首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The potential for metal release associated with CO2 leakage from underground storage formations into shallow aquifers is an important consideration in assessment of risk associated with CO2 sequestration. Metal release can be driven by acidification of groundwaters caused by dissolution of CO2 and subsequent dissociation of carbonic acid. Thus, acidity is considered one of the main drivers for water quality degradation when evaluating potential impacts of CO2 leakage. Dissolution of carbonate minerals buffers the increased acidity. Thus, it is generally thought that carbonate aquifers will be less impacted by CO2 leakage than non-carbonate aquifers due to their high buffering potential. However, dissolution of carbonate minerals can also release trace metals, often present as impurities in the carbonate crystal structure, into solution. The impact of the release of trace metals through this mechanism on water quality remains relatively unknown. In a previous study we demonstrated that calcite dissolution contributed more metal release into solution than sulfide dissolution or desorption when limestone samples were dissolved in elevated CO2 conditions. The study presented in this paper expanded our work to dolomite formations and details a thorough investigation on the role of mineral composition and mechanisms on trace element release in the presence of CO2. Detailed characterization of samples from dolomite formations demonstrated stronger associations of metal releases with dissolution of carbonate mineral phases relative to sulfide minerals or surface sorption sites. Aqueous concentrations of Sr2+, CO2+, Mn2+, Ni2+, Tl+, and Zn2+ increased when these dolomite rocks were exposed to elevated concentrations of CO2. The aqueous concentrations of these metals correlate to aqueous concentrations of Ca2+ throughout the experiments. All of the experimental evidence points to carbonate minerals as the dominant source of metals from these dolomite rocks to solution under experimental CO2 leakage conditions. Aqueous concentrations of Ca2+ and Mg2+ predicted from numerical simulation of kinetic dolomite dissolution match those observed in the experiments when the surface area is three to five orders of magnitude lower than the surface area of the samples measured by gas adsorption.  相似文献   

2.
《Geochimica et cosmochimica acta》1999,63(13-14):1955-1967
The investigation of the Cu2+ uptake by the calcium carbonate minerals vaterite and calcite with continuous wave and pulse electron paramagnetic resonance (EPR) yields information on a molecular scale about the relevant complexation reactions at the mineral–water interface. The structural assignment is based on changes in the coordination geometry of the copper complexes. Magnetic interactions of the unpaired Cu2+ electron with nuclei of 13C-labeled carbonate ligands and protons from water or hydroxyl ligands in the first and second coordination spheres of the cation are detected by pulse EPR techniques. Our results show that the Cu2+ ions are rapidly dehydrated upon adsorption on the mineral surface. The strong surface binding is due to monodentate coordination to three or four carbonate surface ions, comparable to chelate complexation in solution. The formation of square-planar or square-pyramidal copper complexes at exposed surface sites like kinks and steps yields a convincing explanation for the inhibition of calcium carbonate growth and dissolution. Upon recrystallization the Cu2+ ions are integrated into the calcite lattice where they exhibit a dynamic Jahn–Teller effect. The resulting local lattice distortions are expected to destabilize the CuxCa(1−x)CO3(s) solid solution. Our results support the concept of a dynamic calcium carbonate surface, covered by a thin, structured surface layer. The detailed structural information obtained for Cu2+ provides a better understanding of the interaction of other metal ions with calcium carbonate minerals.  相似文献   

3.
In this study, the speciation of Zn2+, Pb2+, and Cu2+ ions sorbed at the calcite surface was monitored during a 2.5-year reaction period, using extended X-ray absorption spectroscopy to characterize metal speciation on the molecular scale. Experiments were performed using pre-equilibrated calcite-water suspensions of pH 8.3, at metal concentrations below the solubility of metal hydroxide and carbonate precipitates, and at constant metal surface loadings. The EXAFS results indicate that all three metals remained coordinated at the calcite surface as inner-sphere adsorption complexes during the 2.5-year ageing period, with no evidence to suggest slow formation of dilute metal-calcite solid solutions under the reaction conditions employed. All three divalent metals were found to form non-octahedral complexes upon coordination to the calcite surface, with Zn2+ adsorbing as a tetrahedral complex, Cu2+ as a Jahn-Teller distorted octahedral complex, and Pb2+ coordinating as a trigonal- or square-pyramidal surface complex. The non-octahedral configurations of these surface complexes may have hindered metal transfer from the calcite surface into the bulk, where Ca2+ is in octahedral coordination with respect to first-shell O. The use of pre-equilibrated calcite suspensions, with no net calcite dissolution or precipitation, likely prevented metal incorporation into the lattice as a result of surface recrystallization. The results from this study imply that ageing alone does not increase the stability of Zn2+, Pb2+, and Cu2+ partitioning to calcite if equilibrium with the solution is maintained during reaction; under these conditions, these metals are likely to remain available for exchange even after extended sorption times.  相似文献   

