首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
ABSTRACT

The aim of this paper is to estimate the effect that climate change will have on groundwater recharge at the Yucatan Peninsula, Mexico. The groundwater recharge is calculated from a monthly water balance model considering eight methods of potential and actual evapotranspiration. Historical data from 1961–2000 and climate model outputs from five downscaled general circulation models in the near horizon (2015–2039), with representative concentration pathway (RCP) 4.5 and 8.5 are used. The results estimate a recharge of 118 ± 33 mm·year–1 (around 10% of precipitation) in the historical period. Considering the uncertainty from GCMs under different RCP and evapotranspiration scenarios, our monthly water balance model estimates a groundwater recharge of 92 ± 40 mm·year–1 (RCP4.5) and 94 ± 38 mm·year–1 (RCP8.5) which represent a reduction of 23% and 20%, respectively, a result that threatens the socio-ecological balance of the region.  相似文献   

2.
The present study examined groundwater recharge/discharge mechanisms in the regional Central Sudan Rift Basins (CSRB). Aquifers in CSRB constitute poorly sorted silisiclastics of sand, clay and gravels deposited in closed hydrologic systems of the Cretaceous–Pleistocene fluviolacustrine environments. CSRB are bounded to the north by the highlands of the Central African Shear Zone (CAZS) that represents the surface and groundwater divides. Sporadic recharge in the peripheries of the basins along the CASZ occurs subsequent to decadal and centennial storm events. Inflow from the Nile into the aquifers represents an additional source of recharge. Thus, groundwater resources cannot be labelled fossil nor can they be readily recharged. Closed hydrologic troughs located adjacent to the influent Nile system mark areas of main groundwater discharge characterized by lower hydraulic heads. This study has examined mechanisms that derive the discharge of the groundwater in these closed basins and concluded that only evapotranspirative discharge can provide a plausible explanation. Groundwater abstraction is mainly through deep‐rooted trees and effective evaporation. The increase of TDS along the flow indicates local recharge at the peripheries of basins and shows the influence of evaporation and rock/water interaction. The decline in groundwater level along a flow path was calculated using Darcy's law to estimate average recharge and evapotranspirative discharge, which are equal under natural equilibrium and make the only fluxes in CSRB. Steady‐state 2D flow modelling has demonstrated that an average recharge of 4–8 mm yr?1 and evapotranspirative discharge of 1–22 mm yr?1 will maintain natural equilibrium in CSRB. Sporadic storms provide recharge in the highlands to preserve the current hydraulic gradient and maintain aquifer dynamics. Simulated recharge from the Nile totals about 17·5 mm yr?1 and is therefore a significant contributor to the water balance. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
A small hillslope was chosen to investigate the role of throughflow as a mechanism responsible for the movement of soil water and solutes towards a saline seep and as a source of recharge to a permanent, regional aquifer at depth. The hydraulic properties, chemical characteristics and physical responses of both systems were studied on a deeply weathered, salt-affected hillslope. Additional data were also obtained from other sites in south-western Australia. Regional groundwater flow occurred in a variably textured, deeply weathered material in which the hydraulic conductivity varied from < 0·001 to 0·14m day?1. Perched groundwater flow (throughflow) occurred in the higher permeability (? 1·5 m day?1), near-surface soil materials. Throughflow occurred throughout winter, contributing approximately 530 m3 of fresh (? 160 mg l?1 Cl) water to a saline seep. By contrast, the deep aquifer discharged approximately 1100 m3 of waters with salt concentrations of 2000–6000 mg l?1 Cl. Recharge and discharge rates to and from the deep aquifer, were estimated to be of the order of 5–20 mm a?1 and 50–300 mm a?1 respectively. Saturated conditions existed throughout winter within the seep and the immediately adjacent non-saline area, with up to 60 per cent of the hillslope soils becoming saturated after major rainfall events ( > 20 mm day?1). In the mid-slopes, in particular along a central depression, saturation of the shallow soils caused macropore channel recharge to take place through the clay-textured subsoils. Water-level responses suggest that approximately 25–30 per cent of annual recharge occurred from one storm studied in September 1984. Recharge through macropore channels is a significant mechanism in the concave slope areas on the hillslope. Throughflow was found to be a major source of water, but not salt, contributing to the saline seep. In general, the contribution of throughflow was found to decrease further inland at other sites studied. However, at inland sites where perennial, perched aquifers have developed in deep sands, saline areas have been caused by throughflow and not by deep aquifer discharge.  相似文献   

4.
