首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E. Lellouch  B. Schmitt  J.-G. Cuby 《Icarus》2004,168(1):209-214
We report on repeated mid-resolution (R∼2000) spectroscopic observations of Titan, acquired between November 2002 and January 2003 with ISAAC at the ESO/VLT and covering the 4.84-5.05 μm range. These observations, which sample four different positions of Titan around Saturn, clearly indicate a variability of the 5-μm continuum albedo, with Titan's geometric albedo decreasing by ∼40% from Titan's leading side to the trailing side. This Titan 5-μm “lightcurve” appears to be in phase with the other near-infrared lightcurves. This can be understood in terms of a surface model in which water ice coexists in minor and variable proportions (13-25%, if pure) with a second, dark, component.  相似文献   

2.
Titan's bulk density along with Solar System formation models indicates considerable water as well as silicates as its major constituents. This satellite's dense atmosphere of nitrogen with methane is unique. Deposits or even oceans of organic compounds have been suggested to exist on Titan's solid surface due to UV-induced photochemistry in the atmosphere. Thus, the composition of the surface is a major piece of evidence needed to determine Titan's history. However, studies of the surface are hindered by the thick, absorbing, hazy and in some places cloudy atmosphere. Ground-based telescope investigations of the integral disk of Titan attempted to observe the surface albedo in spectral windows between methane absorptions by calculating and removing the haze effects. Their results were reported to be consistent with water ice on the surface that is contaminated with a small amount of dark material, perhaps organic material like tholin. We analyze here the recent Cassini Mission's visual and infrared mapping spectrometer (VIMS) observations that resolve regions on Titan. VIMS is able to see surface features and shows that there are spectral and therefore likely compositional units. By several methods, spectral albedo estimates within methane absorption windows between 0.75 and 5 μm were obtained for different surface units using VIMS image cubes from the Cassini-Huygens Titan Ta encounter. Of the spots studied, there appears to be two compositional classes present that are associated with the lower albedo and the higher albedo materials, with some variety among the brighter regions. These were compared with spectra of several different candidate materials. Our results show that the spectrum of water ice contaminated with a darker material matches the reflectance of the lower albedo Titan regions if the spectral slope from 2.71 to 2.79 μm in the poorly understood 2.8-μm methane window is ignored. The spectra for brighter regions are not matched by the spectrum of water ice or unoxidized tholin, in pure form or in mixtures with sufficient ice or tholin present to allow the water ice or tholin spectral features to be discerned. We find that the 2.8-μm methane absorption window is complex and seems to consist of two weak subwindows at 2.7 and 2.8 μm that have unknown opacities. A ratio image at these two wavelengths reveals an anomalous region on Titan that has a reflectance unlike any material so far identified, but it is unclear how much the reflectances in these two subwindows pertain to the surface.  相似文献   

3.
We report on mid-resolution (R∼2000) spectroscopic observations of Titan, acquired in November 2000 with the Very Large Telescope and covering the range 4.75-5.07 μm. These observations provide a detailed characterization of the CO (1-0) vibrational band, clearly separating for the first time individual CO lines (P10 to P19 lines of 13CO). They indicate that the CO/N2 mixing ratio in Titan’s troposphere is 32±10 ppm. Comparison with photochemical models indicates that CO is not in a steady state in Titan’s atmosphere. The observations confirm that Titan’s 5-μm continuum geometric albedo is ∼0.06, and further indicates a ∼20% albedo decrease over 4.98-5.07 μm. Nonzero flux is detected at the 0.01 geometric albedo level in the saturated core of the 12CO (1-0) band, at 4.75-4.85 μm, providing evidence for backscattering on the stratospheric haze. Finally, emission lines are detected at 4.75-4.835 μm, coinciding in position with lines from the CO(1-0) and/or CO(2-1) bands. Matching them by thermal emission would require Titan’s stratosphere to be much warmer (by ∼ 25 K at 0.1 mbar) than indicated by the methane 7.7-μm emission and the Voyager radio-occultation. We show instead that a nonthermal mechanism, namely solar-excited fluorescence, is a more plausible source for these emissions. Improved observations and laboratory measurements on the vibrational-translational relaxation of CO are needed for further interpretation of these emissions in terms of a CO stratospheric mixing ratio.  相似文献   

