首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tomczak  Matthias 《Ocean Dynamics》2019,69(3):301-311
Ocean Dynamics - The concept of water type richness wtr and inversion count inv is introduced and applied to high-resolution Argo float data in a meridional strip in the southern Indian Ocean as a...  相似文献   

2.
3.
The interannual variations in salt flux on the 80°E section in the equatorial Indian Ocean were explored based on the ORAS5 data, which was quite consistent with the observational data among the four available reanalysis datasets. The results indicated that the area with significant interannual variations in salt flux coincided with that of significant climatological mean salt flux in general and was mainly located in the upper 150 m layer. Specifically, three important areas were identified in ...  相似文献   

4.
5.
In-situ measurements of number density, size distribution, and mass loading of near-surface aerosols were carried out at Kharagpur, a site on the eastern part of Indo-Gangetic Plains during the winter month of December 2004. The data have been used to investigate wintertime characteristics of aerosols and their effects on the occurrence of haze. The aerosol number density is found to be of the order of 109 m?3 and mass loading is ~265±70 μg m?3 (5–8 times that reported from south Indian sites). The diurnal patterns and day-to-day variations in aerosol number density and mass loading are closely associated with atmospheric boundary layer height. During haze events, the number density of submicron particles is found to be 2–5 times higher than that during non-hazy period. This could be attributed to the enhanced concentration of anthropogenic aerosols, low atmospheric boundary layer height/ventilation coefficient and airflow convergence.  相似文献   

6.
The results of a periodogramanalysis of the variations in the ionospheric parameters, measured using the vertical radio sounding method at midlatitude Irkutsk observatory (Eastern Siberia), are presented. The 1984–1986 period of observations was used. It has been indicated that the statistically significant oscillations with periods typical of planetary waves are present in the variations in f 0Es, f bEs, h′Es, f min, f 0F2, and h′F.  相似文献   

7.
8.
Averaged seasonal variations of wind perturbation intensities and vertical flux of horizontal momentum produced by internal gravity waves (IGWs) with periods 0.2/1 h and 1/6 h are studied at the altitudes 65/80 km using the MU radar measurement data from the middle and upper atmosphere during 1986/1997 at Shigaraki, Japan (35°N, 136°E). IGW intensity has maxima in winter and summer, winter values having substantial interannual variations. Mean wave momentum flux is directed to the west in winter and to the east in summer, opposite to the mean wind in the middle atmosphere. Major IGW momentum fluxes come to the mesosphere over Shigaraki from the Pacific direction in winter and continental Asia in summer.  相似文献   

9.
The identification of the center acting as electron source for the well-known 110 °C thermoluminescence (TL) peak of quartz is of fundamental importance for practical applications in dating and dosimetry. This TL peak was studied in parallel with the electron paramagnetic resonance (EPR) signal of the [GeO4] center on natural colourless quartz irradiated at room temperature. Immediately after irradiation, the signals of the 110 °C TL peak and of [GeO4] center decay exponentially in the same way, yielding a lifetime of 50.4 ± 0.9 min at room temperature. Besides, we acquired the isothermal decay curves for the 110 °C TL peak and [GeO4] center at different temperatures (the samples were held at the selected temperature in the range of 260–308 K). The lifetimes extracted by the isothermal decays were plotted as a function of reciprocal temperature, revealing again the same behavior of the 110 °C TL peak and [GeO4] center, both characterized by activation energies very close of 0.76 ± 0.07 eV and 0.77 ± 0.07 eV, respectively. All results of the present work clearly show the role of electron source of [GeO4] center in the emission mechanism of the 110 °C TL peak in quartz.  相似文献   