Jordan is classified as an arid to semi‐arid country with a population according to 1999 estimates of 4·8 millions inhabitants and a growth rate of 3·4%. Efficient use of Jordan's scarce water is becoming increasingly important as the urban population grows. This study was carried out within the framework of the joint European Research project ‘Groundwater recharge in the eastern Mediterranean’ and describes a combined methodology for groundwater recharge estimation in Jordan, the chloride method, as well as isotopic and hydrochemical approaches. Recharge estimations using the chloride method range from 14 mm year?1 (mean annual precipitation of 500 mm) for a shallow and stony soil to values of 3·7 mm year?1 for a thick desert soil (mean annual precipitation of 100 mm) and values of well below 1 mm year?1 for thick alluvial deposits (mean annual rainfall of 250 mm). Isotopically, most of the groundwater in the Hammad basin, east Jordan, falls below the global meteoric water line and far away from the Mediterranean meteoric water line, suggesting that the waters are ancient and were recharged in a climate different than Mediterranean. Tritium levels in the groundwater of the Hammad basin are less than the detection limit (<1·3 TU). However, three samples in east Hammad, where the aquifer is unconfined, present tritium values between 1 and 4 TU. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The results of a study evaluating the recharge/discharge conditions of an unconfined stressed granitic aquifer situated in a semi‐arid region of Andhra Pradesh, Southern India are presented. Over the last three decades, excessive withdrawal of groundwater has drastically lowered the water table to the bedrock. The watershed studied was divided into four zones based on geomorphology and hydrogeological conditions. Using environmental chloride data pertaining to groundwater, soil depth profiles, and some hydrogeologic and hydrochemical observations, a recharge model for the watershed was developed. The model revealed that the bulk of the vertical recharge in the western elevated land occurs through preferred pathways and that a small fraction occurs through the soil matrix. In addition, the watershed has a poor hydrogeologic fabric, as indicated by the small range of matrix flow recharge (1 to 1·5% of rainfall) among the four zones. The dominating preferential flow was high (~16% of the annual average rainfall) in the valley fills, but decreased to 5–5·5% in the plains. Furthermore, although the bulk of the recharge occurs vertically, considerable lateral movement of groundwater down the slope indicates that sequential hydrochemical changes occur. Distinct geomorphological features that exist in the watershed support the proposed model. Situations similar to those described above may exist in numerous watersheds in the granitic hard rock region; therefore, information obtained from investigations conducted in this watershed can aid in the development of plans enabling the sustainable exploitation of watersheds that have not yet been developed, as well as implementation of appropriate rainwater conservation measures in over‐exploited watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Soil and vadose zone profiles are used as an archive of changes in groundwater recharge and water quality following changes in land use in an area of the Loess Plateau of China. A typical rain‐fed loess‐terrace agriculture region in Hequan, Guyuan, is taken as an example, and multiple tracers (chloride mass balance, stable isotopes, tritium and water chemistry) are used to examine groundwater recharge mechanisms and to evaluate soil water chloride as an archive for recharge rate and water quality. Results show that groundwater recharge beneath natural uncultivated grassland, used as a baseline, is about 94–100 mm year?1 and that the time it takes for annual precipitation to reach water table through the thick unsaturated zone is from decades to hundreds of years (tritium free). This recharge rate is 2–3 orders of magnitude more than in the other semiarid areas with similar annual rainfall but with deep‐rooted vegetation and relatively high temperature. Most of the water that eventually becomes recharge originally infiltrated in the summer months. The conversion from native grassland to winter wheat has reduced groundwater recharge by 42–50% (50–55 mm year?1 for recharge), and the conversion from winter wheat to alfalfa resulted in a significant chloride accumulation in the upper soil zone, which terminated deep drainage. The paper also evaluates the time lag between potential recharge and actual recharge to aquifer and between increase in solute concentration in soil moisture and that in the aquifer following land‐use change due to the deep unsaturated zone. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