4.
Titan was observed in four broad passbands between 35 and 150 μm. The brightness temperature in this interval is roughly constant at 76 ± 3°K. Integrating Titan's spectrum from 5 to 150 μm yields an effective temperature of 86 ± 3°K. Both the bright and dark hemispheres of Iapetus were observed in one broadband filter with λe ~ 66 μm. The brightness temperatures for these two sides of Iapetus are 96 ± 9°K and 114 ± 10°K, respectively. The bright-side Bond albedo is calculated to be 0.61?0.22+0.16.  相似文献   

5.
Cassini observations of the surface of Titan offer unprecedented views of its surface through atmospheric windows in the 1-5 μm region. Images obtained in windows for which the haze opacity is low can be used to derive quantitative photometric parameters such as albedo and albedo distribution, and physical properties such as roughness and particle characteristics. Images from the early Titan flybys, particularly T0, Ta, and T5 have been analyzed to create albedo maps in the 2.01 and 2.73 μm windows. We find the average normal reflectance at these two wavelengths to be 0.15±0.02 and 0.035±0.003, respectively. Titan's surface is bifurcated into two albedo regimes, particularly at 2.01 μm. Analysis of these two regimes to understand the physical character of the surface was accomplished with a macroscopic roughness model. We find that the two types of surface have substantially different roughness, with the low-albedo surface exhibiting mean slope angles of ∼18°, and the high-albedo terrain having a much more substantial roughness with a mean slope angle of ∼34°. A single-scattering phase function approximated by a one-term Henyey-Greenstein equation was also fit to each unit. Titan's surface is back-scattering (g∼0.3-0.4), and does not exhibit substantially different backscattering behavior between the two terrains. Our results suggest that two distinct geophysical domains exist on Titan: a bright region cut by deep drainage channels and a relatively smooth surface. The two terrains are covered by a film or a coating of particles perhaps precipitated from the satellite's haze layer and transported by eolian processes. Our results are preliminary: more accurate values for the surface albedo and physical parameters will be derived as more data is gathered by the Cassini spacecraft and as a more complete radiative transfer model is developed from both Cassini orbiter and Huygens Lander measurements.  相似文献   

6.
An attempt to evaluate the preliminary values of the Titan's surface albedo at 2 μm from the first Cassini-VIMS observations of the moon is presented. The methodology is based on the application of radiative transfer calculations and a microphysical model of the Titan atmosphere based on fractal aerosol. As a first guess, the surface has been considered flat and lambertian. The results are presented as a function of the geographical coordinates associated to the image pixels. The libRadtran package, using the radiative transfer equation solver DISORT 2.0, has been applied for the calculations. A test run to evaluate the model performances, using ground based observations of Titan as reference in the range of wavelengths 0.3-1.0 μm, has been carried out.The retrieved values of the surface albedo range between 0.03 and 0.22.  相似文献   

7.
We quantify the charge states of submicrometer aerosols and aromatic macromolecules in Titan's organic haze. The aerosol charge is balanced between the recombination of positive ions with the aerosol plus the ejection of electrons from the aerosol via the UV-driven photoelectric effect and the recombination of electrons with the aerosol. During the day, the dominant charge state for submicro-meter aerosols is positive. Macromolecules composed of fewer than 32 carbon atoms with low electron affinities (<1.0 eV) are neutral, while the rest are mainly neutral and negatively charged with a small fraction (∼10%) becoming positively charged at higher (≥300 km) altitudes. At night, Titan's aerosol population becomes uniformly neutral and negatively charged. The time taken for a nighttime aerosol to change from being negatively charged to its most probable daytime positive charge is on the order of a few seconds for the largest submicrometer aerosols, while macromolecules tend to persist in an anionic charge state for one to several Earth days. Charging strongly influences aerosol agglomeration via Coulomb attraction and may account for the seasonal variations in the albedo of the Titan haze at midrange (∼200-250 km) altitudes. Enhanced agglomeration may also efficiently produce a source of condensation nuclei for the daily rainout of methane. In addition, the difference in aerosol charge between Titan's day and night (or summer and winter) phases will produce dramatically different chemistries which must be accounted for in future photochemical models. Finally, if there are PAH-like macromolecules in the Titan haze, Cassini Huygens should be able to observe these charge differences, with neutral macromolecules emitting strongly at 3.3 and 11.2 μm, cationic macromolecules emitting between 6.2 and 8.6 μm, and anionic macromolecules emitting in both infrared spectral regions.  相似文献   

