首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The densities of silicate liquids with basic, picritic, and ultrabasic compositions have been estimated from the melting curves of minerals at high pressures. Silicate liquids generated by partial melting of the upper mantle are denser than olivine and pyroxenes at pressures higher than 70 kbar, and garnet is the only phase which is denser than the liquid at pressures from 70 kbar to at least 170 kbar. In this pressure range, garnet and some fraction of liquid separate from ascending partially molten diapirs. It is therefore suggested that aluminium-depleted komatiite with a high Ca/OAl2O3 ratio may be derived from diapirs which originated in the deep upper mantle at pressures from 70 kbar to at least 140 kbar (200–400 km in depth), where selective separation of pyropic garnet occurs effectively. On the other hand, aluminium-undepleted komatiite is probably derived from diapirs originating at shallower depths (< 200 km). Enrichment of pyropic garnet is expected at depths greater than 200 km by selective separation of garnet from ascending diapirs. The 200-km discontinuity in the seismic wave velocity profile may be explained by a relatively high concentration of pyropic garnet at depths greater than 200 km.  相似文献   

2.
The lower portions of the volcanic sequence of some Archaean greenstone belts include members with crystallized from ultramafic liquids extruded at the earth's surface at 1600–1650°C. These liquids are interpreted as products of 60–80% melting of their mantle source composition which implies more catastrophic conditions of mantle melting than obtained in Palaeozoic, Mesozoic or Recent crust-mantle dynamics. Such conditions may be a consequence of major impacts on the surface of the primitive earth. It is suggested that the production of the lunar maria basins was accompanied by similar impacts on the earth and that such terrestrial maria played an important role in early stages of chemical differentiation of the crust and upper mantle. An hypothesis is presented in which some Archaean greenstone belts are interpreted as very large impact scars, initially filled with impact-triggered melts of ultramafic to mafic composition and thereafter evolving with further magmatism, deformation and metamorphism to the present Archaean greenstone belts.  相似文献   

3.
A model is proposed for the origin of hot spots that depends on the existence of major-element heterogeneities in the mantle. Generation of basaltic crust at spreading centers produces a layer of residual peridotite ~20–25 km thick directly beneath the crust which is depleted in Fe/Mg, TiO2, CaO, Al2O3, Na2O and K2O, and which has a slightly lower density than undepleted peridotite beneath it. Upon recycling of this depleted peridotite back into the deep mantle at subduction zones, it becomes gravitationally unstable, and tends to rise as diapirs through undepleted peridotite. For a density contrast of 0.05 g cm?3, a diapir 60 km in diameter would rise at roughly 8 cm y?1, and could transport enough heat to the base of the lithosphere to cause melting and volcanism at the surface. Hot spots are thus viewed as a passive consequence of mantle convection and fractionation at spreading centers rather than a plate-driving force.It is suggested that depleted diapirs exist with varying amounts of depletion, diameters, upward velocities and source volumes. Such variations could explain the occurrence of hot spots with widely varying lifetimes and rates of lava production. For highly depleted diapirs with very low Fe/Mg, the diapir would act as a heat source and the asthenosphere and lower lithosphere drifting across the diapir would serve as the source region of magmas erupted at the surface. For mildly depleted diapirs with Fe/Mg only slightly less than in normal undepleted mantle, the diapir could provide not only the source of heat but also most or all of the source material for the erupted magmas. The model is consistent with isotopic data that require two separate and ancient source regions for mid-ocean ridge and oceanic island basalts. The source for mid-ocean ridge basalts is considered to be material upwelling at spreading centers from the deep mantle. This material forms the oceanic lithosphere. Oceanic island basalts are considered to be derived from varying mixtures of sublithospheric and lower lithospheric material and the rising diapir itself.  相似文献   