A hydrological–lithostratigraphical model was developed for assessment of transmission losses and groundwater recharge from runoff events in arid water courses where hydrological and meteorological records are incomplete. Water balance equations were established for reaches between hydrometric stations. Because rainfall and tributary flow data are scarce, lateral inflow, which is an essential component of the water balance equation, could not be estimated directly. The solution was obtained by developing a method which includes a hydrological–lithostratigraphical analogy. This is based on the following assumptions: (a) runoff resulting from a given rainfall event is related to the watershed surface lithology; (b) for a given event, the spatial distribution of runoff reflects the distribution of rainfall: and (c) transmission losses are uniquely related to the total inflow to the reach. The latter relationship, called the loss function, and the water balance equation comprise a model which simultaneously assesses lateral inflow and transmission losses for runoff events recorded at the terminal stations. The model was applied to three reaches of the arid Nahal Tsin in Israel. In this case study, the transmission losses were of the same order of magnitude as the flow at the major hydrometric stations. The losses were subdivided into channel moistening, which subsequently evaporates, and deep percolation, which recharges groundwater. For large runoff events, evaporation was substantially smaller than the losses. The mean annual recharge of groundwater from runoff events in the Tsin watershed was 4·1×106 m3, while the mean annual flow volume at the major stations ranged from 0·6 to 1·5×106 m3. Once in 100 years, the annual recharge may be seven times higher than the mean annual value, but the recharge during most years is very small. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
Understanding flow pathways and mechanisms that generate streamflow is important to understanding agrochemical contamination in surface waters in agricultural watersheds. Two environmental tracers, δ18O and electrical conductivity (EC), were monitored in tile drainage (draining 12 ha) and stream water (draining nested catchments of 6‐5700 ha) from 2000 to 2008 in the semi‐arid agricultural Missouri Flat Creek (MFC) watershed, near Pullman Washington, USA. Tile drainage and streamflow generated in the watershed were found to have baseline δ18O value of ?14·7‰ (VSMOW) year round. Winter precipitation accounted for 67% of total annual precipitation and was found to dominate streamflow, tile drainage, and groundwater recharge. ‘Old’ and ‘new’ water partitioning in streamflow were not identifiable using δ18O, but seasonal shifts of nitrate‐corrected EC suggest that deep soil pathways primarily generated summer streamflow (mean EC 250 µS/cm) while shallow soil pathways dominated streamflow generation during winter (EC declining as low as 100 µS/cm). Using summer isotopic and EC excursions from tile drainage in larger catchment (4700‐5700 ha) stream waters, summer in‐stream evaporation fractions were estimated to be from 20% to 40%, with the greatest evaporation occurring from August to October. Seasonal watershed and environmental tracer dynamics in the MFC watershed appeared to be similar to those at larger watershed scales in the Palouse River basin. A 0·9‰ enrichment, in shallow groundwater drained to streams (tile drainage and soil seepage), of δ18O values from 2000 to 2008 may be evidence of altered precipitation conditions due to the Pacific Decadal Oscillation (PDO) in the Inland Northwest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Egypt is currently seeking additional freshwater resources to support national reclamation projects based mainly on the Nubian aquifer groundwater resources. In this study, temporal (April 2002 to June 2016) Gravity Recovery and Climate Experiment (GRACE)-derived terrestrial water storage (TWSGRACE) along with other relevant datasets was used to monitor and quantify modern recharge and depletion rates of the Nubian aquifer in Egypt (NAE) and investigate the interaction of the NAE with artificial lakes. Results indicate: (1) the NAE is receiving a total recharge of 20.27 ± 1.95 km3 during 4/2002?2/2006 and 4/2008–6/2016 periods, (2) recharge events occur only under excessive precipitation conditions over the Nubian recharge domains and/or under a significant rise in Lake Nasser levels, (3) the NAE is witnessing a groundwater depletion of ? 13.45 ± 0.82 km3/year during 3/2006–3/2008 period, (4) the observed groundwater depletion is largely related to exceptional drought conditions and/or normal baseflow recession, and (5) a conjunctive surface water and groundwater management plan needs to be adapted to develop sustainable water resources management in the NAE. Findings demonstrate the use of global monthly TWSGRACE solutions as a practical, informative, and cost-effective approach for monitoring aquifer systems across the globe.  相似文献   

10.
