首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial and temporal variability of pigments was studied from the CZCS satellite data and fromin situ chlorophyll and transparency for the period 1979-1985. The three Adriatic sites, Northern, Middle, and Southern Adriatic are differently influenced by meteorological, hydrological and oceanographic parameters. The differences between seasonalin situ chlorophyll and remotely sensed pigment concentrations (from CZCS satellite data) from the Adriatic are large in winter. Through the correlation analysis, pigments were compared to meteo-oceanographic and hydrological parameters from different Adriatic sites. The PCA (principal component analysis) was applied to the pigment data series and significant components were compared. Different correlations are obtained for warm and cold periods of the year pointing to seasonal differences in the underlying mechanism of pigment variability. The first PC is influenced mainly by temperature. In the warm period more parameters seem to influence the pigment field, than in the cold period. The pigments in the Adriatic are in good correlation to a number of hydrologic and meteo-oceanographic factors.  相似文献   

2.
European regions increasingly develop inter-regional and transnational visions. They not only compete with each other on the basis of traditional location factors (transport, taxes, and labour market) but also by calling up the image of an entirely alternative society which is portrayed as both flexible and capable of self-reproduction. In this article the presence of this (postfordist) discourse is investigated in Web sites of four European regions: Baden-Württemberg, Cataluña, Leningrad and Friesland. Baden-Württemberg confirms its reputation as one of the most outspoken representatives of the new regional assertiveness. Its rhetoric relies on a mixture of cultural, individual and technological arguments largely neglecting internal geographical variation. Although this type discourse can be easily emulated – irrespective of real world differences in the regimes of accumulation – not all regions seem to have (yet) succumbed to its formula.  相似文献   

3.
Biophysical and biochemical plant foliage parameters play a key role in assessing vegetation health. Those plant parameters determine the spectral reflectance and transmittance properties of vegetation; therefore, hyperspectral remote sensing, particularly imaging spectroscopy, can provide estimates of leaf and canopy chemical properties. Based on the relationship between spectral response and biochemical/biophysical properties of the leaves and canopies, the PROSPECT radiative transfer model simulates the interaction of light with leaves. In this study, more than 1100 leaf samples from the Amazon forest of Ecuador were collected at several study sites, some of which are affected by petroleum pollution, and across the vertical profile of the forest. For every sample, field spectroscopy at leaf level was conducted with a spectroradiometer. The goal of this study was to assess leaf optical properties of polluted and unpolluted rainforest canopies across the vertical profile and identify vegetation stress expressed in changes of biophysical and biochemical properties of vegetation. An ANOVA followed by Holme’s multiple comparisons of means and a principal component analysis showed that photosynthetic pigments, chlorophyll and carotenoids have significantly lower levels across the vertical profile of the forest, particularly in sites affected by petroleum pollution. On the other hand, foliar water content showed significantly higher levels in the polluted site. Those findings are symptoms of vegetation stress caused by reduced photosynthetic activity and consequently decreased transpiration and water-use efficiency of the plants. Cross-comparison between SPAD-502 chlorophyll content meter index and chlorophyll content showed strong positive correlation coefficients (r = 0.71 and r 2 = 0.51) which suggests that using the SPAD-502 chlorophyll index itself is sensitive enough to detect vegetation stress in a multispecies tropical forest. Therefore, the SPAD-502 can be used to assess chlorophyll content of vegetation across polluted and non-polluted sites at different canopy layers. The results presented in this paper contribute to the very limited literature on field spectroscopy and radiative transfer models applied to the vertical profile of the Amazon forest.  相似文献   

4.
Remotely sensed Land Surface Temperature (LST) is a key parameter for studying the global climate changes and the exchanges of water and energy. Acquiring LST accurately is important to diagnose the change of environment on earth. Quantifying the uncertainty of remotely sensed LST is the first step of its application. However, due to the difficulties in obtaining the ground truth of LST at the pixel scale, it is difficult to validate the remotely sensed LST. Here, methods for simulating the LST at the pixel scale based on ground measurements over heterogeneous area were reviewed. From the way to construct the ground scene, these methods were classified into three types, including the Modified Geometric Projection model (MGP), realistic structural three-dimensional model, and other model. The advantages and disadvantages of these models were examined and compared. Finally, some issues in simulating LST at the pixel scale over heterogeneous area needed to be solved and on-going directions in the future were summarized.  相似文献   