4.
The adsorption of copper ions on synthetic sphalerites of various iron contents was measured using a radiotracer technique. The correlation of Cu2+ ions adsorption with the pH of solution, the iron content of the solid and the degree of surface oxidation of synthetic sphalerite were determined. The experiments proved that oxidation of the surface of the sphalerite samples caused a decrease in Cu2+ ions sorption with the exception of samples of iron containing sphalerite. Acidity of the solution affected the adsorption of Cu2+ ions by deoxidized sphalerite surfaces, whereas the adsorption on oxidized surfaces did not depend on the pH.  相似文献   

5.
The impacts of common ions on the adsorption of heavy metal   总被引:1,自引:0,他引:1  
Researches on the impact of common ions onto sediments are of great importance for the study of the heavy metal adsorption mechanisms. Considering the surface sediments from the relatively clean reach in the Baotou section of the Yellow River as the adsorbent, this work presents the impacts of common ions (Na+, Mg2+, K+, Ca2+, Cl, SO4 2−, and NH4 +) on heavy metals (Cu2+, Zn2+, Cd2+, and Pb2+) adsorption. The experimental results reveal that the adsorptive capacities of the heavy metals are controlled by different adsorption mechanisms in different ion concentration ranges. With the increase of the ionic strength, the adsorption of the heavy metals increases for the compression of the electric double layer, whereas decreases for the decreasing of the ionic activities of the heavy metals. The competitive adsorption and complexations between the heavy metals and common ions are also important factors controlling the heavy metal adsorption. According to the experimental results and the real concentration of common ions in the Baotou section of the Yellow River, the increase of the concentrations of Na+, Mg2+, K+, and Ca2+ would cause the increase of Zn2+ adsorption and reduce the Zn pollution. The NH4 + from the industrial discharge of the tributaries has a strong impact on the heavy metal adsorption.  相似文献   

6.
Conditional surface binding constants and complexation capacities for Zn, Pb, Cd, and Cu were determined from surface titration experiments of heterogeneous natural aquatic particulate matter of different origin and composition. Metals and particles were evaluated in naturally occurring concentration ranges in river water.The adsorption of trace metals can be adequately described with a single conditional binding constant over a wide range of metal : particle ratios. Binding constants for aquatic particles at pH 8.0 are remarkably independent from particle composition and are specific for each metal: log Kads Zn = 8.39, log Kads Pb = 9.67, log Kads Cd = 8.61, log ads Cu = 9.84. From competition experiments with Ca and Pb we extracted a sorption coefficient for Ca of log Kads Ca = 2.5 (pH 8.0). Maximum surface binding capacities for all metal ions were found for particles containing high fractions of Mn-oxides which are associated with large specific surface areas. Generally, we found sorption capacities to decrease in the sequence Cu Pb, Zn > Cd.The experiments suggest that the conditional surface binding constants and complexation capacities are applicable to model trace metal adsorption in the concentration ranges of natural waters under conditions similar to the experiments. Results also imply that the chemical nature of particle surface sites is rather uniform in the intermediate concentration range or that the array of binding sites averages out differences in sorption strength over the prevailing concentration range of metal ions, respectively.  相似文献   

7.
Adsorption of divalent metal ions, including Cu2+, Pb2+, Zn2+, Cd2+ and Ni2+, on quartz surface was measured as a function of metal ion concentration at 30°C under conditions of solution pH= 6. 5 and ion strength I = 0. 1mol/L. Results of the experimental measurements can be described very well by adsorption isotherm equations of Freudlich. The correlation coefficients (r) of adsorption isotherm lines are > 0. 96. Moreover, the experimental data were interpreted on the basis of surface complexation model. The experimental results showed that the monodentate-coordinated metal ion surface complex species (SOM+) are predominant over the bidentate-coordinated metal ion surface complex species [(SO)2M] formed only by the ions Cu2+, Zn2+ and Ni2+. And the relevant apparent surface complexation constants are lgKM = 2.2–3.3 in order of KCd≥KPb > KZn > KNi≥KCu, and lgβM = 5.9-6.8 in order of βNi > βZn > βCu. Therefore, the reactive ability of the ions onto mineral surface of quartz follows the order of Cd > Pb > Zn > Ni> Cu under the above-mentioned solution conditions. The apparent surface complexation constants, influenced by the surface potential, surface species and hydrolysis of metal ions, depend mainly on the Born solvation coefficient of the metal ions. This project was financially supported by the National Natural Science Foundation of China (No. 49572091).  相似文献   

