首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper I will review some recent developments in the field of circumstellar shocks, particularly as they relate to colliding stellar winds. I shall review the basic physics of colliding winds and shocks, and discuss recent developments in hydrodynamic modelling of colliding winds. I shall also report on recent X-ray observations of shock emission in Wolf-Rayet binary systems where high resolution X-ray spectra of colliding wind shock emission is being seen. I will discuss the occurrence of colliding winds to such diverse systems as Wolf-Rayet binaries, pre-main sequence binaries, symbiotic stars as well as the Galactic center object IRS 7, where recent results on interacting winds are yielded insight into the structure of winds in general.  相似文献   

2.
A number of strong infrared forbidden lines have been observed in several evolved Wolf–Rayet (WR) star winds, and these are important for deriving metal abundances and testing stellar evolution models. In addition, because these optically thin lines form at large radius in the wind, their resolved profiles carry an imprint of the asymptotic structure of the wind flow. This work presents model forbidden line profile shapes formed in axisymmetric winds. It is well known that an optically thin emission line formed in a spherical wind expanding at constant velocity yields a flat-topped emission profile shape. Simulated forbidden lines are produced for a model stellar wind with an axisymmetric density distribution that treats the latitudinal ionization self-consistently and examines the influence of the ion stage on the profile shape. The resulting line profiles are symmetric about line centre. Within a given atomic species, profile shapes can vary between centrally peaked, doubly peaked, and approximately flat-topped in appearance depending on the ion stage (relative to the dominant ion) and viewing inclination. Although application to WR star winds is emphasized, the concepts are also relevant to other classes of hot stars such as luminous blue variables and Be/B[e] stars.  相似文献   

3.
We investigate the launching of outflows from the disc–magnetosphere boundary of slowly and rapidly rotating magnetized stars using axisymmetric and exploratory 3D magnetohydrodynamic simulations. We find long-lasting outflows in the following cases. (1) In the case of slowly rotating stars , a new type of outflow, a conical wind , is found and studied in simulations. The conical winds appear in cases where the magnetic flux of the star is bunched up by the disc into an X-type configuration. The winds have the shape of a thin conical shell with a half-opening angle  θ∼ 30°–40°  . About 10–30 per cent of the disc matter flows from the inner disc into the conical winds. The conical winds may be responsible for episodic as well as long-lasting outflows in different types of stars. There is also a low-density, higher velocity component (a jet) in the region inside the conical wind. (2) In the case of rapidly rotating stars (the 'propeller regime'), a two-component outflow is observed. One component is similar to the conical winds. A significant fraction of the disc matter may be ejected into the winds. The second component is a high-velocity, low-density magnetically dominated axial jet where matter flows along the opened polar field lines of the star. The jet has a mass flux of about 10 per cent of that of the conical wind, but its energy flux (dominantly magnetic) can be larger than the energy flux of the conical wind. The jet's angular momentum flux (also dominantly magnetic) causes the star to spin down rapidly. Propeller-driven outflows may be responsible for the jets in protostars and for their rapid spin-down. The jet is collimated by the magnetic force while the conical winds are only weakly collimated in the simulation region. Exploratory 3D simulations show that conical winds are axisymmetric about the rotational axis (of the star and the disc), even when the dipole field of the star is significantly misaligned.  相似文献   

4.
We consider the distortion in the cosmic microwave background (CMB) resulting from galactic winds at high redshift. Winds outflowing from galaxies have been hypothesized to be possible sources of metals in the intergalactic medium, which is known to have been enriched to 10−2.5 Z at z ∼3. We model these winds as functions of mass of the parent galaxy and redshift, assuming that they activate at a common initial redshift, z in, and calculate the mean y -distortion and the angular power spectrum of the distortion in the CMB. We find that the thermal Sunyaev–Zel'dovich (SZ) effect resulting from the winds is consistent with previous estimates. The distortion arising from the kinetic SZ (kSZ) effect is, however, found to be more important than the thermal SZ (tSZ) effect. We find that the distortion resulting from galactic winds is an important contribution to the power spectrum of distortion at very small angular scales ( l ∼104). We also find that the power spectrum resulting from clustering dominates the Poisson power spectrum for l ≤(4–5)×105. We show explicitly how the combined power spectrum from wind dominates over that of clusters at 217 GHz, relevant for PLANCK . We also show how these constraints change when the efficiency of the winds is varied.  相似文献   