5.
Review on Validation of Remotely Sensed Land Surface Temperature   总被引:1,自引:0,他引:1  
Land Surface Temperature (LST) is an important input parameter for many land surface models. Retrieving LST from remote sensing is the main approach for modelling the radiance balance and energy budget at both regional and global scales. Validation of remotely sensed LST is helpful to evaluate its accuracy and stability. Furthermore, it is meaningful for the retrieval and application of remotely sensed LST. Here, first, theories and methods of LST retrieval were reviewed. Second, four validation methods, including the Temperature-based (T-based), Radiance-based (R-based), cross comparison and Time-series analysis, were reviewed and compared. An in-depth examination was conducted for the T-based method from the aspects including the approaches for acquiring the ground truth value, the target LST products, the uncertainty sources. Finally, some important issues in LST validation were discussed.  相似文献   

6.
In this paper, Leaf Area Index (LAI) and Crop Height (CH) are modeled to the most known spectral vegetation index — NDVI — using remotely sensed data. This approach has advantages compared to the classic approaches based on a theoretical background. A GER-1500 field spectro-radiometer was used in this study in order to retrieve the necessary spectrum data for estimating a spectral vegetation index (NDVI), for establishing a semiempirical relationship between black-eyed beans’ canopy factors and remotely sensed data. Such semi-empirical models can be used then for agricultural and environmental studies. A field campaign was undertaken with measurements of LAI and CH using the Sun-Scan canopy analyzer, acquired simultaneously with the spectroradiometric (GER1500) measurements between May and June of 2010. Field spectroscopy and remotely sensed imagery have been combined and used in order to retrieve and validate the results of this study. The results showed that there are strong statistical relationships between LAI or CH and NDVI which can be used for modeling crop canopy factors (LAI, CH) to remotely sensed data. The model for each case was verified by the factor of determination. Specifically, these models assist to avoid direct measurements of the LAI and CH for all the dates for which satellite images are available and support future users or future studies regarding crop canopy parameters.  相似文献   

7.
区域平均感热和潜热通量是气象、水文、生态模式中的关键物理因子,卫星遥感反演为观测区域平均感热和潜热通量提供了可能。对利用卫星遥感资料反演地气通量的方法进行了总结和评述。首先描述了现在常用的反演方法,分析了方法中的各种假定对反演结果的影响,并对不同的模式反演结果进行了比较。还指出了评价卫星反演通量的精度时需要注意的问题。最后对该领域内现存的问题与发展方向进行探讨。  相似文献   

8.
作为一类天然色素,类胡萝卜素在自然界中广泛分布。在沉积记录中,类胡萝卜素多以结构稳定的衍生物形式赋存。部分具有芳香基的结构的组分与光合硫细菌的活动有关,因而这些特定生物来源的组分为恢复古水体环境提供了一个重要的依据。通常光合硫细菌多生存在缺氧且富硫的透光层,地质记录中的芳香基类胡萝卜素往往反映了古水体中发育硫化透光带。类胡萝卜素衍生物的组合差异与硫细菌群落的相关性为古水深、微生物优势群落以及营养元素利用与循环等方面的研究提供了线索和证据。因此,类胡萝卜素衍生物在油源对比、生命起源、生物灭绝事件以及大洋缺氧事件等诸多地质过程的研究中起到至关重要的指示作用。本文主要通过探讨准噶尔盆地南缘安集海河组有机质中的类胡萝卜素的结构,分析其成因类型和特定来源,阐释古环境与古气候演化,进而恢复与重建渐新世时期准噶尔盆地南缘古湖泊的水体条件与微生物群落。从结果来看,准噶尔盆地安集海组中发育绿硫细菌来源的绿硫菌烷、异海绵烷等芳香基类胡萝卜素,可以推测这一时期湖泊水体存在硫化透光带现象;同时以叶黄素为来源的叶黄烷指示了蓝细菌是古湖泊中生物群落的重要组成部分。古湖泊发育硫化透光带往往与水体分层有关,而准噶尔盆地渐新世晚期的古气候由湿润转变为干旱似乎对湖泊盐度分层提供有利条件。与此同时,绿硫细菌中出现较高含量的棕色绿硫细菌菌株反映了安集海河组古湖泊的水深较深,且分布范围广阔。通过对安集海河组类胡萝卜素研究,认为渐新世时期准噶尔盆地南缘原始湖泊分布范围向南延伸较广,与构造研究结果吻合。  相似文献   

