首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The rare gases argon and xenon were studied intensively in lunar breccia 14318, one of a family of three Apollo 14 breccias exhibiting similarities, including substantial amounts of ‘parentless’ xenon from the spontaneous fission of extinct 244Pu. We made stepwise heatings on both unirradiated and pile-irradiated specimens. The isotopic composition of the xenon from fission was determined by a new method which invokes a minimum of assumptions; it is shown to be from 244Pu and almost certainly parentless. For example, the fission component, although not appreciably fractionated with respect to the trapped component during stepwise heating, has a low temperature character so that, relatively speaking, it appears to be more surficial than xenon emanating from uranium sites in the irradiated sample. We demonstrate that this effect is not an artifact of the neutron irradiation. The breccia contains abundant trapped argon with a high 40Ar36Ar ratio for lunar material—~14. Otherwise the argon is radiogenic and gives a convincing K-Ar age of 3.69 ± 0.09 b.y. by the stepwise 40Ar-39Ar method, nearly in agreement with ages for other Apollo 14 breccias obtained in our laboratory and elsewhere. Rock 14301, another of the family of breccias and one which has been studied in other laboratories, contains similar trapped argon and parentless xenon. Unlike 14318 it also contains a conspicuous excess of 129Xe from the radioactive decay of extinct 129I. Implications of the parentless xenon from extinct sources, as seen in these different rocks, depend upon the model adopted for its evolution and storage. We present four different models, all of which are unsatisfactory in some respects, so that we are presently unable to narrow the question. We must stress that other Apollo 14 breccias, such as 14321, contain fission xenon from 244Pu which was apparently produced in situ.  相似文献   

2.
We have determined the isotopic composition of the xenon component trapped in EETA 79001 lithologies B and C, which we refer to as SPB-xenon. SPB-xenon is isotopically distinct from known xenon reservoirs, but differs in regular fashion. Normalized to 132Xe, the light isotope ratios are indistinguishable from air, the 129Xe/132Xe ratio is about 2.4, and 134Xe and 136Xe are enhanced relative to the terrestrial atmosphere or AVCC. The apparent heavy-isotope enrichments are not generated by in situ fission and there is no spectral evidence for the presence of 244Pu fission xenon. However, the xenon composition does match that of fractionated AVCC except at 129Xe, and consequently may be derived from or related to that component. ALHA 77005, Shergotty and EETA 79001 lithology A also have enhanced 129Xe/132Xe ratios in most temperature steps, and are seemingly consistent with varying mixtures of SPB-xenon and terrestrial xenon.Our results for neon and argon in EETA 79001 confirm earlier results on the exposure ages. We have also verified that the trapped 38Ar/36Ar ratio in lithology C is apparently substantially different from the terrestrial or meteoritic value. Krypton in EETA 79001,C is more fractionated with respect to AVCC than is terrestrial krypton and in the opposite direction as xenon. EETA 79001,C contains excess 80Kr (and perhaps 82Kr and 128Xe), presumably from neutron capture on bromine and iodine, but these neutron captures do not appear to have occurred by in situ processes.  相似文献   

3.
A method for selective annealing of cosmic-ray tracks has been developed, permitting determination of fission-track ages in the presence of a large background of cosmic-ray tracks. The mesosiderite Bondoc contains 41 fission tracks/cm2, of which about 75% are due to neutron-induced fission of U235 during cosmic-ray exposure. Its net fission-track age is 140 ± 40 Myr, nearly identical to its cosmic-ray exposure age of 150 Myr. The mesosiderite Mincy has a fission-track age of 1500 ± 400 Myr.Nakhla (nakhlite) contains an excess of apparent fission tracks, which may be either genuine fission tracks from Pu244 or etch pits mimicking fission tracks in length, thermal stability, random orientation, and other characteristics. On the assumption that they are fission tracks, the Pu244/U238 ratio at the onset of track retention in Nakhla was (3.1 ± 1.3) × 10?3, nearly an order of magnitude lower than the initial solar system ratio. This may reflect a chemical fractionation of Pu and U, or a late impact or magmatic event. Different minerals of the Washougal howardite have different Pu244/U238 ratios, from (24 ± 7) × 10?3 to (2.3 ± 0.7) × 10?3. This may imply a succession of impacts over a period of time. Additionally, Pu and U may have been chemically fractionated from each other in this meteorite.Shocked meteorites show no consistent pattern in the retentivity of fission tracks and of fissiogenic or radiogenic noble gases. Some meteorites, e.g. Bondoc, Serra de Magé, and Mincy, retain gases more completely than tracks; others, e.g. Nakhla and Allende, retain them less completely.Uranium was determined in feldspar and/or pyroxene from 19 Ca-rich achondrites and mesosiderites. For most, only upper limits of 0.01–0.03 ppb were obtained. Apparently the uranium in these meteorites resides almost exclusively in minor phases, as in terrestrial and lunar rocks.  相似文献   