8.
Hutzell WT  McKay CP  Toon OB  Hourdin F 《Icarus》1996,119(1):112-129
We have used a 2-D microphysics model to study the effects of atmospheric motions on the albedo of Titan's thick haze layer. We compare our results to the observed variations of Titan's brightness with season and latitude. We use two wind fields; the first is a simple pole-to-pole Hadley cell that reverses twice a year. The second is based on the results of a preliminary Titan GCM. Seasonally varying wind fields, with horizontal velocities of about 1 cm sec-1 at optical depth unity, are capable of producing the observed change in geometric albedo of about 10% over the Titan year. Neither of the two wind fields can adequately reproduce the latitudinal distribution of reflectivity seen by Voyager. At visible wavelengths, where only haze opacity is important, upwelling produces darkening by increasing the particle size at optical depth unity. This is due to the suspension of larger particles as well as the lateral removal of smaller particles from the top of the atmosphere. At UV wavelengths and at 0.89 micrometers the albedo is determined by the competing effects of the gas the haze material. Gas is bright in the UV and dark at 0.89 micrometers. Haze transport at high altitudes controls the UV albedo and transport at low altitude controls the 0.89 micrometers albedo. Comparisons between the hemispheric contrast at UV, visible, and IR wavelengths can be diagnostic of the vertical structure of the wind field on Titan.  相似文献   

9.
We present observations of a local dust storm performed by the OMEGA and PFS instruments aboard Mars Express. OMEGA observations are used to retrieve the dust single-scattering albedo in the spectral range 0.4-4.0 μm. The single-scattering albedo shows fairly constant values between 0.6 and 2.6 μm, and a sharp decrease at wavelengths shorter than 0.6 μm, in agreement with previous studies. It presents a small absorption feature due to ferric oxide at 0.9 μm, and a strong absorption feature due to hydrated minerals between 2.7 and 3.6 μm. We use a statistical method, the Independent Component Analysis, to determine that the dust spectral signature is decoupled from the surface albedo, proving that the retrieval of the single-scattering albedo is reliable, and we map the dust optical thickness with a conventional radiative transfer model. The effect of the dust storm on the atmospheric thermal structure is measured using PFS observations. We also simulate the thermal impact of the dust storm using a one-dimensional atmospheric model. A comparison of the retrieved and modeled temperature structures suggests that the dust in the storm should be confined to the 1-2 lowest scale heights of the atmosphere. However, the observed OMEGA reflectance in the CO2 absorption bands does not support this suggestion.  相似文献   