9.
海洋沉积物中色素生物标志物研究进展   总被引:1,自引:0,他引:1  
海洋沉积物中的光合色素包含着水体、沉积物中浮游和底栖植物以及微生物群落的丰富信息,能表征特定生物来源,在埋藏到沉积物甚至发生某些改变之后仍然保留其源信息,是一类重要的化学生物标志物.结合总有机碳、总氮等其他海洋地球化学参数,沉积色素可用来研究海洋浮游植物和光合细菌的群落组成和丰度,反演海洋初级生产、水体富营养化水平及其历史趋势,指示水体和沉积物氧化还原条件,揭示海域气候条件等现状及其历史变化.沉积色素的研究,对于掌握海洋中碳的生物地球化学循环过程,回溯古环境、古海洋、古生态以及古气候记录,制定合理的海洋管理政策具有十分重要的意义.阐述了沉积物中色素的分类、来源、性质和分析方法,分析了色素在沉积物中的保存和变化规律,探讨总结了沉积色素作为化学生物标志物在海洋学研究中的应用.  相似文献   

10.
Lagunillo del Tejo is a small doline lake in a karstic region of the Iberian Ranges (central-eastern Spain) that undergoes significant lake level fluctuation in response to changing aquifer influxes. In order to assess changes in the primary producer community in the lake over the last two centuries and to elucidate whether these were conditioned by climatic variability, photosynthetic pigments and their derivatives were extracted from the sediments and the data analysed using multivariate statistical techniques. Quantitative variations in total pigment concentrations through the sedimentary sequence are considered a result of changes in sedimentation rate, largely due to lake level fluctuation. Rapid lowering of the level results in an increase in detritic mineral matter eroded from the sides of the lake, which accumulates in the sediment and dilutes the organic matter content in the corresponding sediment layers. On the other hand, shifts in the relative abundances of the different pigments suggest the development of two different primary producer communities: (i) planktonic, comprising cyanobacteria, chlorophytes, cryptophytes and purple sulfur bacteria and (ii) primary producers related to the littoral environment, mostly submerged macrophytes. These two communities showed alternating relative importance over the last two centuries, as a biotic response to lake level fluctuation during wet and dry periods, respectively.  相似文献   

11.
Early indicators of salt marsh plant stress are needed to detect stress before it is manifested as changes in biomass and coverage. We explored a variety of leaf-level spectral reflectance and fluorescence variables as indicators of stress in response to the herbicide diuron. Diuron, a Photosystem II inhibitor, is heavily used in areas adjacent to estuaries, but its ecological effects are just beginning to be recognized. In a greenhouse experiment, we exposed Spartina foliosa, the native cordgrass in California salt marshes, to two levels of diuron. After plant exposure to diuron for 28 days, all spectral reflectance indices and virtually all fluorescence parameters indicated reduced pigment and photosynthetic function, verified as reduced CO2 assimilation. Diuron exposure was not evident, however, in plant morphometry, indicating that reflectance and fluorescence were effective indicators of sub-lethal diuron exposure. Several indices (spectral reflectance index ARI and fluorescence parameters EQY, Fo, and maximum rETR) were sensitive to diuron concentration. In field trials, most of the indices as well as biomass, % cover, and canopy height varied predictably and significantly across a pesticide gradient. In the field, ARI and Fo regressed most significantly and strongly with pesticide levels. The responses of ARI and Fo in both the laboratory and the field make these indices promising as sensitive, rapid, non-destructive indicators of responses of S. foliosa to herbicides in the field. These techniques are employed in remote sensing and could potentially provide a link between landscapes of stressed vegetation and the causative stressor(s), which is crucial for effective regulation of pollution.  相似文献   