4.
Investigation of fossil charged-particle track densities in various mineral phases of three meteorites—Estherville, Nakhla and Odessa—coupled with U content determination, has led to the evaluation of various contributions to the total fossil track density, including those due to the spontaneous fission of 238U and 244Pu. A fission-track age for Estherville of around 4 × 109 yr is found, which is thought to reflect slow cooling of the parent body. A Pu track excess of (106 ± 9): 1 over the spontaneous fission of 238U is found in Odessa diopside, which is larger than may be allówed on a simple ‘continuous synthesis’ model for the production of heavy elements prior to solar system formation. Possible explanations for this value are discussed, including fractionation of Pu relative to U. No detectable U was found in Nakhla diopside, and a measurable contribution of track densities from the fission of superheavy elements is ruled out on the basis of track-length measurements and laboratory calibration with Fe ions.  相似文献   

5.
The noble gases He, Ne, Ar, Kr and Xe and also K and Ba were measured in the Apollo 11 igneous rocks 10017 and 10071, and in an ilmenite and two feldspar concentrates separated from rock 10071. Whole rock K/Ar ages of rocks 10017 and 10071 are (2350 ± 60) × 106 yr and (2880 ± 60) × 106 yr, respectively. The two feldspar concentrates of rock 10071 have distinctly higher ages: (3260 ± 60) × 106 yr and (3350 ± 70) × 106 yr. These ages are still 10 per cent lower than the Rb/Sr age obtained by Papanastassiouet al. (1970) and some Ar40 diffusion loss must have occurred even in the relatively coarse-grained feldspar.The relative abundance patterns of spallation Ne, Ar, Kr and Xe are in agreement with the ratios predicted from meteoritic production rates. However, diffusion loss of spallation He3 is evident in the whole rock samples, and even more in the feldspar concentrates. The ilmenite shows little or no diffusion loss. The isotopic composition of spallation Kr and Xe is similar to the one observed in meteorites. Small, systematic differences in the spallation Kr spectra of rocks 10017 and 10071 are due to variations in the irradiation hardness (shielding). The Kr spallation spectra in the mineral concentrates are different from the whole rock spectra and also show individual variations, reflecting the differences in target element composition. The relative abundance of cosmic ray produced Xe131 differs by nearly 50 per cent in the two rocks. The other Xe isotopes show no variations of similar magnitude. The origin of the Xe131 yield variability is discussed.Kr81 was measured in all the samples investigated. The Kr81/Kr exposure ages of rocks 10017 and 10071 are (480 ± 25) × 106 yr and (350 ± 15) × 106 yr, respectively. Exposure ages derived from spallation Ne21, Ar38, Kr83 and Xe126 are essentially in agreement with the Kr81/Kr ages. The age of rock 10071 might be somewhat low because of a possible recent exposure of our sample to solar flare particles.  相似文献   