5.
In this paper we investigate the dynamical behaviour of radiation-driven winds, specifically winds that arise when Compton scattering transfers momentum from the radiation field to the gas flow. Such winds occur during strong X-ray bursts from slowly accreting neutron stars, and also may be driven from the inner regions of a black hole or neutron star accretion disc when the mass transfer rate is very high. By linearizing the radiation hydrodynamic equations around steady spherical outflow, we evaluate the time-dependent response of these winds to perturbations introduced at their inner boundaries. We find that although radiation-driven winds are generally stable, they act as mechanical filters that should produce quasi-periodic oscillations or peaked noise in their radiation output when perturbations force them stochastically. This behaviour may underlie the photospheric oscillations observed in some strong Type I X-ray bursts.  相似文献   

6.
We present a new model for the chemical evolution of elliptical galaxies taking into account SN feedback, detailed nucleosynthesis and galactic winds. We discuss the effect of galactic winds on the chemical enrichment of the ICM and compute the energy per particle injected by the galaxies into the ICM. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
We performed cosmological, magnetohydrodynamical simulations to follow the evolution of magnetic fields in galaxy clusters, exploring the possibility that the origin of the magnetic seed fields is galactic outflows during the starburst phase of galactic evolution. To do this, we coupled a semi-analytical model for magnetized galactic winds as suggested by Bertone, Vogt & Enßlin to our cosmological simulation. We find that the strength and structure of magnetic fields observed in galaxy clusters are well reproduced for a wide range of model parameters for the magnetized, galactic winds and do only weakly depend on the exact magnetic structure within the assumed galactic outflows. Although the evolution of a primordial magnetic seed field shows no significant differences to that of galaxy cluster fields from previous studies, we find that the magnetic field pollution in the diffuse medium within filaments is below the level predicted by scenarios with pure primordial magnetic seed field. We therefore conclude that magnetized galactic outflows and their subsequent evolution within the intracluster medium can fully account for the observed magnetic fields in galaxy clusters. Our findings also suggest that measuring cosmological magnetic fields in low-density environments such as filaments is much more useful than observing cluster magnetic fields to infer their possible origin.  相似文献   

8.
We present a semi-analytic treatment of galactic winds within high-resolution, large-scale cosmological N -body simulations of a Λ cold dark matter (ΛCDM) universe. The evolution of winds is investigated by following the expansion of supernova-driven superbubbles around the several hundred thousand galaxies that form in an approximately spherical region of space with diameter 52  h −1 Mpc and mean density close to the mean density of the universe. We focus our attention on the impact of winds on the diffuse intergalactic medium. Initial conditions for mass loss at the base of winds are taken from Shu, Mo & Mao. Results are presented for the volume filling factor and the mass fraction of the intergalactic medium (IGM) affected by winds, and their dependence on the model parameters is carefully investigated. The mass-loading efficiency of bubbles is a key factor to determine the evolution of winds and their global impact on the IGM: the higher the mass loading, the later the IGM is enriched with metals. Galaxies with 109 < M < 1010 M are responsible for most of the metals ejected into the IGM at   z = 3  , while galaxies with   M < 109 M   give a non-negligible contribution only at higher redshifts, when larger galaxies have not yet assembled. We find a higher mean IGM metallicity than Lyα forest observations suggest, and we argue that the discrepancy may be explained by the high temperatures of a large fraction of the metals in winds, which may not leave detectable imprints in absorption in the Lyα forest.  相似文献   

9.
In an effort to understand the evolution of N, O and He abundances in gas-rich dwarf galaxies, we investigate the dispersion and mixing of supernova ejecta in relation to H  ii region evolution and develop a numerical model of chemical evolution based on a double-bursting mode of star formation (with an interval of the order of 3×107 yr between bursts of a pair) which has been designed to account for the existence of significant scatter in the N/O–O/H relation.
The dependence of the abundances on gas fraction is explored on the basis of this and similar models, in combination with various hypotheses concerning inflow and selective and non-selective outflow. The gas fractions are uncertain within wide limits for blue compact galaxies, but are more well defined for some dwarf irregulars. Selective winds do not give a good fit to N/O, while closed models and models with non-selective winds with or without inflow are all found to be viable.  相似文献   

10.
The calculation of mass outflow rates of active galactic nuclei (AGN) winds is of great importance in understanding the role that such winds play in AGN-galaxy feedback processes. The mass outflow rates are, however, difficult to estimate since the volume filling factors of the winds are unknown. In this paper, we use constraints imposed by the observed radio emission to obtain upper limits to the volume filling factors of wind components in certain nearby AGN. We do this by predicting the 1.4 GHz radio flux densities emitted by those components, assuming a uniform wind, and then comparing these with the observed flux densities for each AGN at this frequency. We find that the upper limits to the volume filling factors are in the range of  10−4–0.5  .  相似文献   