4.
Re-examination of published data on the tectomagmatic evolution of the West Philippine-Mariana region indicate that arc magmatism and back-arc extensional pulses are not synchronous but are largely asynchronous. Arc volcanism ceases within a few million years of the development of a back-arc basin, and recommences oceanward on a new arc during the final stages in the development of the back-arc basin. Following Karig's model, we believe that ascent beneath the arc axial chain of a line of diapirs of MORB-source mantle interferes with processes of arc magma generation and arc magmatism wanes. Partial melting of the diapirs produces voluminous MORB-type tholeiites which split the arc and form the crust of a widening back-arc basin.We show for both the West Philippine-Mariana region, and occurrences of boninite-like lavas in ophiolites, that boninites appear to be erupted after arc magmatism and immediately before eruption of MORB-type lavas.Passage of a diapir of hot MORB-source mantle through refractory sub-arc peridotite which has been enriched in LILE and H2O, will result in limited partial melting of the hydrous peridotite and the restricted production of boninitic magmas. These are more likely to erupt modified or only slightly modified by crystal fractionation through the thin forearc crust. Continued ascent of the MORB-source mantle diapir will result in it partially melting to yield MORB tholeiites which erupt shortly after, and in considerably more voluminous amounts, than the boninites.Finally we suggest that forearcs regions are likely to be incorporated into foldbelts and that boninite (or low-Ti lava)-bearing ophiolites may characterize such regions.  相似文献   

5.
Garnets crystallized experimentally from within the anhydrous melting ranges of an olivine tholeiite, a tholeiitic andesite and an augite leucitite at pressures between 18 and 45 kbars contain up to 0.4% Na2O and 0.6% P2O5. The Na and P are thought to form a substitution couple, replacing Ca and Si in the garnet structure; representing limited solid solution between grossular (Ca3Al2Si3O12) and the phosphate Na3Al2P3O12. This substitution is enhanced by increasing pressure and by falling temperature (increasing degree of crystallization) at constant pressure.Current knowledge of the crystalline site of P in the upper mantle is hampered by lack of data on the stability of apatite and other phosphates at appropriate pressures and temperatures. If all samples of garnetiferous upper mantle brought to the surface by magmatic processes have been depleted to some extent by previous escape of a partial-melt fraction, P2O5 concentrations below 0.1% in their garnets could nevertheless signify that this phase was the sole predepletion host for P in the upper mantle, at the depths from which such inclusions are derived. If garnet and apatite are the principal minerals containing P in the upper mantle, it may be possible to use covariances between P and rare-earth elements in mafic liquids to detect which of these phases was the dominant host for P at the site of magma genesis. This approach confirms the widely-held opinion that strongly alkalic mafic magmas are products of upper-mantle partial fusion in the presence of residual garnet. It also leads to a contrasting proposal that mid-ocean ridge basalts may be generated by upper-mantle partial fusion at comparatively small depths, in the presence of residual apatite.  相似文献   

6.
The numerical model of mantle diapirism and active rifting is developed. The model describes the possibility of extension and thinning of the Earth’s crust under the action of a local 100-km long heat source in the sublithospheric mantle, which causes melting and rising of the magmatic diapir through the cratonic lithosphere. The model combines the mechanisms of the uplifting of the anomalously hot material due to its gravitational instability, underplating of magma beneath the continental crust, and its extension by the forces of the convective flows at the base of the plate. The obtained results shed light on some geological features of the joint formation of the large Vilyui igneous province and Vilyui sedimentary basin.  相似文献   

7.
In order to evaluate the effect of fluorine substitution on hornblende stability in basaltic melts, the upper stability of a synthetic pargasite with 43% of its OH sites replaced by fluorine was studied under fluid-absent conditions at pressures up to 35 kbars. The fluorohydroxy pargasite melts incongruently over an interval of 25–55°C depending on pressure. Liquid, amphibole, clinopyroxene, spinel, forsterite and garnet, at higher pressures, appear in the melting interval. Coordinates for the amphibole-out boundary are: 5 kbars, 1060°C; 15 kbars, 1230°C; 25 kbars, 1285°C; 30 kbars, 1290°C and 35 kbars, 1285°C.Substitution of F for OH in the amphibole structure increases both its temperature and pressure stability limits, and results in a substantial melting interval through which hornblende and melt coexist in fluid-absent situations. Partial melting events could produce fluorine-rich hornblende as a refractory, residual phase.  相似文献   