10.
We present near-infrared spectrometer (NIS) observations (0.8 to 2.4 μm) of the S-type asteroid 433 Eros obtained by the NEAR Shoemaker spacecraft and report results of our Hapke photometric model analysis of data obtained at phase angles ranging from 1.2° to 111.0° and at spatial resolutions of 1.25×2.5 to 2.75×5.5 km/spectrum. Our Hapke model fits successfully to the NEAR spectroscopic data for systematic color variations that accompany changing viewing and illumination geometry. Model parameters imply a geometric albedo at 0.946 μm of 0.27±0.04, which corresponds to a geometric albedo at 0.550 μm of 0.25±0.05. We find that Eros exhibits phase reddening of up to 10% across the phase angle range of 0-100°. We observe a 10% increase in the 1-μm band depth at high phase angles. In contrast, we observe only a 5% increase in continuum slope from 1.486 to 2.363 μm and essentially no difference in the 2-μm band depth at higher phase angles. These contrasting phase effects imply that there are phase-dependent differences in the parametric measurements of 1- and 2-μm band areas, and in their ratio. The Hapke model fits suggest that Eros exhibits a weaker opposition surge than either 951 Gaspra or 243 Ida (the only other S-type asteroids for which we possess disk-resolved photometric observations). On average, we find that Eros at 0.946 μm has a higher geometric albedo and a higher single-scatter albedo than Gaspra or Ida at 0.56 μm; however, Eros's single-particle phase function asymmetry and average surface macroscopic roughness parameters are intermediate between Gaspra and Ida. Only two of the five Hapke model parameters exhibit a notable wavelength dependence: (1) The single-scatter albedo mimics the spectrum of Eros, and (2) there is a decrease in angular width of the opposition surge with increasing wavelength from 0.8 to 1.7 μm. Such opposition surge behavior is not adequately modeled with our shadow-hiding Hapke model, consistent with coherent backscattering phenomena near zero phase.  相似文献   

11.
A spectrophotometric observational study of the Galilean satellites and Titan was carried out at 0.004-μm (40-Å) resolution over the spectral range 0.32 to 0.86 μm. A standard lunar area was used as a primary spectroscopic standard to establish the relative reflection spectra of the objects by ratioing the sky-corrected satellite spectra to the standard area on the Moon. J1 (Io) is found to have a spectral edge at 0.33 μm that has not been previously reported. The increase in reflectivity from 0.4 to 0.5 μm and the band at 0.56 μm are confirmed. A weak band at 0.56 μm is probable on J2 (Europa) and possible on J3 (Ganymede). J4 (Callisto) shows no spectral features that have not been previously reported. On Titan, no temporal variations in the methane bands greater than 2% were found, indicating that the effective path length in the Titan atmosphere did not change over the 3-month period of this study. A new absorption band of methane at 0.68 μm was found on Titan. We propose an extension of the evaporite model of Fanale et al. (1974, 1977) and the sulfur mixing models of Wamsteker et al. (1974) in which the primary constituent of the surface of J1 is elemental sulfur sublimated onto the surface by photodissociation of hydrogen sulfide outgassing from the interior. The sulfur is continually renewed by sublimation, sputtering, and redeposition. At low temperatures irradiation produces stable S2, S3, S4, S6, and long chain polymers. Some of these allotropes have an edge at 0.33 μm, a rising reflectance between 0.4 and 0.5 μm a band at 0.56 μm. All of these features are found in the spectrum of J1. We conclude that the lunar ratioing technique used in this study is well suited for determining the relative reflection spectra of solar system objects.  相似文献   

12.
Robert L. Younkin 《Icarus》1974,21(3):219-229
The irradiance of Titan has been measured from 0.50 to 1.08μ in 30 Å band-passes spaced 0.01–0.02μ apart. Geometric albedos have been computed at the wavelenghts of measurement using a standard solar flux distribution after Labs and Neckel. The maximum value of pλ(0) is 0.37 at 0.68, 0.75, and 0.834μ, the minimum value, in the centers of the strongest methane absorption bands, is 0.10 at 0.887 and 1.012μ.The brightness of Titan at the time of the present measurements has been compared with that of previous modern photoelectric measurements. Within the apparent consistency of the different photoelectric systems, the brightness of Titan appears to undergo changes with time.A provisional curve of the geometric albedo from 0.30 to 4.0μ has been made by combining the present results with those of other authors, i.e., relative measurements of Titan from 0.30 to 0.50μ, and measurements of Jupiter and Saturn from 1.08 to 4.00μ. The latter are used to estimate the strengths of the methane absorption bands of Titan in that spectral range. The bolometric geometric albedo, p1(0), is computed to be 0.21. A variety of current measurements of Titan indicate a substantial atmosphere, suggesting a value of the phase integral q = 1.30 ± 0.20. The bolometric Bond albedo, A1, is then 0.27 ± 0.04, giving an effective radiative temperature Te= 84 ± 2°K.The absorption band contours of Titan have been compared with those of Jupiter and Saturn at the same resolution. The bands of the planets are known to be due primarily to methane, and they show a very regular relationship, with those of Saturn being consistently deeper and wider. For Titan, the strengths of the bands are equal or less than those of Jupiter in the band centers, while the wings are stronger than those of Saturn.Previous photoelectric and photographic spectra have been examined for evidence of temporal variation of the methane path length in the atmosphere of Titan. Differences in measurement techniques prohibit detection of small differences. The only potential differences beyond experimental uncertainties are those of Kuiper (1944) and Harris (mid-fifties). Taking Kuiper's results at face value, Titan appears to have a shorter methane path length in 1972. Harris's results can be reconciled only by the doubtful hypothesis of an almost complete absence of methane at that time.  相似文献   