6.
Oldhamite is a major Th and U bearing phase in the enstatite meteorites. Oldhamite from E-6 chondrites has mean Th and U abundances of 1550 ± 80 ppb Th and 410 ± 20 ppb U, with ThU = 3.8 ± .2. With the exception of ferroan alabandite which contains 25 ± 1 ppb U, no other Th or U enriched phases were located in the E-6 chondrites, and nearly all of the total rock Th and U can be accounted for by oldhamite. In Khairpur (E6), excess fossil fission tracks were observed in enstatite grains in contact with oldhamite which indicates the presence of 244Pu in oldhamite. Oldhamite from St. Mark's (E5) and Abee (E4) also shows actinide enrichments but at levels about half the E-6 results. Niningerite in Abee contains 45 ± 5 ppb U and due to its high reported modal abundance is an important U reservoir in Abee. The U content of oldhamite from the aubrite Peña Blanca Spring is 1920 ± 100 ppb. All ThU values measured in this study cluster tightly around a value of 4 which indicates a lack of ThU fractionation in both oldhamite and in the enstatite meteorites, themselves. This lack of fractionation, along with the presence of 244Pu in oldhamite and reported rare earth enrichments also in oldhamite, suggests that the enstatite chondrites may be well-suited for PuU chronology and for providing the initial PuU value in the early solar system.  相似文献   

7.
Past global mean ocean temperature may be reconstructed from measurements of atmospheric noble gas concentrations in ice core bubbles. Assuming conservation of noble gases in the atmosphere-ocean system, the total concentration within the ocean mostly depends on solubility which itself is temperature dependent. Therefore, the colder the ocean, the more gas can be dissolved and the less remains in the atmosphere. Here, the characteristics of this novel paleoclimatic proxy are explored by implementing krypton, xenon, argon, and N2 into a reduced-complexity climate model. The relationship between noble gas concentrations and global mean ocean temperature is investigated and their sensitivities to changes in ocean volume, ocean salinity, sea-level pressure and geothermal heat flux are quantified. We conclude that atmospheric noble gas concentrations are suitable proxies of global mean ocean temperature. Changes in ocean volume need to be considered when reconstructing ocean temperatures from noble gases. Calibration curves are provided to translate ice-core measurements of krypton, xenon, and argon into a global mean ocean temperature change. Simulated noble gas-to-nitrogen ratios for the last glacial maximum are δKratm = ?1.10‰, δXeatm = ?3.25‰, and δAratm = ?0.29‰. The uncertainty of the krypton calibration curve due to uncertainties of the ocean saturation concentrations is estimated to be ±0.3 °C. An additional ±0.3 °C uncertainty must be added for the last deglaciation and up to ±0.4 °C for earlier transitions due to age-scale uncertainties in the sea-level reconstructions. Finally, the fingerprint of idealized Dansgaard-Oeschger events in the atmospheric krypton-to-nitrogen ratio is presented. A δKratm change of up to 0.34‰ is simulated for a 2 kyr Dansgaard-Oeschger event, and a change of up to 0.48‰ is simulated for a 4 kyr event.  相似文献   