12.
Western tropical Indian Ocean, Arabian Sea, and the equatorial Pacific are known as regions of intense bio-chemical-physical interactions: the Arabian Sea has the largest phytoplankton bloom with seasonal signal, while the equatorial Pacific bloom is perennial with quasi-permanent upwelling. Here, we studied three dimensional ocean thermodynamics comparing recent ocean observation with ocean general circulation model (OPYC) experiment combined with remotely sensed chlorophyll pigment concentrations from the Coastal Zone Color Scanner (CZCS). Using solar radiation parameterization representing observations that a higher abundance of chlorophyll increases absorption of solar irradiance and heating rate in the upper ocean, we showed that the mixed layer thickness decreases more than they would be under clear water conditions. These changes in the model mixed layer were consistent with Joint Global Ocean Flux Study (JGOFS) observations during the 1994-1995 Arabian Sea experiment and epi-fluorescence microscopy (EFM) on samples collected during Equatorial Pacific Ocean Climate Study (EPOCS) in November, 1988. In the Arabian Sea, as the chlorophyll concentrations peak in October (3 mg/m3) after the summer plankton bloom induced by coastal upwelling, the chlorophyll induced biological heating enhanced the sea surface temperature (SST) by as much as 0.6‡C and sub-layer temperature decreases and sub-layer thickness increases. In the equatorial Pacific, modest concentrations of chlorophyll less than 0.3 mg/m3 is enough to introduce a meridional differential heating, which results in reducing the equatorial mixed layer thickness to more than 20 m. The anomalous meridional tilting of the mixed layer bottom enhances off equatorial westward geostrophic currents. Consequently, the equatorial undercurrent transports more water from west to east. We proposed that these numerical model experiments with use of satellite andin situ ocean observations are consistent under three dimensional ocean circulation theory combined with solar radiation transfer process.  相似文献   

13.
There is a need for research into bioindicators of stress in threatened plant communities such as coastal wetlands. Land subsidence, diversion of sediment, and salt-water intrusion produce stresses associated with waterlogging, elevated salinity, and nutrient depletion. Temporal and spatial environmental variation (soil redox potential, interstitial water salinity, pH, ammonium and phosphorus, and cation and trace metal concentrations) was analyzed near Lake de Cade, Louisiana, in a brackish marsh which is a mosaic of healthy plant communities interspersed with areas where wetland loss is occurring. Environmental variation was related to indicators of stress inSpartina patens, which included variables derived from the adenine nucleotide levels in plants, leaf spectral reflectance, leaf proline concentrations, and shoot elongation. In a comparison of burned and unburned sites, streamside and inland marsh, and along a salinity gradient, among-site differences were found in spectral reflectance and adenine-nucleotide-related indicators. Although it was difficult to relate a single causal environmental variable to the response of a specific indicator, spectral reflectance in the visible light range responded to salinity or to elements borne in seawater, and adenine-nucleotide indices were sensitive to nutrient availability. The ability of indicators to detect plant responses changed during the growing season, suggesting that they were responding to the changing importance of different environmental factors. In addition, some reflectance indicator responses occurred along salinity gradients when salinity differences were less than those that were found to have ecologically meaningful effects in greenhouse experiments. A multivariate numerical approach was used to relate environmental variation with indicator responses. We concluded that factors which in combination cause the degradation and loss of Louisiana wetlands produce environmental conditions that are only subtly different from those in vigorously growing marsh communities.  相似文献   

14.
徐冠华 《第四纪研究》1993,13(2):170-184
本文探讨了遥感与地理信息系统中应用的数学模型的特点;并综述了中国研究人员在遥感图象识别、农林牧估产、水文过程模拟、沙漠化和水土流失动态估计以及土地资源分析评价中的应用实例;最后,根据遥感与地理信息系统的发展趋势,展望了其中应用的数学模型的发展趋势。  相似文献   

15.
The land use/cover in any urban area is dynamic in nature. Maps of existing land use/covers have to be updated periodically to monitor changes. To speed up mapping and decision making, remotely sensed satellite data have been advocated. This study used the IRS-1A LISS 1 satellite data for delineation of selected urban features in Calcutta Metropolitan District. Due to lack of ground information, some known features have been used as reference categories to classify the study area.The satellite data was transformed through a principal components analysis and two new bands of data were created and combined with the original four band data. Both supervised and unsupervised methods were used for spectral signature collection. Thirty-six classes derived from Isodata clustering, after comparing with the selected known features, these were grouped to form five generalized land use/cover categories. The spatial distribution of these land use/cover categories have been explained in this study.  相似文献   

