combination of third dredge-up and hot-bottom burning in intermediate-mass AGB stars. It was not possible to derive abundances for the remaining five stars: three were too cool to model, while another two had strong shocks in their atmospheres which caused strong emission to fill the line cores and made abundance determination impossible. The latter occurrence allows us to predict the pulsation phase interval during which observations should be made if successful abundance analysis is to be possible.  相似文献   

17.
High signal-to-noise ratio spectra were obtained of 10 high-proper-motion stars having  −1 ≲[Fe/H] < 0  , and a comparable number of disc stars. All but two of the high-proper-motion stars were confirmed to have  [Fe/H] > −1.0  , some approaching solar metallicity, but, even so, earlier measurements overestimated the metallicities and velocities of some of these stars. Models of stellar populations were used to assign membership probabilities to the Galactic components to which the high-velocity stars might belong. Many were found to be more probably thick-disc than halo objects, despite their large space motions, and two might be associated with the inner Galaxy. It may be necessary to reassess contamination of previous halo samples, such as those used to define the metallicity distribution, to account for contamination by high-velocity thick-disc stars, and to consider possible subcomponents of the halo.
The change in [α/Fe] ratios at  [Fe/H]≃−1.0  is often used to constrain the degree and timing of Type Ia supernova nucleosynthesis in Galactic chemical-evolution models. [Ti/Fe] values were measured for eight of the high-velocity stars. Both high- and low-[Ti/Fe] halo stars exist; likewise high- and low-[Ti/Fe] thick-disc stars exist. We conclude that the [Ti/Fe]'break' is not well defined for a given population; nor is there a simple, continuous evolutionary sequence through the break. Implications for the interpretation of the [α/Fe] break in terms of SN Ia time-scales and progenitors are discussed. The range of [Ti/Fe] found for high -velocity (low rotation) thick-disc stars contrasts with that for the low -velocity (high rotation) thick-disc sample studied by Prochaska et al.  相似文献   

18.
Based on high quality spectral data (spectral resolution R≈60000) within the wavelength range of 3550–5000 Å we determined main parameters (effective temperature, surface gravity, microturbulent velocity, and content of chemical elements including heavy metals from Sr to Dy) for 14 metal-deficient G–K stars with large proper motions. The stars studied have a high range of metallicity: [Fe/H]=?0.3÷?2.9. Abundances of Mg, Al, Sr and Ba were calculated with non-LTE line-formation effects accounted for. The abundance both of radioactive element Th and the r-process element Eu were determined through synthetic spectrum calculations. We selected stars that belong to different galactic populations according to the kinematical criterion and parameters determined by us. We found that the studied stars with large proper motions refer to different components of the Galaxy: thin, thick disks and halo. The chemical composition of the star BD+80°?245 far from the galactic plane agrees with its belonging to the accreted halo. For the giant HD?115444 we obtained [Fe/H]=?2.91, an underabundance of Mn, an overabundance of heavy metals from Ba to Dy, and especially a high excess of the r-process element europium: [Eu/Fe]=+1.26. Contrary to its chemical composition typical for halo stars, HD?115444 belongs to the disc population according to its kinematic parameters.  相似文献   

19.
Sulphur is a volatile α ‐element which is not locked into dust grains in the interstellar medium (ISM). Hence, its abundance does not need to be corrected for dust depletion when comparing the ISM to the stellar atmospheres. The abundance of sulphur in the photosphere of metal‐poor stars is a matter of debate: according to some authors, [S/Fe] versus [Fe/H] forms a plateau at low metallicity, while, according to other studies, there is a large scatter or perhaps a bimodal distribution. In metal‐poor stars sulphur is detectable by its lines of multiplet 1 at 920 nm, but this range is heavily contaminated by telluric absorptions, and one line of the multiplet is blended by the hydrogen Paschen ζ line. We study the possibility of using multiplet 3 (at 1045 nm) for deriving the sulphur abundance because this range, now observable at the VLT with the infra‐red spectrograph CRIRES, is little contaminated by telluric absorption and not affected by blends at least in metal‐poor stars. We compare the abundances derived from multiplets 1 and 3, taking into account NLTE corrections and 3D effects. Here we present the results for a sample of four stars, although the scatter is less pronounced than in previous analysis, we cannot find a plateau in [S/Fe], and confirm the scatter of the sulphur abundance at low metallicity (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The lithium abundances of planet-harbouring stars have been compared with the lithium abundances of open clusters and field stars. Young (chromospherically active) and subgiant stars have been eliminated from the comparison because they are at different stages of evolution and Li processing than the planet-harbouring stars, and hence have systematically higher Li abundances. The analysis showed that the Li abundances of the planet-harbouring stars are indistinguishable from those of non-planet-harbouring stars of the same age, temperature and composition. This conclusion is opposite to that arrived at by Gonzalez & Laws; it is believed that the field-star sample used by them contained too wide a range of ages, evolutionary types and temperatures to be accommodated by the model that they adopted to describe the dependence of Li on the parameters. The Li abundance does not appear set to provide key insights into the formation and evolution of planetary systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号