10.
We performed a statistical and spectral analysis of variations in two main parameters of the ionospheric F2 layer: critical frequency (f 0F2) and peak height (h m F2), recorded at an ionospheric station in Irkutsk (52.5°N, 104.0°E) in the period from December 1, 2006, to January 31, 2008, under low solar activity conditions. It was found that the f 0F2 and h m F2 variations contained quasi-harmonic oscillations with periods T n = 24/n h (n = 1−7). We studied the seasonal changes in the mean and median values of monthly f 0F2 and h m F2 time series, their spectra, as well as the amplitudes and phases of the diurnal (n = 1) and semidiurnal (n = 2) variations. It is shown that the amplitude of the diurnal f 0F2 variations was maximal in October–March 2007 and minimal in May–August 2007. The diurnal f 0F2 variations were maximal at noon in the winter months and at 1600 LT in the summer months. The semidiurnal f 0F2 variations had two maxima: a primary maximum in December and January and a secondary maximum in May–July. The maxima of semidiurnal f 0F2 variations were shifted from 0000 and 1200 LT in winter to 0900 and 2100 LT in summer.  相似文献   

11.
The capabilities of the continuous wavelet transform (CWT) and the multiresolution analysis (MRA) are presented in this work to measure vertical gravity wave characteristics. Wave properties are extracted from the first data set of Rayleigh lidar obtained between heights of 30 km and 60 km over La Reunion Island (21°S, 55°E) during the Austral winter in 1994 under subtropical conditions. The altitude-wavelength representations deduced from these methods provide information on the time and spatial evolution of the wave parameters of the observed dominant modes in vertical profiles such as the vertical wavelengths, the vertical phase speeds, the amplitudes of temperature perturbations and the distribution of wave energy. The spectra derived from measurements show the presence of localized quasi-monochromatic structures with vertical wavelengths <10 km. Three methods based on the wavelet techniques show evidence of a downward phase progression. A first climatology of the dominant modes observed during the Austral winter period reveals a dominant night activity of 2 or 3 quasi-monochromatic structures with vertical wavelengths between 1/2 km from the stratopause, 3/4 km and 6/10 km observed between heights of 30 km and 60 km. In addition, it reveals a dominant activity of modes with a vertical phase speed of –0.3 m/s and observed periods peaking at 3/4 h and 9 h. The characteristics of averaged vertical wavelengths appear to be similar to those observed during winter in the southern equatorial region and in the Northern Hemisphere at mid-latitudes.  相似文献   

12.
13.
Because of the significance to the formation and evolution of the Tibetan plateau, the displacement and slip rate of the Altyn Tagh fault have been topics full of disputation. Scientists who hold different opinions on the evolution of Tibet insist on different slip rates and displacements of the fault zone. In the article, study is focused on the late Quaternary slip rate of the Altyn Tagh fault west of the Cherchen River (between 85°E and 85°45'E). On the basis of high resolution SPOT images of the region, three sites, namely Koramlik, Aqqan pasture and Dalakuansay, were chosen for field investigation. To calculate the slip rate of the fault, displacement of terraces was measured on SPOT satellite images or in situ during fieldwork and thermo-luminescence (TL) dating method was used. To get the ages of terraces, samples of sand were collected from the uppermost sand beds that lie just under loess. The method for calculating slip rate of fault is to divide the displacement of terrace risers by the age of its neighboring lower terrace. The displacement of rivers is not considered in this article because of its uncertainties. At Koramlik, the slip rate of the Altyn Tagh fault is 11.6±2.6mm/a since 6.02±0.47ka B.P and 9.6±2.6mm/a since 15.76±1.19ka B.P. At Aqqan pasture, about 30km west of Koramlik, the slip rate is 12.1±1.9mm/a since 2.06±0.16 ka B.P. At Dalakuansayi, the slip rate of the fault is 12.2±3.0mm/a since 4.91±0.39ka B.P. Hence, we get the average slip rate of 11.4±2.5mm/a for the western part of the Altyn Tagh Fault since Holocene. This result is close to the latest results from GPS research.  相似文献   