13.
We have acquired resolved images of Titan with the adaptive optics systems PUEO/KIR at the CFHT (Hawaii) and NAOS/CONICA at the VLT (Chile). We report here on images and maps (when data at several orbital phases are available) of Titan's surface from observations taken during the last 4 years (2001-2004) in all the methane windows between 1 and 2.5 μm (namely, at 1.08, 1.28, 1.6, and 2 μm). We present the only complete maps of Titan currently available at 1.3 μm, a spectral window where Titan appears particularly bright in spectroscopy, with a resolution of about 200 km at best on the ground. Our surface maps show the bright and dark regions sharing Titan's landscape with as much detail as possible from the ground and with high contrast in most cases. From the information gathered by comparing the maps at different wavelengths we derive constraints on the ground's composition. Our results could complete/optimize the return of the Cassini-Huygens mission.  相似文献   

14.
The near-infrared spectrum of Titan, Saturn's largest moon and one of the Cassini/Huygens' space mission primary targets, covers the 0.8 to 5 micron region in which it shows several weak CH4 absorption regions, and in particular one centered near 2.75 micron. Due to the interference of telluric absorption, only part of this window region (2.9-3.1 μm) has previously been observed from the ground [Noll, K.S., Geballe, T.R., Knacke, R., Pendleton, F., Yvonne, J., 1996. Icarus 124, 625-631; Griffith, C.A., Owen, T., Miller, G.A., Geballe, T., 1998. Nature 395, 575-578; Griffith, C.A., Owen, T., Geballe, T.R., Rayner, J., Rannou, P., 2003. Science 300, 628-630; Geballe, T.R., Kim, S.J., Noll, K.S., Griffith, C.A., 2003. Astrophys. J. 583, L39-L42]. We report here on the first spectroscopic observations of Titan covering the whole 2.4-4.9 μm region by two instruments on board the Infrared Space Observatory (ISO) in 1997. These observations show the 2.75-μm window in its complete extent for the first time. In this study we have also used a high-resolution Titan spectrum in the 2.9-3.6 μm region taken with the Keck [Geballe, T.R., Kim, S.J., Noll, K.S., Griffith, C.A., 2003. Astrophys. J. 583, L39-L42; Kim, S.J., Geballe, T.R., Noll, K.S., Courtin, R., 2005. Icarus 173, 522-532] to infer information on the atmospheric parameters (haze extinction, single scattering albedo, methane abundance, etc.) by fitting the methane bands with a detailed microphysical model of Titan's atmosphere (updated from Rannou, P., McKay, C.P., Lorenz, R.D., 2003. Planet. Space Sci. 51, 963-976). We have included in this study an updated version of a database for the CH4 absorption coefficients [STDS, Wenger, Ch., Champion, J.-P., 1998. J. Quant. Spectrosc. Radiat. Transfer 59, 471-480. See also http://www.u-bourgogne.fr/LPUB/TSM/sTDS.html for latest updates; Boudon, V., Champion, J.-P., Gabard, T., Loëte, M., Michelot, F., Pierre, G., Rotger, M., Wenger, Ch., Rey, M., 2004. J. Mol. Spectrosc. 228, 620-634]. For the atmosphere we find that (a) the haze extinction profile that best matches the data is one with higher (by 40%) extinction in the atmosphere with respect to Rannou et al. (2003) down to about 30 km where a complete cut-off occurs; (b) the methane mixing ratio at Titan's surface cannot exceed 3% on a disk-average basis, yielding a maximum CH4 column abundance of 2.27 km-am in Titan's atmosphere. From the derived surface albedo spectrum in the 2.7-3.08 micron region, we bring some constraints on Titan's surface composition. The albedo in the center of the methane window varies from 0.01 to 0.08. These values, compared to others reported in the other methane windows, show a strong compatibility with the water ice spectrum in the near-infrared. Without confirming its existence from this work alone, our data then appear to be compatible with water ice. A variety of other ices, such as CO2, NH3, tholin material or hydrocarbon liquid cannot be excluded from our data, but an additional unidentified component with a signature around 2.74 micron is required to satisfy the data.  相似文献   