8.
研究了ZH型重金属螯合纤维对水溶液中Sr~(2+)的吸附行为,考察了pH值、纤维加入量、Sr~(2+)初始浓度、作用时间等对吸附行为的影响,并采用SEM、EDS和FTIR等现代分析测试手段探讨了ZH型重金属螯合纤维对Sr~(2+)的吸附机制。结果表明,在pH值为7.0、纤维加入量为2.0 g/L、Sr~(2+)初始质量浓度为50 mg/L的条件下,纤维对Sr~(2+)的吸附在4 h左右基本达到平衡。实验条件下ZH型重金属螯合纤维对Sr~(2+)的最大吸附量可达26.22 mg/g。等温吸附拟合结果表明,ZH型重金属螯合纤维对Sr~(2+)的吸附可能是以单分子层为主的单分子层和多分子层吸附共同作用的结果。纤维对Sr~(2+)的动力学吸附过程符合准二级动力学模型。红外光谱分析表明Sr~(2+)与纤维上—NH_2和—COOH等基团进行配位络合从而吸附在纤维表面,—CH_2—和C=CH_2等基团参与此吸附过程。能谱分析表明Sr~(2+)与纤维上Na~+和Ca~(2+)还存在着离子交换作用。  相似文献   

9.
This work is devoted to the physico-chemical study of cadmium and lead interaction with diatom-water interfaces for two marine planktonic (Thalassiosira weissflogii, TW; Skeletonema costatum, SC) and two freshwater periphytic species (Achnanthidium minutissimum, AMIN; Navicula minima, NMIN) by combining adsorption measurements with surface complexation modeling. Adsorption kinetics was studied as a function of pH and initial metal concentration in sodium nitrate solution and in culture media. Kinetic data were consistent with a two-step mechanism in which the loss of a water molecule from the inner coordination sphere of the metal is rate limiting. Reversible adsorption experiments, with 3 h of exposure to metal, were performed as a function of pH (2-9), metal concentration in solution (10−9-10−3 M), and ionic strength (10−3-1.0 M). While the shape of pH-dependent adsorption edge is similar among all four diatom species, the constant-pH adsorption isotherm and maximal binding capacities differ. Measurements of electrophoretic mobilities (μ) revealed negative surface potential for AMIN diatom, however, the absolute value of μ decreases with increase of [Pb2+]aq suggesting the metal adsorption on negative surface sites. These observations allowed us to construct a surface complexation model (SCM) for cadmium and lead binding by diatom surfaces that postulates the Constant Capacitance of the electric double layer and considers Cd and Pb complexation with mainly carboxylic and, partially, silanol groups. In the full range of investigated Cd concentration, the SCM is able to describe the concentration of adsorbed metal as a function of [Cd2+]aq without implying the presence of high affinity, low abundance sites, that are typically used to model the metal interactions with natural multi-component organic substances. At the same time, Cd fast initial reaction requires the presence of “highly reactive sites” those concentration represents only 2.5-3% of the total amount of carboxylic sites. For reversible adsorption experiments, the dominating carboxylic groups, whose concentration is allowed to vary within the uncertainty of experimental acid-base titrations, are sufficient to reproduce the metal adsorption isotherms. Results of this study strongly suggest that laboratory experiments performed in a wide range of metal to biomass ratios, represent robust and relatively simple method for assessing the distribution of metals between aqueous solution and planktonic and periphytic biomass in natural settings.  相似文献   