8.
Nine LL-chondrites were studied by a selective etching technique, to characterize the noblegas components in three mineral fractions: HF-HCl-solubles (silicates, metal, troilite, etc.; comprising ~ 99% of the meteorite), chromite and carbon (~ 0.3–0.7%) and Q (a poorly characterized mineral defined by its solubility in HNO3, comprising ~ 0.05% of the meteorite but containing most of the Ar, Kr, Xe and a neon component of 20Ne22Ne = 10.9 ± 0.8). The 20Ne36Ar ratio in Q falls wi petrologic type and rising 36Ar content, as expected for condensation from a cooling solar nebula, but contrary to the trend expected for metamorphic losses. Chondrites of different petrologic types therefore cannot all be derived from the same volatile-rich ancestor, but must have formed over a range of temperatures, with correspondingly different intrinsic volatile contents.The CCFXe (carbonaceous chondrite fission) component varies systematically with petrologic type. The most primitive LL3s (Krymka, Bishunpur, Chainpur) contain substantial amounts of CCFXe in chromite-carbon, enriched relative to primordial Xe as shown by high 136Xe132Xe (0.359–0.459, vs 0.310 for primordial Xe). These are accompanied by He and by Ne with 20Ne22Ne ≈ 8.0 and by variable amounts of a xenon component enriched in the light isotopes. The chromite in these meteorites is compositionally peculiar, containing substantial amounts of Fe(III). These meteorites, as well as Parnallee (LL3) and Hamlet (LL4) also contain CCFXe in phase Q, heavily diluted by primordial Xe (136Xe132Xe = 0.317–0.329). On the other hand, LL5s and 6s (Olivenza, St. Séverin, Manbhoom and Dhurmsala) contain no CCFXe in either mineral. This deficiency must be intrinsic rather than caused by metamorphic loss, because Q in these meteorites still contains substantial amounts of primordial Ne.If CCFXe comes from a supernova, then its distribution in LL-chondrites requires three presolar carrier minerals of the right solubility properties, containing three different xenon components in certain combinations. These minerals must be appropriately distributed over the petrologic types, together with locally produced Q containing primordial gases, and they must be isotopically normal, in contrast to the gases they contain. On the other hand, if CCFXe comes from fission of a volatile superheavy element, then its decrease from LL3 to LL6 can be attributed to progressively less complete condensation from the solar nebula. Ad hoc assumptions must of the host phase Q, its association with ferrichromite and the origin of the associated xenon component enriched in the light isotopes.Soluble minerals in LL3s and LL4s contain a previously unobserved, solar xenon component, which, however, is not derived from the solar wind. Three types of ‘primordial’ xenon thus occur side-by-side in different minerals of the same meteorite: strongly fractionated Xe in ferrichromite and carbon, lightly fractionated Xe in phase Q, and ‘solar’ Xe in solubles. Because the first two can apparently be derived from the third by mass fractionation, it seems likely that all were trapped from the same solar nebula reservoir, but with different degrees of mass fractionation.  相似文献   

9.
A detailed study of the U distribution of the St. Severin chondrite has been made by fission track radiography in order to clarify the interpretation of fission Xe thermal release data in terms of the mineralogical location of the fission Xe within the meteorite. This is of importance because the 244Pu238U ratio for St. Severin has been widely adopted as the average solar system value. The U contents of the constituent minerals cannot account for the total rock U which, instead, appears to be primarily localized on grain boundaries. The greatest localizations of U are in olivine-poor, orthopyroxene-rich ‘clasts’. Our data coupled with those of Podosek (1970a) show that 244Pu in St. Severin was also located on grain boundaries and that the bulk of Pu and U are unfractionated within this meteorite. Due to recoil, the 244Pu fission Xe is found in 10 micron surface layers on major phases. Assuming that the grain boundaries (on which the Pu was located) was formed during metamorphism, the 244Pu238U ratio for St. Severin applies to a time subsequent to the textural recrystallization of the meteorite. Our data support the interpretation of Podosek and our best estimate of the solar system 244Pu238U is 0.015.  相似文献   

10.
Estimations of the fission spectrum in xenon isotopes from the progenitor of the strange carbonaceous-chondrite xenon must take account of p-process nucleosynthesis if the latter is the source of anomalous 124,126Xe. Sample calculations of the p-process yields illustrate the magnitude of the effect, which can greatly increase the estimated 132Xe fission yield.  相似文献   

11.
Three troilite- and pentlandite-rich samples from the Allende C3 chondrite were analyzed for Xe (and in one case Ne and Ar) by mass spectrometry, in 13–22 temperature steps. All samples released a small ‘CCFXe’ component (enriched in the heavy isotopes Xe134, 136) at the relatively low temperature of 700–800°C, ahead of adsorbed atmospheric Xe (~900°C), radiogenic Xe129 (1000°C), and primordial Xe (1250°C). Though such a labile component suggests implanted fission recoils, the simultaneous release of Ne, Ar, and Xe124, 126 shows that it instead comes from carbon and perhaps chromite, two major host phases of CCFXe. Apparently small amounts of these phases are occluded in sulfides, and decompose by chemical reaction upon heating. Thus the experiment fails to resolve the nature of CCFXe.A marked enrichment of Xe124, without corresponding enrichments in Xe126 or Xe131–136, was observed in the 550–650° and 1400–1500° fractions. Though requiring confirmation, it supports earlier evidence for the complexity and variability of the light xenon component, contrary to claims that it is an integral part of CCFXe.  相似文献   