A large weighing lysimeter was installed at Yucheng Comprehensive Experimental Station, north China, for evapotranspiration and soil‐water–groundwater exchange studies. Features of the lysimeter include the following: (i) mass resolution equivalent to 0·016 mm of water to accurately and simultaneously determine hourly evapotranspiration, surface evaporation and groundwater recharge; (ii) a surface area of 3·14 m2 and a soil profile depth of 5·0 m to permit normal plant development, soil‐water extraction, soil‐water–groundwater exchanges, and fluctuations of groundwater level; (iii) a special supply–drainage system to simulate field conditions of groundwater within the lysimeter; (iv) a soil mass of about 30 Mg, including both unsaturated and saturated loam. The soil consists mainly of mealy sand and light loam. Monitoring the vegetated lysimeter during the growing period of winter wheat, from October 1998 through to June 1999, indicated that during the period groundwater evaporation contributed 16·6% of total evapotranspiration for a water‐table depth from 1·6 m to 2·4 m below ground surface. Too much irrigation reduced the amount of upward water flow from the groundwater table, and caused deep percolation to the groundwater. Data from neutron probe and tensiometers suggest that soil‐water‐content profiles and soil‐water‐potential profiles were strongly affected by shallow groundwater. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
ABSTRACT

Groundwater is used by 3?million inhabitants in the coastal urban city of Douala, Cameroon, but comprehensive data are too sparse for it to be managed in a sustainable manner. Hence this study aimed to (1) assess the potability of the groundwater; (2) evaluate the spatial variation of groundwater composition; and (3) assess the interaction and recharge mechanisms of different water bodies. Hydrogeochemical tools and methods revealed the following results in the Wouri and Nkappa formations of the Douala basin, which is beneath Douala city: 30% of water samples from hand-dug wells in the shallow Pleistocene alluvium aquifer were saline and highly mineralized. However, water from boreholes in the deeper (49–92 m depth) Palaeocene aquifer was saline-free, less mineralized and potable. Water in the shallow aquifer (0.5–22 m depth) was of Na+-K+-Cl?-NO3? type and not potable due to point source pollution, whereas Ca+-HCO3? unpolluted water dominates in the deeper aquifer. Water in the deep and shallow aquifers indicates the results of preferential flow pass and evaporative recharge, respectively. Possible hydrogeochemical processes include point source pollution, reverse ion exchange, remote recharge areas and mixing of waters with different chemical signatures.
EDITOR D. Koutsoyiannis ASSOCIATE EDITOR M.D. Fidelibus  相似文献   

12.
Intermontane basin aquifers worldwide, particularly in the Himalayan region, are recharged largely by the adjoining mountains. Recharge in these basins can occur either by water infiltrating from streams near mountain fronts (MFs) as mountain front recharge (MFR) or by sub-surface mountain block infiltration as mountain block recharge (MBR). MFR and MBR recharge are challenging to distinguish and are least quantified, considering the lack of extensive understanding of the hydrological processes in the mountains. This study used oxygen and hydrogen isotopes (δ18O and δ2H), electrical conductivity (EC) data, hydraulic head, and groundwater level data to differentiate MFR and MBR. Groundwater level data provide information about the groundwater-surface water interactions and groundwater flow directions, whereas isotopes and EC data are used to distinguish and quantify different recharge sources. The present methodology is tested in an intermontane basin of the Himalayan region. The results suggest that karst springs (KS) and deep groundwater (DGW) recharge are dominated by snowmelt (47% ± 10% and 46% ± 9%) as MBR from adjacent mountains, insignificantly affected by evaporation. The hydraulic head data and isotopes indicate Quaternary shallow groundwater (SGW) aquifer system recharge as MFR of local meteoric water with significant evaporation. The results indicate several flow paths in the aquifer system, a local flow for KS, intermediate flow for SGW, and regional flow for DGW. The findings will significantly impact water resource management in the area and provide vital baseline knowledge for sustainable groundwater management in other Himalayan intermontane basins.  相似文献   

13.
ABSTRACT

The Guarani Aquifer System (GAS) is a subsurface reservoir that contains the largest volume of fresh groundwater in South America. Despite the relevance of the GAS, a lack of attention has been paid to land use effects on its recharge. We present the most detailed long-term (2004–2011) results of land-use effects on recharge in an outcrop area of the GAS. Water table fluctuations (WTFs) were measured at 11 monitoring wells, which are distributed between different land uses (i.e. eucalyptus, sugarcane, citrus and grassland). Recharge was estimated using a point-scale method (WTF) for each monitored well. The annual recharge estimates for different land uses are eucalyptus forest (135 mm year-1), sugarcane (248 mm year-1), citrus areas (296 mm year-1) and grassland (401 mm year-1). The results indicate that the evapotranspiration seems to be a key parameter in the assessment of recharge in the study area.  相似文献   

14.