8.
底辟流是研究地球内部物质循环与迁移的重要窗口,其动力学演化过程对于我们认识区域地质构造与演化具有重要意义.本文从热-结构力学的角度,建立三组不同的数值模型,研究底辟流上涌的动力学过程,分析底辟流半径、热-结构耦合、岩浆上涌通道对底辟流上涌过程的影响.该研究对认识早古生代祁连弧的形成过程具有重要启示.数值实验结果表明,底辟流半径越大底辟上涌速度越快;单个底辟很难直接上涌至上地壳底部,柴达木北缘超高压变质带和岩浆弧可能是由于多个底辟流持续上涌,最终发育稳定岩浆通道形成的,并且岩浆通道的形成对于超高压变质岩石的减压时间以及岩浆弧的形成时间均具有重要影响;具有稳定岩浆通道的单个底辟流从地幔深处90 km上涌至壳幔边界的过程中,在水平方向的侵蚀范围要比垂向侵蚀范围大一倍左右,研究结果表明安第斯型底辟流模型可以很好地描述早古生代柴达木北缘祁连弧的形成过程.  相似文献   

9.
The reaction between enstatite (En95.3Fs4.7) and CaCO3 has been studied at pressures between 23 and 77 kbars and at temperatures between 800° and 1400°C. At 1000°C enstatite and CaCO3 react to form dolomite and diopside solid solutions at pressures below approximately 45 kbars and magnesite and diopside solid solutions at higher pressures. The curve for the reaction dolomitess + enstatitess ? magnesitess + diopsidess lies between 40 to 45 kbars at 1000°C and between 45 and 50 kbars at 1200°C. It is very close to the graphite-diamond transition curve. These experimental results indicate that calcite (or aragonite) is unstable in the presence of enstatite, and that dolomite and magnesite are the stable carbonates at high pressures. The forsterite + aragonite assemblage is, however, stable to at least 80 kbars at 800°C. It is suggested that in the upper mantle where enstatite is present, dolomite is stable to depths of about 150 km and magnesite is stable at greater depths in the continental regions, assuming that the partial pressure of CO2 is equal or close to the total pressure. It is also suggested that carbonate inclusions in pyroxene can be used as an indicator of the depth of their equilibration; dolomite inclusions in enstatite would be formed at depths shallower than 150 km and magnesite inclusions in diopside at greater depths. Eclogite and peridotite inclusions in kimberlite may be classified on this basis.  相似文献   

10.
The rheology of dry polycrystalline olivine is examined by adopting a hyperbolic sine flow law (which reduces to a power law below 3 kbars) for high stress behavior, and a model for diffusion accommodated, coherent, grain boundary sliding (structural superplastic creep) for low stress behavior. The model for superplastic creep gives a linear relation between stress and strain rate and is consistent with the behavior of polycrystalline olivine during ductile faulting experiments (Post, 1973). For any given stable grain size, linear superplastic creep is promoted by relatively low stress and temperature. For a 1 -cm grain size and a homologous temperature between 0.6 and 0.8, superplastic creep dominates below transition stresses between 402 and 25 bars, respectively. Transition stresses are higher for smaller grain size and lower temperature. If grain size is stress dependent, superplastic creep is non-linear and dominates above a stress of 300 bars. Below that stress, relatively lower temperatures promote superplastic creep. Grain size may be stabilized by either physical or kinetic inhibition of grain growth, thereby allowing linear superplastic creep in the mantle. Results suggest that superplastic creep can dominate in most of the upper mantle except possibly for the asthenosphere where homologous temperatures are maximal and hyperbolic sine law creep can dominate. Mantle diapirism is at least in part accomplished by superplastic flow above and along the margins of the rising diapir.  相似文献   

11.
The one-dimensional (1D) problem of magma rising through a volcanic channel is identical in its statement to the problem of chemical-density or thermo-chemical convection in an unbounded medium. The present work demonstrates how the rise of a low-viscous, buoyant material through an ambient environment with significantly higher viscosity can be successively described as a 1D problem of viscous fluid dynamics. The suggested analytical model is applied to describe the upwelling of a less dense material in the tail of a diapir through the mantle to the Earth??s surface. The linear study of wave disturbances in the shape of the conduit shows that the buoyant material tends to uprise by portions, which probably accounts for the pulsed activity of the hotspots appearing on the surface above the diapir.  相似文献   