12.
Results of a study of the shell of Nova V2659 Cyg based on spectrophotometric observations carried out over a year and a half after its eruption are presented. The physical conditions in the nova shell have been studied. The electron temperature (9000 K) and density (5 × 106 cm?3) in the nebular stage have been estimated, together with the abundances of helium, oxygen, nitrogen, neon, argon, and iron. The abundances of nitrogen, oxygen, neon, and argon are enhanced relative to the solar values. The relative abundances are [N/H] = 2.26 ± 0.25 dex, [O/H] = 1.66 ± 0.35 dex, [Ne/H] = 0.78 ± 0.25 dex, and [Ar/H] = 0.32 ± 0.38 dex. The estimated mass of oxygen and total mass of the emitting shell are ≈1 × 10?4M and ≈3 × 10?4M, respectively. In the period of chaotic brightness oscillations, the maximum velocity of the shell expansion derived from the radial velocities of the absorption components of the HI and FeII line profiles increased by ≈400 km/s 41 days after the maximum, and by ≈200 km/s 101 days after the maximum, reaching 1600 km/s in both cases.  相似文献   

13.
《Geochimica et cosmochimica acta》1999,63(23-24):3997-4001
Prompted by the finding that the eucrite Piplia Kalan could have retained Pu fission Xe earlier than the eucrites so far studied and hence be very ancient, we have measured a precise internal 147Sm–143Nd isochron for this meteorite. The age and initial Nd ratio relative to CHUR are 4.570 ± 0.023 Ga and −1.3 ± 0.7 ϵu, respectively. A Rb–Sr whole rock (clast) isochron for this meteorite corresponds to an age of 3.963 ± 0.119 Ga and initial 87Sr/86Sr ratio of 0.69902 ± 3. But initial 87Sr/86Sr ratio calculated for an age of 4.57 Ga is 0.698956 ± 25, which is indistinguishable from 0.698970 ± 15 reported for the angrites LEW and ADOR dated at 4.5578 ± 0.0005 Ga. These results indicating that Piplia Kalan could have formed within only a few million years of the earliest condensates in the Solar System are strongly supported by the recent discovery of live 26Al in it.  相似文献   

14.
ABSTRACT

Tongling, in eastern China, is an area well-known for intra-plate adakites. Here, we present the mineral chemistry and zircon U–Pb ages for amphibole cumulate xenoliths, the mineral chemistry of amphibole megacrysts, and the whole–rock chemistry, zircon U–Pb age and Sr–Nd isotopic compositions of host gabbros from Tongling. Zircon U–Pb dating yields a crystallization age of 120.6 ± 1.2 Ma (MSWD = 4.2) for the host gabbros, which are characteristically depleted in high field strength elements (Nb, Ta, and Ti) and enriched in large ion lithophile elements (Ba and Sr), with εNd (t) of ?3.00 to ?4.52 and initial 87Sr/86Sr ratios of 0.7068–0.7072, suggesting an enriched mantle source. Parental melts, as estimated from average amphibole megacryst and cumulate compositions, have Mg# values of 26–33, are enriched in Ba, Th, U, and Nd, and depleted in Nb, Ta, Zr, Hf, and Ti, similar to 136 Ma mafic magmas in Tongling. Zircon U–Pb dating yields a crystallization age of 135.4 ± 1.0 Ma (MSWD = 1.6) for the amphibole cumulates. It is concluded that the Tongling adakitic rocks were formed by polybaric crystallization involving early high-pressure intracrustal fractional crystallization of cumulates comprising hornblende and clinopyroxene, and late low-pressure fractional crystallization of hornblende and plagioclase phenocrysts. The flat subduction of Pacific plate and its subsequent foundering during the Cretaceous may have triggered the generation of extensive adakitic magmas and lithospheric thinning in the Lower Yangtze Region.  相似文献   