15.
Artificially enhancing recharge rate into groundwater aquifer at specially designed facilities is an attractive option for increasing the storage capacity of potable water in arid and semi‐arid region such as Damascus basin (Syria). Two dug wells (I and II) for water injection and 24 wells for water extraction are available in Mazraha station for artificial recharge experiment. Chemical and stable isotopes (δ2H and δ18O) were used to evaluate artificial recharge efficiency. 400 to 500*103 m3 of spring water were injected annually into the ambient shallow groundwater in Mazraha station, which is used later for drinking purpose. Ambient groundwater and injected spring water are calcium bicarbonate type with EC about 880 ± 60 μS/cm and 300 ± 50 μS/cm, respectively. The injected water is under saturated versus calcite and the ambient groundwater is over saturated, while the recovered water is near equilibrium. It was observed that the injection process formed a chemical dilution plume that improves the groundwater quality. Results demonstrate that the hydraulic conductivity of the aquifer is estimated around 6.8*10?4 m/s. The effective diameter of artificial recharge is limited to about 250 m from the injection wells. Mixing rate of 30% is required in order to reduce nitrate concentration below 50 mg/l which is considered the maximum concentration limit for potable water. Deuterium and oxygen‐18 relationship demonstrates that mixing line between injected water and ambient groundwater has a slope of 6.1. Oxygen‐18 and Cl? plot indicates that groundwater salinity origin is from mixing process, and no dissolution and evaporation were observed. These results demonstrate the efficiency of the artificial recharge experiments to restore groundwater storage capacity and to improve the water quality. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Satellite observations were used to test the validity of previously identified favourable conditions for the formation of freshwater lenses, identify additional potential occurrences, and model modern potential recharge in the Raudhatain Watershed (3696) in northern Kuwait. Favourable conditions include infrequent yet intensive precipitation events, drainage depressions to collect the limited runoff, and presence of conditions (e.g. high infiltration capacity) that promote groundwater recharge and preservation (e.g. underlying saline aquifer) of infiltrating groundwater as freshwater lenses floating over saline aquifer water due to differences in density. Specifically, the following field and satellite‐based observations were noted for the Raudhatain Watershed: (1) Over ~30 precipitation events were identified from the Tropical Rainfall Measuring Mission precipitation data (1998–2009); (2) slope is gentle (2 m/km), and the surface is largely (80%) covered by alluvial deposits with high infiltration capacities (up to 9 m/day); (3) no flows and long‐term ponding were reported at the watershed outlet or detected from Landsat thematic mapper images; (4) infiltration is high based on increases in soil moisture content (from an advanced microwave scanning radiometer) and vegetation index following large precipitation events; and (5) freshwater lenses that overlie highly saline [total dissolved solids (TDS): >35 000] unconfined aquifers underlying the watershed are absent in the southern regions, where infiltrating fresh water mixes with the less saline groundwater (TDS: <10 000). Twenty potential locations (size: 1 to 75 km2) for freshwater lens development were identified in northern Kuwait, and continuous rainfall–runoff models (Soil Water and Assessment Tool) were applied to provide a first‐order estimation of the average annual recharge in the watershed (127 × 106 m3) and freshwater lenses (8.17 × 106 m3). Results demonstrate the settings for enhanced opportunities for groundwater recharge, outline the amounts of and preservation conditions for the groundwater feeding the freshwater lenses, and highlight potential applications and locations of freshwater lenses in similar settings elsewhere in the Arabian Peninsula and beyond. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Groundwater flow modelling of the Kwa Ibo River watershed in Abia State of Nigeria is presented in this paper with the aim of assessing the degree of interaction between the Kwa Ibo River and the groundwater regime of the thick sandy aquifer. The local geology of the area comprises the Quaternary to recent Benin Formation. Potential aquifer zones that were delineated earlier using geoelectrical resistivity soundings and borehole data for the area formed the basis for groundwater flow modelling. The watershed has been modelled with a grid of 65 rows by 43 columns and with two layers. Lateral inflow from the north has been simulated with constant heads at the Government College, Umuahia, and outflow at Usaka Elegu in the south. The Kwa Ibo River traverses the middle of the watershed from north to south. The river‐stage data at Umudike, Amawom, Ntalakwu and Usaka Elegu have been used for assigning surface water levels and riverbed elevations in the