10.
Apparent overall equilibrium constants for the adsorption of Cd, Cu, Ni, Pb and Zn onto natural iron oxyhydroxides have been calculated from the partitioning of these trace metals in oxic lake sediments and the in situ measurement of trace metal concentrations in the associated pore waters. Such values obtained from lakes of various pH located on the Precambrian Shield, in the area of Sudbury, Ontario, are compared with equilibrium constants obtained for the adsorption of the trace metals onto iron oxyhydroxides in well-defined media.The field data are consistent with laboratory experiments reported in the literature and with theory. Both the influence of pH upon adsorption and the binding strength sequence observed for the field data agree with theory. At high sediment pH values, the partitioning of Cd, Ni and Zn between the pore waters and the natural iron oxyhydroxides is similar to those reported in the literature for the adsorption of these metals at low surface coverage onto amorphous iron oxyhydroxides in a NaNO3 medium; deviation from this simple model is however observed for Cu and Pb, presumably due to the competitive action of dissolved ligands. At low sediment pH values, the adsorption is much higher than predicted by the simple model and can be explained by the formation of ternary complexes with the iron oxyhydroxide surface.  相似文献   

11.
Adsorption of copper and zinc by oil shale   总被引:8,自引:0,他引:8  
 Oil shale is able to remove appreciable amounts of copper and zinc ions from aqueous solutions. It was noted that an increase in the adsorbent concentration with constant copper or zinc concentration resulted in greater metal removal from solution. An increase in the copper or zinc concentration with a constant sorbent concentration resulted in higher metal loading per unit weight of sorbent. For both metals, copper and zinc, equilibrium was attained after 24-h contact time. Increase in the initial pH or temperature of the metal solution resulted in an increase in the metal uptake per unit weight of the sorbent. Freundlich isotherm model was found to be applicable for the experimental data of Cu2+ and Zn2+. The results showed that oil shale could be used for the adsorption of the Cu2+ and Zn2+ with higher affinity toward Zn2+ ions. Addition of sodium salt to the metal solution influenced copper removal positively, but inhibited zinc removal. Received: 3 January 2000 · Accepted: 27 June 2000  相似文献   

12.
土壤矿物对金属离子的临界吸附量   总被引:3,自引:0,他引:3  
本文从矿物表面羟基与溶液中金属离子反应的化学平衡方程出发,得到金属离子在矿物表面单基配位和双基配位吸附的覆盖度计算公式,并据此探讨了覆盖度的影响因素和变化规律,指出覆盖度随pH变化曲线拐点的实际意义。假设土壤和地表水达到平衡,参比水质标准,提出了矿物吸附金属离子的临界覆盖度公式,并初步探讨了石英吸附Cd2 的临界覆盖度-pH曲线,进而推导出土壤矿物对金属离子的临界吸附量公式。  相似文献   

13.
Laboratory studies of the weathering of sulphide ores have centred around using samples of ore as electrodes and accelerating the weathering processes by passing an electric current. The results of reacting 19 different ore types under varying conditions are compared with data from co-precipitating, Fe and Cu, Fe and Ni, Fe and Zn, Fe and Co, and Fe and Pb, over a pH range from 2 to 11. An electrochemical cell specially designed to fit onto an optical microscope has allowed direct observation of the changes in sulphide mineral grains as they are anodically weathered.These experiments are used to demonstrate that the pH of the environment during the weathering of sulphides to sulphates is the most important parameter in determining the initial gossan minerals that form. Factors that will cause the pH to be high are buffering from gangue and wallrock minerals, low iron content in the sulphide and a high metal to sulphur ratio in the sulphide. A low pH is favoured by the converse, namely a sulphide sufficiently massive to override the buffering effects of the wallrocks and any gangue minerals present, a high iron content in the sulphide and a low metal to sulphur ratio in the sulphide.Two mechanisms of iron hydrolysis dominate the weathering processes where iron is a major metal being released from a sulphide.
1. (1) The high pH process. Where there is sufficient buffering for the pH to remain at or above 7, most of the base metals including ferrous iron will be hydrolysed and pyroaurite type of minerals form for Ni, Zn and Co, while mixed Fe-Cu hydroxycarbonates and hydroxysulphates form for Cu, and mixed iron lead hydrocarbonates form for Pb. The iron is located in these initial compounds as a green rust where it is effectively bound as ferrous hydroxide. Subsequent oxidation of this hydroxide produces no further acid. 4Fe(OH)2 + O2 + 2H20 → 4Fe(OH)3
2. (2) The low pH process. Where the buffering is insufficient and the pH is below 7, even though some of the ferrous iron will have precipitated as an equivalent to Fe(OH)2, the solubility is such that sufficient Fe2+ will remain in solution so that further oxidation will produce acid. 4Fe2+ + O2 + 1OH2O → Fe(OH)3 + 8H+ This acid will bring more of the Fe2+ into solution to create more acid and the pH will gradually fall even further, so that the gossan forming environment will be at a pH less than 5 and may be as low as 3. At these low pH values, the base metals are soluble and not prone to co-precipitation or adsorption with the gossan minerals. Only elements present in solution as anions, such as Se, As, Mo and Sb, are likely to be bound into gossans forming at low pH.
The results from weathering tests carried out on gossan minerals formed at higher pH show that these minerals are reasonably stable if treated with solutions that have a pH above 7, but they can break down if treated with a solution of pH 5. Thus they could be expected to be leached by rain water saturated with CO2.When investigating a likely gossan, all aspects — the iron oxides, the silicates, the carbonates and penetrations into the footwall and hanging wall — should be examined carefully, being ever mindful of the effect that pH would have had during the formation and reworking of the minerals. The composition of gossan minerals, their adsorption properties, the solubilities of metal ions, the mechanisms of Fe precipitation, the co-precipitation of other metals with Fe, the stability of carbonates and the binding of humic materials are all pH dependent in the same way. At high pH, metals are immobilized; at low pH, they tend to be in solution.  相似文献   