15.
The interpretation of mid-UV albedo spectra of planetary atmospheres, especially that of Titan, is the main goal of the SIPAT (Spectroscopie uv d'Interet Prebiologique dans l'Atmosphere de Titan) research program. This laboratory experiment has been developed in order to systematically determine the absorption coefficients of molecular compounds which are potential absorbers of scattered sunlight in planetary atmospheres, with high spectral resolution, and at various temperatures below room temperature. From photochemical modelling and experimental simulations, we may expect triacetylene (C6H2) to be present in the atmosphere of Titan, even though it has not yet been detected. We present here the first determination of the absolute absorption coefficient of that compound in the 200-300 nm range and at two temperatures (296 K and 233 K). The temperature dependence of the C6H2 absorption coefficient in that wavelength range is compared to that previously observed in the case of cyanoacetylene (HC3N). We then discuss the implications of the present results for the interpretation of Titan UV spectra, where it appears that large uncertainities can be introduced either by the presence of trace impurities in laboratory samples or by the variations of absorption coefficients with temperature.  相似文献   

16.
The edge-on presentation of Saturn's rings and satellites system has provided a rare opportunity to observe total eclipses of Titan. During its emersion from the Saturnian shadow (1980, June 28), Titan has been observed simultaneously in the visible and the infrared ranges (6000–9000 Å, 11.8 μm and 20 μm). No change has been recorded in these three spectral ranges. Our observations tend to support the thick-atmosphere model, which has been shown to be valid by Voyager a few months later.  相似文献   

17.
Measurements at Lowell Observatory of Titan in the b (472 nm) and y (551 nm) filters of the Strömgren photometric system at thirty four consecutive apparitions (282 nights) from 1971/72 to 2006 show a 10% sinusoidal variation that lags seasonal extremes by about 1/8 of a Titan year. The seasonal variations are asymmetric: the autumn lightcurve maxima of the northern and southern hemispheres differ significantly as do the spring lightcurve minima. Changes also occur from one Titan year to the next: Titan was ∼3% fainter in b and ∼1% fainter in y following the 2002 southern summer solstice than it was one Titan year earlier in 1973. These changes appear to be intrinsic to Titan's atmosphere and cannot be explained by instrumental effects and changing geometries. Orbital variations visible in recent Hubble Space Telescope images at 673 nm and Voyager orange images (590–640 nm) may have a small (0.002±0.001 mag) counterpart in the b, y photometric record (eastern elongation brighter, consistent with the Cassini near-infrared albedo map).  相似文献   