14.
Long-term changes of the temperature of the middle atmosphere are investigated using a data bank obtained by Russian rocketsondes at Heiss Island (80.6°N, 58°E). The major interest of the data series is that it is one of the longest and uninterrupted records obtained at high latitudes in the northern hemisphere over 25 years, from 1969 to 1994. Previous estimates using this dataset has shown the largest trends. The revised analysis performed here took into account all possible discontinuities in the data series, such as a change in the time-of-measurement, T0, and in the type of sensor. For this purpose, some data were filtered out, and a statistical model based on multiple regression analyses included step functions to take into account such discontinuities. The temperature responses to different sources of variability (solar activity, volcanic aerosols) were retrieved for summer and winter periods. The response to the 11-year solar cycle in the winter period is found to be largely positive in the stratosphere (∼+4 K) and largely negative in the mesosphere (∼−8 K), with a smaller and opposite response in summer. This response depends on the phase of the QBO, as already shown by previous studies. The response to volcanic aerosols is found to be significantly positive in the upper mesosphere, in good agreement with numerical simulations and with observations above France. The long-term trend resulting from this reanalysis indicates a cooling of the middle atmosphere, increasing with altitude from −2 K/decade at 40 km to a maximum of −6 K/decade around 65 km. This result is slightly larger than the trend observed at mid-latitude but quite smaller than previous estimates.  相似文献   

15.
Continuous MF radar measurements of mesospheric mean winds are in progress at the observatories in Yamagawa (31.2°N, 130.6°E) and Wakkanai (45.4°N, 141.7°E). The observations at Yamagawa and Wakkanai were started in August 1994 and September 1996, respectively. The real-time wind data are used for the study of major large scale dynamic features of the middle atmosphere such as mean winds, tides, planetary waves, and gravity waves, etc. In the present study of mean winds, we have utilized the data collected until June 1999, which include the simultaneous observation period of little more than two and a half years, for the two sites. The database permits us to draw conclusions on the characteristics of mean winds and to compare the mean wind structure over these sites. The mean prevailing zonal winds at both sites are dominated by westward/eastward motions in summer/winter seasons below 90 km. Meridional circulation at meteor heights is generally southward during most times of the year and it extends to lower mesospheric heights during summer also. The summer westward jet at Wakkanai is consistently stronger than those at Yamagawa. However, the winter eastward winds have identical strength at both locations. Meridional winds also show larger values at Wakkanai. The mean wind climatology has been examined and compared with the MU radar observations over Shigaraki (34.9°N, 136.1°E). The paper also presents the results of the comparison between the MF radar winds and the latest empirical model values (HWM93 model) proposed by Hedin et al. (1996. Journal of Atmospheric and Terrestrial Physics 58, 1421–1447). Hodograph analyses of mean winds conducted for the summer and winter seasons show interesting similarities and discrepancies.  相似文献   

16.
Continuous measurements of 3-dimensional winds, spectral parameters, and tropopause height for ~114 h during the passage of a tropical depression using mesosphere–stratosphere–troposphere (MST) radar at Gadanki (13.5°N, 79.2°E) are discussed. The spectral analysis of zonal and meridional winds shows the presence of inertia-gravity wave (IGW) with the dominant periodicity of 56 h and intrinsic period of 27 h in the upper troposphere and lower stratosphere (UTLS). The strengthening of easterly jet and associated wind shears during the passage of the depression is one of the causative mechanisms for exciting the IGW. A well-established radar method is used to identify the tropopause and to study its response to the propagating atmospheric disturbances. The significance of the present study lies in showing the response of tropopause height to the IGW during tropical depression for the first time, which will have implications in stratosphere–troposphere exchange processes.  相似文献   

17.
The observations of the upper mesosphere region (∼95 km altitude) in the period of 27–30 March 2006 using mesopause oxygen rotational temperature imager (MORTI) at Almaty (43.03°N, 76.58°E) are presented in this report to illustrate the mesosphere response to the solar eclipse (SE) event, which occurred on 29 March 2006. The nighttime volume emission rates and rotational temperatures, obtained from MORTI measurements, show appreciable differences in the pattern of wave-like oscillations observed during the period of interest. These oscillations are possibly due to the SE. Using a periodogram method the spectra of the observed wave-like oscillations, observed in the mesosphere, are examined. A physical mechanism is proposed to interpret the effects observed in terms of the mesosphere response to the total SE.  相似文献   