14.
The limitation of plant growth in the polluted mediums can be used as a factor to determine of plant tolerance and the toxic effect of these mediums. In this work, the effect of Pb2+, Cd2+, Ni2+and Znsu2+ (individually) on Azolla filiculoides growth in the aqueous solution and using this method to water post treatment were studied. During 15 days the biomass the fresh Azolla with initial mass of 20 g was grown on the nutrient solution containing these metal ions, each in a concentration 4 mg/l. The presence of these ions, caused about 25%, 42%, 31% and 17% inhibition of biomass growth, respectively, in comparison to Azolla control weight which had not heavy metals. The water salinity of 1, 2 and 4 g. NaCl/l decreased the removal of these heavy metals about 4–7%, 20–24% and 40–55%, respectively. The addition of total dissolved solids (TDS) from 50 to 300 ppm. (as CaCO3) into the samples of containing heavy metals increased Azolla growth, but decreased the control Azolla growth.  相似文献   

15.
Readily dispersible clay is the part of the clay fraction in soils that potentially disperses in water when a small amount of mechanical energy is applied to soil. Column and batch experiments were conducted to identify the effect of readily dispersible clay on the mobility of some metal ions in a disturbed soil sample. The clay fraction (<0.002 mm) was separated from an alkaline Vertisol from the Nile River Delta. X-ray diffraction technique was used to identify minerals present in the clay fraction. Clay suspensions and deionized H2O solutions of Cd2+, Cu2+, and Zn2+ were prepared and used as influents in soil columns. Adsorption capability of the studied soil among the three metal ions was investigated. The results showed high adsorption capacity of Cd2+, Cu2+, but not Zn2+ for the studied soil. Cu2+ was the highest adsorbed metal by soil and its sorption increased at small equilibrium concentrations compared with Cd2+ and Zn2+. For the three studied metal ions, Langmuir model represented the best fit to the adsorption data. The concentration of Zn2+ and Cd2+ in leachates increased as the leaching solution volume increased, while Cu2+ showed a homogeneous distribution throughout the soil column. According to DTPA extractable metals, Zn2+ was appeared at greater depths than Cd2+, while Cu2+ had homogeneous distribution through the soil column.  相似文献   