15.
Trapped and cosmogenic Ne and Ar were measured in Ca,Al-rich aggregates and chondrules, mafic chondrules, and bulk and matrix samples from the Allende C3V chondritic meteorite to investigate the possible occurrence of anomalous isotopic compositions of noble gases that would correlate with oxygen or magnesium isotopic anomalies previously found in this meteorite.Large enrichments of both 22Ne and 36Ar were observed in low-temperature release fractions from several Ca,Al-rich inclusions, but the enrichments are consistent with galactic cosmic-ray production of 22Ne by spallation from sodium and 36Ar by neutron capture on chlorine. Trapped neon in matrix samples is comprised of two distinctive compositions, with (20Ne/22Ne)t equal to 8.7 ± 0.1 and 10.4 ± 1.0, that appear to correlate with the two gas-rich trace phases chromite/carbon and ‘Q’ described by Lewis et al. (1975). Several Ca,Al-rich aggregates which have high contents of the volatile elements Na, Cl, K, and Rb also contain trapped neon. However, no neon-E has been identified in any of the samples studied, including samples of several inclusions known to contain isotopically anomalous oxygen and magnesium.  相似文献   

16.
New data on the U, Pu, and P distributions in less metamorphosed H-chondrites (type 3–5), coupled with literature results, permit a provisional picture to be assembled of the chemistry of these elements and for the rare earth elements in ordinary chondrites and the changes brought about by chondritic metamorphism. Preferential associations of phosphates with metals and/or sulndes in all chondrites strongly indicate an “initially” siderophile or conceivably chalcophile character for P in ordinary chondrite precursor materials with phosphate subsequently formed by oxidation. This oxidation occurred prior to or during chondritic metal-silicate fractionation. Uranium is initially concentrated in chondrule glass at ~ 100 ppb levels with phosphates (primarily merrillite) in H-3 chondrites being essentially U-free (<20 ppb). As chondrule glass devitrified during metamorphism, U migrated into phosphates reaching ~ 50 ppb in Nadiabondi (H-5) merrillite and 200–300 ppb in merrillite from equilibrated chondrites but “froze out” before total concentration in phosphates occurred. Relative 244Pu fission track densities in the outer 5 μm of olivine and pyroxene grains in contact with merrillite and with chondrule mesostasis in Bremervörde (H-3) give Pu(mesostasis)/Pu(merrillite) <0.01, implying total concentration of Pu in phosphates. Similarly, no detectable Pu (<0.1 ppb) was found in chondrule mesostasis in Tieschitz and Sharps; whereas, direct measurements of tracks in phosphates in H-3 chondrites are consistent with high (?10 ppb) Pu concentrations. Thus, a strong Pu-P correlation is indicated for ordinary chondrites. There is variable Pu/U fractionation in all chondritic phosphates reaching an extreme degree in the unequilibrated chondrites; therefore, the Pu/U ratio in phosphates appears relatively useless for relative meteorite chronology. Literature data indicate that the REE are located in chondrules in unequilibrated chondrites, most likely in glass; thus there may also be strong Pu/Nd fractionation within these meteorites. Like U, the REE migrate into phosphates during metamorphism but, unlike U, appear to be quantitatively concentrated in phosphates in equilibrated chondrites. Thus relative ages, based on Pu/Nd, may be possible for equilibrated chondrites, but the same chronological conclusions are probably obtainable from Pu concentrations in phosphates, i.e., on the Pu/P ratio. However, Pu/P chronology is possible only for ordinary chondrites; so there appears to be no universal reference element to cancel the effects of Pu chemical fractionation in all meteorites. Available data are consistent with — but certainly do not prove-that variations in Pu/P represent age differences, but if these age differences do not exist, then it is conceivable that the solar system 244Pu238U ratio, important for cosmochronology, is still lower than the presently accepted value of 0.007.  相似文献   