11.
We present high-resolution observations made with the Very Large Array (VLA) in its A configuration at frequencies between 5 and 43 GHz of a sample of five massive young stellar objects (YSOs): Lk Hα101, NGC 2024-IRS2, S106-IR, W75N and S140-IRS1. The resolution varied from 0.04 arcsec (at 43 GHz) to 0.5 arcsec (at 5 GHz), corresponding to a linear resolution as high as 17 au for our nearest source. A MERLIN observation of S106-IR at 23 GHz with 0.03-arcsec resolution is also presented. S106-IR and S140-IRS1 are elongated at 43 GHz perpendicular to their large-scale bipolar outflows. This confirms the equatorial wind picture for these sources seen previously in MERLIN 5-GHz observations. The other sources are marginally resolved at 43 GHz. The spectral indices we derive for the sources in our sample range from +0.2 to +0.8, generally consistent with ionized stellar winds. We have modelled our sources as uniform, isothermal spherical winds, with Lk Hα101 and NGC 2024-IRS2 yielding the best fits. However, in all cases our fits give wind temperatures of only 2000–5000 K, much less than the effective temperatures of main-sequence stars of the same luminosity, a result which is likely due to the clumpy nature of the winds.  相似文献   

12.
A search for evidence of colliding winds is undertaken among the four certain Magellanic Cloud WC/WO spectroscopic binaries found in the companion Paper I, as well as among two Galactic WC/WO binaries of very similar subtype. Two methods of analysis, which allow the determination of orbital inclination and parameters relating to the shock cone from spectroscopic studies of colliding winds, are attempted. In the first method, Lührs' spectroscopic model is fitted to the moderately strong C  iii 5696-Å excess line emission arising in the shock cone for the stars Br22 and WR 9. The four other systems show only very weak C  iii 5696-Å emission. Lührs' model follows well the mean displacement of the line in velocity space, but is unable to reproduce details in the line profile and fails to give a reliable estimate of the orbital inclination. In the second method, an alternative attempt is also made to fit the variation of more global quantities, full width at half-maximum and radial velocity of the excess emission, with phase. This method also gives satisfactory results in a qualitative way, but shows numerical degeneracy with orbital inclination. Colliding wind effects on the very strong C  iv 5808-Å Wolf–Rayet emission line, present in all six binaries, are also found to behave qualitatively as expected. After allowing for line enhancement in colliding wind binaries, it now appears that all Magellanic Cloud WC/WO stars occupy a very narrow range in spectral subclass: WC4/WO3.  相似文献   

13.
The presence of heated circumstellar dust around WC type Wolf-Rayet stars requires the episodic or persistent condensation of carbon grains in their stellar winds. In order to survive in the stars' strong ultraviolet radiation fields, the grains must be located at least 100AU from the stellar surfaces. The densities in isotropic winds at such large distances are too low to allow grain growth and anisotropies such as clumps, disks or wind-collision wakes in colliding-wind binary systems are required to provide grain nurseries. Observational evidence for such features in grain-forming W-R stars is examined.  相似文献   

14.
We describe an efficient method of calculating the radiation pressure resulting from spectral lines, including all the terms in the velocity gradient tensor. We apply this method to calculate the two-dimensional, time-dependent structure of winds from luminous discs. Qualitative features of our new models are very similar to those we calculated including only the dominant terms in the tensor. In particular, we find that models which displayed unsteady behaviour in our earlier paper are also unsteady with the new method, and gross properties of the winds, such as mass-loss rate and characteristic velocity, are not changed by the more accurate approach. The largest change caused by the new method is in the disc-wind opening angle: winds driven only by the disc radiation are more polar with the new method, whilst winds driven by the disc and central object radiation are typically more equatorial. In the closing discussion, we provide further insight into the way the geometry of the radiation field and consequent flow determine the time properties of the flow.  相似文献   

15.
It is expected that specific globular clusters (GCs) can contain up to a hundred of millisecond pulsars. These pulsars can accelerate leptons at the shock waves originated in collisions of the pulsar winds and/or inside the pulsar magnetospheres. Energetic leptons diffuse gradually through the GC Comptonizing stellar and microwave background radiation. We calculate the GeV–TeV γ-ray spectra for different models of injection of leptons and parameters of the GCs assuming reasonable, of the order of 1 per cent, efficiency of energy conversion from the pulsar winds into the relativistic leptons. It is concluded that leptons accelerated in the GC cores should produce well localized γ-ray sources which are concentric with these GCs. The results are shown for four specific GCs (47 Tuc, Ter 5, M13 and M15), in which significant population of millisecond pulsars have been already discovered. We argue that the best candidates, which might be potentially detected by the present Cherenkov telescopes and the planned satellite telescopes (AGILE, GLAST), are 47 Tuc on the Southern hemisphere, and M13 on the Northern hemisphere. We conclude that detection (or non-detection) of GeV–TeV γ-ray emission from GCs by these instruments put important constraints on the models of acceleration of leptons by millisecond pulsars.  相似文献   