18.
M. Podolak  R.E. Danielson 《Icarus》1977,30(3):479-492
The scattering and absorption properties of Axel dust were investigated by means of Mie theory. We find that a flat distribution of particle radii between 0 and 0.1 μm, and an imaginary part of the index of refraction which varies as λ?2.5 produce a good fit to the variation of Titan's geometric albedo with wavelength (λ) provided that τext, the extinction optical depth of Titan's atmosphere at 5000 Å, is about 10. The real part of the complex index is taken to be 2.0. The model assumes that the mixing ratio of Axel dust to gas is uniform above the surface of Titan. The same set of physical properties for Axel dust also produces a good fit to Saturn's albedo if τext = 0.7 at 5000 Å. To match the increase in albedo shortward of 3500 Å, a clear layer (containing about 7 km-am H2) is required above the Axel dust. Such a layer is also required to explain the limb brightening in the ultraviolet. These models can be used to analyze the observed equivalent widths of the visible methane bands. The analysis yields an abundance of the order of 1000 m-am CH4 in Titan's atmosphere. The derived CH4/H2 mixing ratio for Saturn is about 3.5 × 10?3 or an enhancement of about 5 over the solar ratio.  相似文献   

19.
We present results from 14 nights of observations of Titan in 1996-1998 using near-infrared (centered at 2.1 microns) speckle imaging at the 10-meter W.M. Keck Telescope. The observations have a spatial resolution of 0.06 arcseconds. We detect bright clouds on three days in October 1998, with a brightness about 0.5% of the brightness of Titan. Using a 16-stream radiative transfer model (DISORT) to model the central equatorial longitude of each image, we construct a suite of surface albedo models parameterized by the optical depth of Titan's hydrocarbon haze layer. From this we conclude that Titan's equatorial surface albedo has plausible values in the range of 0-0.20. Titan's minimum haze optical depth cannot be constrained from this modeling, but an upper limit of 0.3 at this wavelength range is found. More accurate determination of Titan's surface albedo and haze optical depth, especially at higher latitudes, will require a model that fully considers the 3-dimensional nature of Titan's atmosphere.  相似文献   

20.
The surface composition of Titan is of great importance for understanding both the internal evolution of Titan and its atmosphere. The Visual and Infrared Mapping Spectrometer (VIMS) investigation on Cassini is observing Titan from 0.35 to 5.11 μm with spatial resolution down to a few kilometers during each flyby of the spacecraft as it orbits Saturn. Our search for spectral diversity using seven methane transmission windows in the near infrared suggests that spectrally distinct units exist on the surface of Titan and that most of the surface can be modeled using only a few distinct spectral units: water frost, CO2 frost, atmospheric scattering, and an unknown material bright at 2 μm. A dark, spectrally neutral material is also implied. Use of an atmospheric scattering component with spectral mixing analysis may provide a method for partially removing atmospheric effects. In some locations, atmospheric scattering accounts for the majority of the signal. There are also small regions with unusual spectra that may be due to low signal and high noise and/or may be exotic materials of interest. Further, we searched within the methane windows for spectral features associated with Titan's surface. Only the 5-μm and, to a lesser extent, the 2-μm window provide a reasonable opportunity for this, as the shorter-wavelength windows are too narrow and the 2.8-μm window is cluttered with an unknown atmospheric constituent. We find evidence for only one spectral feature: near 4.92 μm for the 5-μm bright Tui Regio region. CO2 frost with grains smaller than about 10 μm is the best candidate we have found so far to explain this absorption as well as the feature's spectral contrast between the 2.7- and the 2.8-μm atmosphere subwindows. This suggested CO2 identification is supported by the presence of an endmember in the spectral mixture analysis that is consistent with CO2 frost with large grain sizes. We find no other absorption features that are statistically significant, including those reported earlier by others. These results are consistent with but greatly extend our early analysis that treated only the Ta data set [McCord, T.B., et al., 2006a. Planet. Space Sci. 54, 1524-1539]. In the spectral feature search process, we explored in detail the noise characteristics of the VIMS data within the 5-μm window, which has generally very low signal (4-20 DN), due to the measurement conditions and low illumination levels. We find noise of nearly Gaussian statistics except for some erratic darks and noise spikes, and the data set seems generally well behaved. We present examples of our attempt to improve on the standard VIMS pipeline data calibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号