16.
Brucite (Mg(OH)2) dissolution rate was measured at 25°C in a mixed-flow reactor at various pH (5 to 11) and ionic strengths (0.01 to 0.03 M) as a function of the concentration of 15 organic and 5 inorganic ligands and 8 divalent metals. At neutral and weakly alkaline pH, the dissolution is promoted by the addition of the following ligands ranked by decreasing effectiveness: EDTA ≥ H2PO4 > catechol ≥ HCO3 > ascorbate > citrate > oxalate > acetate ∼ lactate and it is inhibited by boric acid. At pH >10.5, it decreases in the presence of PO43−, CO32−, F, oxine, salicylate, lactate, acetate, 4-hydroxybenzoate, SO42− and B(OH)4 with orthophosphate and borate being the strongest and the weakest inhibitor, respectively. Xylose (up to 0.1 M), glycine (up to 0.05 M), formate (up to 0.3 M) and fulvic and humic acids (up to 40 mg/L DOC) have no effect on brucite dissolution kinetics. Fluorine inhibits dissolution both in neutral and alkaline solutions. From F sorption experiments in batch and flow-through reactors and the analysis of reacted surfaces using X-ray Photoelectron Spectroscopy (XPS), it is shown that fluorine adsorption is followed by its incorporation in brucite lattice likely via isomorphic substitution with OH. The effect of eight divalent metals (Sr, Ba, Ca, Pb, Mn, Fe, Co and Ni) studied at pH 4.9 and 0.01 M concentration revealed brucite dissolution rates to be correlated with the water molecule exchange rates in the first hydration sphere of the corresponding cation.The effect of investigated ligands on brucite dissolution rate can be modelled within the framework of the surface coordination approach taking into account the adsorption of ligands on dissolution-active sites and the molecular structure of the surface complexes they form. The higher the value of the ligand sorption constant, the stronger will be its catalyzing or inhibiting effect. As for Fe and Al oxides, bi- or multidentate mononuclear surface complexes, that labilize Mg-O bonds and water coordination to Mg atoms at the surface, enhance brucite dissolution whereas bi- or polynuclear surface complexes tend to inhibit dissolution by bridging two or more metal centers and extending the cross-linking at the solid surface. Overall, results of this study demonstrate that very high concentrations of organic ligands (0.01-0.1 M) are necessary to enhance or inhibit brucite dissolution. As a result, the effect of extracellular organic products on the weathering rate of Mg-bearing minerals is expected to be weak.  相似文献   

17.
Two chemical processes can remove Mg2+ from suspensions containing amorphous silica (am-SiO2) at low temperatures: adsorption and precipitation of a Mg-hydroxysilicate resembling sepiolite. Mg2+ removal from am-SiO2 suspensions was investigated, and the relative role of the two removal processes evaluated, as a function of: pH, ionic strength, Mg2+ concentration, and temperature.The extent of Mg2+ adsorption onto am-SiO2 decreases with increasing NaCl concentration due to displacement of Mg2+ by Na+. At NaCl concentrations of 0.05 M and above, adsorption occurs only at pH values above 8.5, where rapid dissolution of am-SiO2 gives rise to high concentrations of dissolved silica, resulting in supersaturation with respect to sepiolite. Removal of Mg2+, at concentrations of 40 to 650 μM, from am-SiO2 suspensions in 0.70 M NaCl at 25 °C occurs at pH 9.0 and above. Experiments show that under these conditions adsorption and Mg-hydroxysilicate precipitation remove Mg2+ at similar rates. For 0.05 M Mg2+, at 0.70 M ionic strength and 25 °C, measurable Mg2+ removal occurs down to ca. pH 7.5 but is primarily due to Mg-hydroxysilicate precipitation. For the same solution conditions at 5°C, Mg2+ removal occurs above pH 8.0 and is primarily due to adsorption.Assuming that increasing pressure does not greatly enhance adsorption, Mg2+ adsorption onto am-SiO2 is an insignificant process in sea water. The surface charge of pristine am-SiO2 in sea water is primarily controlled by interactions with Na+. The principal reaction between Mg2+ and am-SiO2 in marine sediments is sepiolite precipitation.The age distribution of sepiolite in siliceous pelagic sediments is influenced by temperatures of bottom waters and by geothermal gradients.  相似文献   