model. Permeability distribution was found to vary from 3 to 14·5 m day?1. Natural recharge due to rainfall formed the main input to the aquifer system, and abstraction from wells was the main output. A steady‐state groundwater flow simulation was carried out and calibrated against the May 1980 water levels using 26 observation wells. The model computations have converged after 123 iterations. Under the transient‐state calibration, the highest rainfall (and hence groundwater recharge) over the 10‐year study period was recorded in 1996, whereas the lowest was recorded in 1991. The computed groundwater balance of 55 274 m3 day?1 was comparable to that estimated from field investigations. Results from the modelling show that abstraction is much less than groundwater recharge. Hence there is the possibility for additional groundwater exploitation in the watershed through drilling of boreholes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The water budget in clay shale terrain is controlled by a complex interaction between the vertisol soil layer, the underlying fractured rock, land use, topography, and seasonal trends in rainfall and evapotranspiration. Rainfall, runoff, lateral flow, soil moisture, and groundwater levels were monitored over an annual recharge cycle. Four phases of soil–aquifer response were noted over the study period: (1) dry‐season cracking of soils; (2) runoff initiation, lateral flow and aquifer recharge; (3) crack closure and down‐slope movement of subsurface water, with surface seepage; (4) a drying phase. Surface flow predominated within the watershed (25% of rainfall), but lateral flow through the soil zone continued for most of the year and contributed 11% of stream flow through surface seepage. Actual flow through the fractured shale makes up a small fraction of the water budget but does appear to influence surface seepage by its effect on valley‐bottom storage. When the valley soil storage is full, lateral flow exits onto the valley‐bottom surface as seasonal seeps. Well response varied with depth and hillslope position. FLOWTUBE model results and regional recharge estimates are consistent with an aquifer recharge of 1·6% of annual precipitation calculated from well heights and specific yield of the shale aquifer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Identifying aquifer vulnerability to climate change is of vital importance in the Sierra Nevada and other snow‐dominated basins where groundwater systems are essential to water supply and ecosystem health. Quantifying the component of new (current year's) snowmelt in groundwater and surface water is useful in evaluating aquifer vulnerability because significant annual recharge may indicate that streamflow will respond rapidly to annual variability in precipitation, followed by more gradual decreases in recharge as recharge declines over decades. Hydrologic models and field‐based studies have indicated that young (<1 year) water is an important component of streamflow. The goal of this study was to utilize the short‐lived, naturally occurring cosmogenic isotope sulfur‐35 (35S) to quantify new snowmelt contribution to groundwater and surface waters in Sagehen Creek Basin (SCB) and Martis Valley Groundwater Basin (MVGB) located within the Tertiary volcanics of the central Sierra Nevada, CA. Activities of 35S were measured in dissolved sulfate (35SO42?) in SCB and MVGB snowpack, groundwater, springs, and streamflow. The percent of new snowmelt (PNS) in SCB streamflow ranged from 0.2 ± 6.6% during baseflow conditions to 14.0 ± 3.4% during high‐flow periods of snowmelt. Similar to SCB, the PNS in MVGB groundwater and streamflow was typically <30% with the largest fractions occurring in late spring or early summer following peak streamflow. The consistently low PNS suggests that a significant fraction of annual snowmelt in SCB and MVGB recharges groundwater, and groundwater contributions to streamflow in these systems have the potential to mitigate climate change impacts on runoff.  相似文献   

20.
One‐km resolution MODIS‐based mean annual evapotranspiration (ET) estimates in combination with PRISM precipitation rates were correlated with depth to groundwater (d) values in the wide alluvial valley of the Platte River in Nebraska for obtaining a net recharge (Rn) vs. d relationship. MODIS cells with irrigation were excluded, yielding a mixture of predominantly range, pasture, grass, and riparian forest covers on sandy soils with a shallow groundwater table. The transition depth (dt) between negative and positive values of the net groundwater recharge was found to be at about 2 (±1) m. Within 1 (±1) m of the surface and at a depth larger than about 7 to 8 (±1) m, the mean annual net recharge became independent of d at a level of about ?4 (±12)% and 13 (±10)%, respectively, of the mean annual precipitation rate. The obtained Rn(d) relationship is based on a calibration‐free ET estimation method and may help in obtaining the net recharge in shallow groundwater areas of negligible surface runoff where sufficient groundwater‐depth data exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号