12.
Many ocean island basalts (OIB) that have isotopic ratios indicative of recycled crustal components in their source are silica-undersaturated and unlike silicic liquids produced from partial melting of recycled mid-ocean ridge basalt (MORB). However, experiments on a silica-deficient garnet pyroxenite, MIX1G, at 2.0-2.5 GPa show that some pyroxenite partial melts are strongly silica-undersaturated [M.M. Hirschmann et al., Geology 31 (2003) 481-484]. These low-pressure liquids are plausible parents of alkalic OIB, except that they are too aluminous. We present new partial melting experiments on MIX1G between 3.0 and 7.5 GPa. Partial melts at 5.0 GPa have low SiO2 (<48 wt%), low Al2O3 (<12 wt%) and high CaO (>12 wt%) at moderate MgO (12-16 wt%), and are more similar to primitive OIB compositions than lower-pressure liquids of MIX1G or experimental partial melts of anhydrous or carbonated peridotite. Solidus temperatures at 5.0 and 7.5 GPa are 1625 and 1825°C, respectively, which are less than 50°C cooler than the anhydrous peridotite solidus. The liquidus temperature at 5.0 GPa is 1725°C, indicating a narrow melting interval (∼100°C). These melting relations suggest that OIB magmas can be produced by partial melting of a silica-deficient pyroxenite similar to MIX1G if its melting residue contains significant garnet and lacks olivine. Such silica-deficient pyroxenites could be produced by interaction between recycled subducted oceanic crust and mantle peridotite or could be remnants of ancient oceanic lower crust or delaminated lower continental crust. If such compositions are present in plumes ascending with potential temperatures of 1550°C, they will begin to melt at about 5.0 GPa and produce appropriate partial melts. However, such hot plumes may also generate partial melts of peridotite, which could dilute the pyroxenite-derived partial melts.  相似文献   

13.
Up to now the age of granulite gneisses intruded by the Zabargad mantle diapir has been an unsolved problem. These gneisses may represent either a part of the adjacent continental crust primarily differentiated during the Pan African orogeny, or new crust composed of Miocene clastic sediments deposited in a developing rift, crosscut by a diabase dike swarm and gabbroic intrusions, and finally metamorphosed and deformed by the mantle diapir. Previous geochronological results obtained on Zabargad island and Al Lith and Tihama-Asir complexes (Saudi Arabia) suggest an Early Miocene age of emplacement for the Zabargad mantle diapir during the early opening of the Red Sea rift. In contrast, SmNd and RbSr internal isochrons yield Pan African dates for felsic and basic granulites collected 500–600 m from the contact zone with the peridotites. Devoid of evidence for retrograde metamorphic, minerals from a felsic granulite provide well-defined RbSr and SmNd dates of 655 ± 8 and 699 ± 34 Ma for the HP-HT metamorphic event (10 kbar, 850°C). The thermal event related to the diapir emplacement is not recorded in the SmNd and RbSr systems of the studied gneisses; in contrast, the development of a retrograde amphibolite metamorphic paragenesis strongly disturbed the RbSr isotopic system of the mafic granulite. The initial143Nd/144Nd ratio of the felsic granulite is higher than the contemporaneous value for CHUR and is in agreement with other Nd isotopic data for samples of upper crust from the Arabian shield. This result suggests that source rocks of the felsic granulite were derived at 1.0 to 1.2 Ga from either an average MORB-type mantle or a local 2.2 Ga LREE-depleted mantle. Zabargad gneisses represent a part of the disrupted lower continental crust of the Pan African Afro-Arabian shield. During early stages of the Red Sea rifting in the Miocene, these Precambrian granulites were intruded and dragged upwards by a rising peridotite diapir.  相似文献   

14.
The Ronda peridotite massif in southern Spain originated from the upper mantle, evidently as a rapidly rising diapir. Major and trace element abundance trends of the peridotites reflect their origin as residues from partial melting of garnet lherzolite. About 5% of the massif consists of mafic rocks, mainly pyroxenites and gabbros. They occur as concordant layers amidst the peridotites, and these layers do not cross-cut each other. However, major and trace element data show that the mafic layers do not have the geochemical characteristics of primary melts. We conclude that crystal/liquid fractionation occurred at high pressures ( > 19 kbar) as melts migrated through magma conduits towards the cooler exterior portion of the diapir. This process generated a sequence of “cumulates” (mainly clinopyroxene + orthopyroxene + spinel and clinopyroxene + garnet) along the walls of the conduits which are now represented by the mafic layers.  相似文献   