17.
Fission track annealing experiments for vermiculite mineral have been performed under optimised etching conditions and a correction curve translating track length reduction to track density reduction has been constructed. The blocking/closing temperature of the fission track system in the mineral has been calculated to be 125°±30° C. The corrected fission track age of vermiculite from Kasipatnam (Visakhapatnam), South India, has been calculated as 544±14 Ma. The activation energy and average uranium concentration of the mineral are 1.7 eV and 9.9×10?8 gg?1 respectively.  相似文献   

18.
This paper presents a detailed survey of the activities of selected man-made radionuclides in peat deposits located in SW Spitsbergen. Peat cores from the High Arctic (SW Spitsbergen) were analyzed by gamma spectrometry (137Cs), alpha spectrometry (238Pu, 239,240Pu, 241Am activities) and by ICPMS (240Pu/239Pu atom ratios). Maximum activities evident in the peats correspond to the 1963/1964 global maximum fallout from atmospheric testing of nuclear weapons; some of the activity profiles have been altered post-deposition by water infiltration. Activity ratios of 238Pu/239+240Pu, 241Am/239+240Pu, 239+240Pu/137Cs and 240Pu/239Pu atom ratios indicate mixing between global (stratospheric) and regional (tropospheric) sources of these radionuclides in the Svalbard area. The 238Pu/239+240Pu activity ratios varied from 0.02 ± 0.01 to 0.09 ± 0.03, suggesting global fallout as the dominant source of Pu. The 239+240Pu/137Cs activity ratios varied from 0.01 ± 0.01 to 0.42 ± 0.11, which apparently arises from the post-depositional mobility of 137Cs. The 241Am/239+240Pu activity ratios ranged between 0.10 ± 0.02 and 1.5 ± 0.3 and exceed the published global fallout ratio for Svalbard of 0.37 due to the relatively higher geochemical mobility of Pu vs. Am and/or ingrowth of Am from the decay of 241Pu. The atom ratio 240Pu/239Pu ranged from 0.142 ± 0.006 to 0.241 ± 0.027; however, the vast majority of peat samples exhibited 240Pu/239Pu atom ratios similar to the stratospheric fallout (∼0.18).  相似文献   

19.
Using fission and alpha track radiography techniques, we have measured partition coefficients (D) for the actinide elements Th, U and Pu between diopsidic clinopyroxene, whitlockite [β-Ca3 (PO4)2] and silicate liquid at 20kbar. Equilibrium partitioning at the crystal-liquid interface is assumed, and corrections for actinide zoning have been applied to the measured D values. Reproducibility for both actinide and minor element D values is carefully examined as a criterion for crystal-liquid interface equilibrium. The data are mostly compatible with interface equilibrium except for experiments at high cooling rates ( ? 30 deg/hr). Partition coefficients for Th/U/Pu of about 0.002/0.002/0.06 are measured for clinopyroxene and 1.2/0.5/3.4 for whitlockite. At an oxygen fugacity of 10?8.5, Pu is much more readily incorporated into the crystalline phases than is U or Th because of the importance of trivalent Pu. The DPu(cpx) is similar to D(cpx) of the light rare earths supporting the concept of Pu/(rare earth) dating.  相似文献   

20.
The Penglaitan section, as the Global Stratotype Section for the Guadalupian–Lopingian boundary (GLB), displays continuous deposition with a complete succession of pelagic conodont zones across the GLB. However, there is no reliable radiometric age from the Penglaitan section itself to constrain the GLB. Here, we report SIMS zircon U‐Pb ages from two bentonite layers (Bed 7c) in the Penglaitan Global Stratotype Section near the GLB. The sample PL‐62‐1 yields a weighted mean 238U/206Pb age of 257.1 ± 2.2 Ma, and the sample PL‐62‐2 yields a weighted mean 206Pb/238U age of 257.0 ± 4.2 Ma. Therefore, we consider 257.0–257.1 Ma as the age of deposition of Bed 7c (the end of the C. postbitteri postbitteri conodont Zone, ca. 86 cm above the GLB), and, considering the depositional rate of chert, we suggest 258.6 Ma as the age of the GLB. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号