16.
We investigate the symbiotic star BI Crucis (BI Cru) through a comprehensive and self-consistent analysis of the spectra emitted in three different epochs: 1960s, 1970s and late 1980s. In particular, we would like to find out the physical conditions in the shocked nebula and in the dust shells, as well as their location within the symbiotic system, by exploiting both photometric and spectroscopic data from radio to UV. We suggest a model which, on the basis of optical imaging, emission-line ratios and spectral energy distribution profile, is able to account for collision of the winds, formation of lobes and jets by accretion onto the white dwarf (WD), as well as for the interaction of the blast wave from a past, unrecorded outburst with the interstellar medium (ISM). We have found that the spectra observed throughout the years show the marks of the different processes at work within BI Cru, perhaps signatures of a post-outburst evolution. We then call for new infrared and millimeter observations, potentially able to resolve the inner structure of the symbiotic nebula.  相似文献   

17.
Galactic winds and mass outflows are observed both in nearby starburst galaxies and in high-redshift star-forming galaxies. We develop a simple analytic model to understand the observed superwind phenomenon with a discussion of the model uncertainties. Our model is built upon the model of McKee & Ostriker for the interstellar medium. It allows one to predict how properties of a superwind, such as wind velocity and mass outflow rate, are related to properties of its starforming host galaxy, such as size, gas density and star formation rate. The model predicts a threshold of star formation rate density for the generation of observable galactic winds. Galaxies with more concentrated star formation activities produce superwinds with higher velocities. The predicted mass outflow rates are comparable to (or slightly larger than) the corresponding star formation rates. We apply our model to both local starburst galaxies and high-redshift Lyman break galaxies, and find its predictions to be in good agreement with current observations. Our model is simple and so can be easily incorporated into numerical simulations and semi-analytical models of galaxy formation.  相似文献   

18.
We review existing ROSAT detections of single Galactic Wolf–Rayet (WR) stars and develop wind models to interpret the X-ray emission. The ROSAT data, consisting of bandpass detections from the ROSAT All-Sky Survey (RASS) and some pointed observations, exhibit no correlations of the WR X-ray luminosity ( L X) with any star or wind parameters of interest (e.g. bolometric luminosity, mass-loss rate or wind kinetic energy), although the dispersion in the measurements is quite large. The lack of correlation between X-ray luminosity and wind parameters among the WR stars is unlike that of their progenitors, the O stars, which show trends with such parameters. In this paper we seek to (i) test by how much the X-ray properties of the WR stars differ from the O stars and (ii) place limits on the temperature T X and filling factor f X of the X-ray-emitting gas in the WR winds. Adopting empirically derived relationships for T X and f X from O-star winds, the predicted X-ray emission from WR stars is much smaller than observed with ROSAT . Abandoning the T X relation from O stars, we maximize the cooling from a single-temperature hot gas to derive lower limits for the filling factors in WR winds. Although these filling factors are consistently found to be an order of magnitude greater than those for O stars, we find that the data are consistent (albeit the data are noisy) with a trend of in WR stars, as is also the case for O stars.  相似文献   

19.
We present new radio and optical observations of the colliding-wind system WR 146 aimed at understanding the nature of the companion to the Wolf–Rayet (WR) star and the collision of their winds. The radio observations reveal emission from three components: the WR stellar wind, the non-thermal wind–wind interaction region and, for the first time, the stellar wind of the OB companion. This provides the unique possibility of determining the mass-loss rate and terminal wind velocity ratios of the two winds, independent of distance. Respectively, these ratios are 0.20±0.06 and 0.56±0.17 for the OB-companion star relative to the WR star. A new optical spectrum indicates that the system is more luminous than had been believed previously. We deduce that the 'companion' cannot be a single, low-luminosity O8 star as suggested previously, but is either a high-luminosity O8 star, or possibly an O8+WC binary system.  相似文献   

20.
The dynamics of the wind–wind collision in massive stellar binaries are investigated using 3D hydrodynamical models which incorporate gravity, the driving of the winds, the orbital motion of the stars and radiative cooling of the shocked plasma. In this first paper, we restrict our study to main-sequence O+O binaries. The nature of the wind–wind collision region is highly dependent on the degree of cooling of the shocked plasma, and the ratio of the flow time-scale of the shocked plasma to the orbital time-scale. The pre-shock wind speeds are lower in close systems as the winds collide prior to their acceleration to terminal speeds. Radiative inhibition may also reduce the pre-shock wind speeds. Together, these effects can lead to rapid cooling of the post-shock gas. Radiative inhibition is less important in wider systems, where the winds are accelerated to higher speeds before they collide, and the resulting collision region can be largely adiabatic. In systems with eccentric orbits, cold gas formed during periastron passage can persist even at apastron, before being ablated and mixed into its surroundings and/or accelerated out of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号