18.
Aqueous cadmium uptake by calcite: a stirred flow-through reactor study   总被引:1,自引:0,他引:1  
Uptake of cadmium ions from solution by a natural Mg-containing calcite was investigated in stirred flow-through reactor experiments. Input NaCl solutions were pre-equilibrated with calcite (pH 8.0) or not (pH 6.0), prior to being spiked with CdCl2. For water residence times in the reactor less than 0.5 h, irreversible uptake of Cd by diffusion into the bulk crystal had a minor effect on the measured cadmium breakthrough curves, hence allowing us to quantify “fast” Cd2+ adsorption. At equal aqueous activities of Cd2+, adsorption was systematically lower for the pre-equilibrated input solutions. The effect of variable solution composition on Cd2+ adsorption was reproduced by a Ca2+-Cd2+ cation exchange model and by a surface complexation model for the calcite-aqueous solution interface. For the range of experimental conditions tested, the latter model predicted binding of aqueous Ca2+ and Cd2+ to the same population of carbonate surface sites. Under these circumstances, both adsorption models were equivalent. Desorption released 80 to 100% of sorbed cadmium, confirming that fast uptake of Cd2+ was mainly due to binding at surface sites. Slow, irreversible cadmium uptake by the solid phase was measured in flow-through reactor experiments with water residence times exceeding 0.7 h. The process exhibited first-order kinetics with respect to the concentration of adsorbed Cd2+, with a linear rate constant at 25°C of 0.03 h−1. Assuming that diffusion into the calcite lattice was the mechanism of slow uptake, a Cd2+ solid-state diffusion coefficient of 8.5×10−21 cm2 s−1 was calculated. Adsorbed Cd2+ had a pronounced effect on the dissolution kinetics of calcite. At maximum Cd2+ surface coverage (∼10−5 mol m−2), the calcite dissolution rate was 75% slower than measured under initially cadmium-free conditions. Upon desorption of cadmium, the dissolution rate increased again but remained below its initial value. Thus, the calcite surface structure and reactivity retained a memory of the adsorbed Cd2+ cations after their removal.  相似文献   

19.
Heavy metal ions (Pb2+, Cd2+, Ni2+, and Zn2+) were biosorbed by brown seaweed (Hizikia fusiformis), which was collected from Jeju Island of South Korea. The metal adsorption capacity of H. fusiformis improved significantly by washing with water or by base or acid treatments. The maximum sorption by NaOH-pretreated biomass was observed near a slightly acidic pH (pH 4?6) for Pb2+, Cd2+, Ni2+, and Zn2+. This result suggests that the treatment of H. fusiformis biomass with NaOH helped increase the functional forms of carboxylate ester units. Kinetic data showed that the biosorption occurred rapidly during the first 60 min, and most of the heavy metals were bound to the seaweed within 180 min. The maximum metal adsorption capacities assumed by a Langmuir model were on the order of Pb2+ > Cd2+ > Ni2+ > Zn2+. Equilibrium adsorption data for the heavy metal ions could fit well in the Langmuir model with regression coefficients R 2 > 0.97.  相似文献   

20.
Rare earth element (REE) adsorption onto sand from a well characterized aquifer, the Carrizo Sand aquifer of Texas, has been investigated in the laboratory using a batch method. The aim was to improve our understanding of REE adsorption behavior across the REE series and to develop a surface complexation model for the REEs, which can be applied to real aquifer-groundwater systems. Our batch experiments show that REE adsorption onto Carrizo sand increases with increasing atomic number across the REE series. For each REE, adsorption increases with increasing pH, such that when pH >6.0, >98% of each REE is adsorbed onto Carrizo sand for all experimental solutions, including when actual groundwaters from the Carrizo Sand aquifer are used in the experiments. Rare earth element adsorption was not sensitive to ionic strength and total initial REE concentrations in our batch experiments. It is possible that the differences in experimental ionic strength conditions (i.e., 0.002-0.01 M NaCl) chosen were insufficient to affect REE adsorption behavior. However, cation competition (e.g., Ca, Mg, and Zn) did affect REE adsorption onto Carrizo sand, especially for light rare earth elements (LREEs) at low pH. Rare earth element adsorption onto Carrizo sand can be successfully modeled using a generalized two-layer surface complexation model. Our model calculations suggest that REE complexation with strong surface sites of Carrizo sand exceeds the stability of the aqueous complexes LnOH2+, LnSO4+, and LnCO3+, but not that of Ln(CO3)2- or LnPO4o in Carrizo groundwaters. Thus, at low pH (<7.3), where major inorganic ligands did not effectively compete with surface sites for dissolved REEs, free metal ion (Ln3+) adsorption was sufficient to describe REE adsorption behavior. However, at higher pH (>7.3) where solution complexation of the dissolved REEs was strong, REEs were adsorbed not only as free metal ion (Ln3+) but also as aqueous complexes (e.g., as Ln(CO3)2- in Carrizo groundwaters). Because heavy rare earth elements (HREEs) were preferentially adsorbed onto Carrizo sand compared to LREEs, original HREE-enriched fractionation patterns in Carrizo groundwaters from the recharge area flattened along the groundwater flow path in the Carrizo Sand aquifer due to adsorption of free- and solution-complexed REEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号