18.
Semidiurnal tidal features have been examined in the Mesosphere and Lower Thermosphere (MLT) from the long-term (2002–2007) meteor wind data over Maui (20.75°N, 156.43°W). Amplitude and phase obtained from the harmonic analysis exhibit large day to day variability. Mean amplitude obtained from the monthly mean data over the observation period is found to vary within ~8–28 m/s and 10–32 m/s for the zonal and meridional winds, respectively. The amplitude has revealed clear semiannual oscillation (SAO) pattern with maxima during solstices and altitudinal growth in both wind components. Significant resemblance in its variability with other observations carried out from the low latitude sites all over the globe is obtained. Vertical wavelength estimated from the phase gradients exposes large values (>90 km) in all seasons. Contribution of the semidiurnal tide to the total tidal variability in the MLT is found to vary over wide range throughout the year with generally higher influence during winter season over diurnal and terdiurnal components.  相似文献   

19.
Wind and temperature profiles measured routinely by rockets at Ryori (Japan) since 1970 are analysed to quantify interannual changes that occur in the upper stratosphere. The analysis involved using a least square fitting of the data with a multiparametric adaptative model composed of a linear combination of some functions that represent the main expected climate forcing responses of the stratosphere. These functions are seasonal cycles, solar activity changes, stratospheric optical depth induced by volcanic aerosols, equatorial wind oscillations and a possible linear trend. Step functions are also included in the analyses to take into account instrumental changes. Results reveal a small change for wind data series above 45 km when new corrections were introduced to take into account instrumental changes. However, no significant change of the mean is noted for temperature even after sondes were improved. While wind series reveal no significant trends, a significant cooling of 2.0 to 2.5 K/decade is observed in the mid upper stratosphere using this analysis method. This cooling is more than double the cooling predicted by models by a factor of more than two. In winter, it may be noted that the amplitude of the atmospheric response is enhanced. This is probably caused by the larger ozone depletion and/or by some dynamical feedback effects. In winter, cooling tends to be smaller around 40–45 km (in fact a warming trend is observed in December) as already observed in other data sets and simulated by models. Although the winter response to volcanic aerosols is in good agreement with numerical simulations, the solar signature is of the opposite sign to that expected. This is not understood, but it has already been observed with other data sets.  相似文献   

20.
A critical factor controlling changes in the acidity of coastal waters is the alkalinity of the water. Concentrations of alkalinity are determined by supply from rivers and by in situ processes such as biological production and denitrification. A 2-year study based on 15 cruises in Liverpool Bay followed the seasonal cycles of changing concentrations of total alkalinity (TA) and total dissolved inorganic carbon (DIC) in relation to changes caused by the annual cycle of biological production during the mixing of river water into the Bay. Consistent annual cycles in concentrations of nutrients, TA and DIC were observed in both years. At a salinity of 31.5, the locus of primary production during the spring bloom, concentrations of NO x decreased by 25 ± 4 μmol kg−1 and DIC by 106 ± 16 μmol kg−1. Observed changes in TA were consistent with the uptake of protons during primary biological production. Concentrations of TA increased by 33 ± 8 μmol kg−1 (2009) and 33 ± 15 μmol kg−1 (2010). The impact of changes in organic matter on the measured TA appears likely to be small in this area. Thomas et al. (2009) suggested that denitrification may enhance the CO2 uptake of the North Sea by 25%, in contrast we find that although denitrification is a significant process in itself, it does not increase concentrations of TA relative to those of DIC and so does not increase buffer capacity and potential uptake of CO2 into shelf seawaters. For Liverpool Bay historical data suggest that higher concentrations of TA during periods of low flow are likely to contribute in part to the observed change in TA between winter and summer but the appropriate pattern cannot be identified in recent low-frequency river data. On a wider scale, data for the rivers Mersey, Rhine, Elbe and Weser show that patterns of seasonal change in concentrations of TA in river inputs differ between river systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号