16.
李楠  肖克炎  陈析璆  娄德波 《地质通报》2010,29(10):1558-1563
以已知的矿床——内蒙古炭窑口矿床为研究区,基于围岩矿化蚀变理论,利用高光谱遥感技术对矿化蚀变异常信息进行提取。首先对Hyperion影像进行预处理,包括去坏线、条带、大气校正及光谱重建。其次,从反演后的反射率数据提取5类端元矿物,通过分析矿物组合,最终确定5类矿物并利用波谱角制图法在研究区填图,进而提取矿化蚀变信息。在以上研究过程中改进了去除条带的方法。在获得蚀变信息后,结合炭窑口研究区的地质图进行应用分析,通过解释异常,验证其是否为矿化引起的蚀变。最后,再根据研究区的地质情况和前人对矿床的研究成果,尤其是对含矿地层的研究成果,结合提取的蚀变矿物,预测其他有利靶区。结果表明,获得的矿化蚀变信息与矿点吻合较好,具有一定的借鉴意义。  相似文献   

17.
陶虹  丁佳 《地质论评》2014,60(1):231-235
关中城市群地下水自集中开采以来区域地下水位呈整体下降趋势,主要城市集中供水水源地水位降幅30~50 m,最大超过120 m。长期过量开采地下水引起了地下水位持续下降、地面沉降、地裂缝以及水质污染等环境地质问题。近年随着城市群限制开采量,地下水水位下降及其相关环境地质问题在局部地段有所缓和。本文以50年地下水动态监测数据为基础,针对关中城市群地下水动态特征及相关的环境地质问题进行研究分析,并对预防和缓解环境地质问题、合理开发地下水资源提出建议。  相似文献   

18.
Lake Erie is biologically the most active lake among the Great Lakes of North America, experiencing seasonal harmful algal blooms (HABs). The early detection of HABs in the Western Basin of Lake Erie (WBLE) requires a more efficient and accurate monitoring tool. Remote sensing is an efficient tool with high spatial and temporal coverage that can allow accurate and timely detection of the HABs. The WBLE is heavily influenced by the surrounding terrestrial ecosystem via rivers such as the Sandusky River and the Maumee River. As a result, the optical properties of the WBLE are influenced by multiple color producing agents (CPAs) such as phytoplankton, colored dissolved organic matter (CDOM), organic detritus, and terrigenous inorganic particles. The diversity of the CPAs and their non-linear interactions makes these waters optically complex, and the task of optical remote sensing for retrieving estimates of CPAs more challenging. Chlorophyll a, which is the primary light harvesting pigment in all phytoplankton, is used as a proxy for algal biomass. In this study, several published remote sensing algorithms and band ratio models were applied to the reflectance data from the full resolution MERIS sensor to remotely estimate chlorophyll a concentrations in the WBLE. Efficiency of the sensor and the algorithms performance were tested through a least squares regression and residual analysis. The results indicate that, among the suite of existing bio-optical models, the Simis semi-analytical algorithm provided the best model results for measures of algal biomass in the optically complex WBLE with R 2 of 0.65, RMSE 0.85 μg/l, (n = 71, P < 0.05). The superior results of this model in detecting chlorophyll a are attributed to several factors including optimizing spectral regions that are less sensitive to CDOM and the incorporation of correction factors such as absorption effects due to pure water (a w), backscatter (b b) from suspended matter and interference due to phycocyanin (δ), a major accessory pigment in the WBLE.  相似文献   

19.
珊瑚礁遥感研究进展   总被引:1,自引:0,他引:1  
受到气候变化和人类活动的影响,全球的珊瑚礁生态系统正迅速退化,通过遥感技术监测珊瑚礁栖底物质的结构组成和变化对于管理和保护珊瑚礁生态系统具有重要意义。珊瑚礁上层水体对光强的衰减、栖底物质光谱的复杂性以及空间的异质性,构成了珊瑚礁遥感的特点,同时也是难点;从光谱可分性分析、遥感图像分类、混合光谱分解、变化检测4个方面总结分析了近几年国际上在珊瑚礁遥感领域所做的研究,并指出应从高光谱影像分析、声学遥感和光学遥感相结合、完善珊瑚礁遥感物理模型等方面推进珊瑚礁遥感的发展。  相似文献   

20.
高光谱技术提取植被生化参数机理与方法研究进展   总被引:14,自引:3,他引:11  
概述了目前利用高光谱技术估测地表植被生化参数理论与技术的最新研究进展,着重介绍了前人为提高遥感精度不断改进从光谱数据中提取植被生化参数的一些方法和理论,重点论述了提高遥感信息的信噪比(SNR)、改进遥感数据的分析方法、植被物理参数的细化和逐步确定,是目前植被生化参数遥感估测研究的前沿领域和科学问题,为人们尽快全面了解高光谱技术在植被生化参数方面应用进展和方法拓展,提供了条件、概貌和综论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号