15.
Volcanic eruptions in central Mongolia during the latest Pleistocene and Holocene time preceded an initial Holocene volcanic event of 8740 ± 400 years ago in Northeast China and terminated simultaneously with that event as inferred from 14C datings. Alkali basaltoid magmatic material from a partially melted (1.5–3%) mantle source was erupted in the Taryat Basin of central Mongolia, at first along a nearly east-west line of volcanoes, and afterwards material of higher melting (up to 5%) was discharged along the north-northeast line of Khorgo edifices. A material of similar composition was erupted in the Jingpohu area, Northeast China during the period from 5430–4400 BP. Initial liquids of ~2% beneath the Frog Pool volcanic center and ~5% beneath Crater Forest were expressed varying liquids beneath the latter area, yielding final melts of ~5%. The action of the decompressional and the fluid mechanism was followed by in eruptions of, respectively, isotope-homogeneous magmas in central Mongolia and isotope-heterogeneous magmas depleted in high field strength elements (Nb, Ta, Ti) in Northeast China.  相似文献   

16.
The solubility of fluorapatite in a wide variety of basic magmatic liquids was experimentally determined over a range of upper mantle P-T conditions (8–25 kbar, 1275–1350°C). Fluorapatite is stable over the entire range of conditions investigated, but its solubility in melts is variable, depending negatively on SiO2 content of the melt and positively upon temperature, with relatively little sensitivity to pressure above 8 kbar. At upper mantle pressures and a temperature of 1250°C, molten basalt (50% SiO2) will dissolve 3–4 wt.% P2O5 before saturation in apatite is reached. For a magma 100°C cooler or containing 10 wt.% more SiO2, apatite saturation occurs at less than 2 wt.% dissolved P2O5. The observed high solubility of apatite in basic magmas at their normal near-liquidus temperatures virtually precludes the occurrence of residual apatite in mantle source regions. If relatively low-temperature melting conditions prevail (e.g., 1100°C), as might be possible in H2O-bearing regions of the upper mantle, apatite could remain in the residue, but only in amounts too small to have significant effects on the rare earth patterns of the liquids.Because of the high solubility of apatite in basic magmas, phosphorus can be confidently treated as an incompatible element in peridotite melting models. Such models, in combination with observed characteristics of basic lavas, indicate that the upper mantle contains ~200 ppm of phosphorus, much less than the chondritic abundance of ~900 ppm.  相似文献   

17.
Trace element relationships of near-primary alkalic lavas from La Grille volcano, Grande Comore, in the Indian Ocean, as well as those of the Honolulu volcanic series, Oahu, Hawaii, show that their sources contain amphibole and/or phlogopite. Small amounts of each mineral (2% amphibole in the source of La Grille and 0.5% phlogopite plus some amphibole in the source of the Honolulu volcanics) and a range of absolute degrees of partial melting from 1 to 5% for both series are consistent with the observed trace element variation. Amphibole and phlogopite are not stable at the temperatures of convecting upper mantle or upwelling thermal plumes from the deep mantle; however, they are stable at pressure-temperature conditions of the oceanic lithospheric mantle. Therefore, the presence of amphibole and/or phlogopite in the magma source region of volcanics is strong evidence for lithospheric melting, and we conclude that the La Grille and the Honolulu series formed by melting of the oceanic lithospheric mantle.

The identification of amphibole ± phlogopite in the source region of both series implies that the metasomatism by fluids or volatile-rich melts occurred prior to melting. The presence of hydrous phases results in a lower solidus temperature of the lithospheric mantle, which can be reached by conductive heating by the thermal plumes. Isotope ratios of the La Grille and the Honolulu series display a restricted range in composition and represent compositional end-members for each island. Larger isotopic variations in shield lavas, represented by the contemporaneous Karthala volcano on Grande Comore and the older Koolau series on Oahu, reflect interaction of the upwelling thermal plumes with the lithospheric mantle rather than the heterogeneity of deep-seated mantle plume sources or entrainment of mantle material in the rising plume. Literature OsSr isotope ratio covariations constrain the process of plume-lithosphere interaction as occurring through mixing of plume melts and low-degree melts from the metasomatized oceanic lithospheric mantle.

The characterization of the lithospheric mantle signature allows the isotopic composition of the deep mantle plume components to be identified, and mixing relationships show that the Karthala and Koolau plume end-members have nearly uniform isotopic compositions. Based on independent arguments, isotopic variations on Heard and Easter islands have been shown to be a result of mixing between deep plume sources having distinct isotopic compositions with lithosphere or shallow asthenospheric mantle. To the extent that these case studies are representative of oceanic island volcanism, they indicate that interaction with oceanic lithospheric mantle plays an important role in the compositions of lavas erupted during the shield-building stage of plume magmatism, and that isotopic compositions of deep mantle plume sources are nearly uniform on the scale that they are sampled by melting.  相似文献   


18.
Consideration of geochemical data from basalts formed near major Atlantic and Pacific transform faults reveals two significant sets of observations. First, compared to basalts formed far from the transform, basalts near the ridge/transform intersection have, for the same MgO contents, higher abundances of TiO2 and other incompatible elements, higher La/Sm and La/Yb ratios, and often higher FeO. These enrichments are distinct from and occur in addition to the more variable and fractionated compositions which have been frequently noted [10–13]. Modeling of this “transform fault effect” using data from the Tamayo/EPR intersection suggests the chemical systematics are caused by decreasing extents of melting as the transform is approached.Second, there are chemical discontinuities in the major element, trace element and isotopic chemistry of basalts across many transforms. These “transform discontinuities” occur in normal ocean crust as well as around hot spots.Consideration of the melting zone in the mantle suggests that the transform fault effect is a natural consequence of the ridge/transform plate boundary. The melting zone beneath a ridge segment must terminate across the transform, leading to lower extents of melting at the transform edge. The surface manifestation of the change in the melting zone may be affected by the age of the transform offset, the spreading rate, the transform spacing and the interaction of mantle flow with the local thermal structure; it may be obscured by episodic magma chamber processes and mantle heterogeneity.The significance of transform discontinuities depends on whether they persist with age. If they do not, then temporally variable crust-forming processes may produce changes along a flow line similar to those at zero age across a transform. If, on the other hand, a discontinuity persists with age, then the transform may be related to a fundamental discontinuity in the underlying mantle. Long-lived transform discontinuities would have profound implications for the nature of plate motions, mantle convection and mantle heterogeneity.  相似文献   

19.
本文提出冀东太古宙麻粒岩可划分为无角闪石或黑云母的辉石亚相和含角闪石或黑云母的角闪石亚相,基于平衡的矿物组合估计的压力和温度,辉石亚相和角闪石亚相分别为800—850℃,9—11kbar,700—750℃,7—9kbar。由麻粒岩亚相推导的冀东下地壳由二层构成,下部层(30—37公里)为辉石亚相,上部层(23—30公里)为角闪石亚相,它与地球物理资料相符合  相似文献   

20.
Abstract   In southern New Caledonia, Late Oligocene granodiorite and adamellite are intruded into an ultramafic allochthon emplaced in the Late Eocene period. Previous studies of these granitoids proposed an origin associated with the melting of the underlying continental crust, but our new data show that these high-K to medium-K calc-alkaline granitoids display the geochemical and isotopic features of volcanic arc magmas uncontaminated by crust-derived melts. These magmas were probably generated in a post-Eocene and pre-Miocene subduction, the geophysical traces of which have been detected along the western coast of New Caledonia. Sr, Nd and Pb isotopic ratios indicate derivation from an almost isotopically homogeneous mantle wedge, but in contrast, some variation in trace element ratios uncorrelated to differentiation is indicative of source heterogeneity. Prominent heavy rare earth element (HREE) depletion of some of the younger granitoids may be the result of an equilibrium achieved with garnet-bearing subcrustal material (granulite) found as xenoliths, while a relative Nb, Ta and Hf enrichment, irrespective of crystal fractionation, may be related to either a modest contamination by previously underplated mafic material, heterogeneous hydration of the mantle wedge, or mixing with uplifted Nb-rich mantle. Post-obduction slab break-off can be proposed to have played a role in sublithospheric mantle mixing and the subsequent heterogeneity. The Late Oligocene subduction described here may be tentatively extended southward into northern New Zealand allochthons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号