首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. Filiberto 《Icarus》2008,197(1):52-59
Element abundance ratios have been used to both distinguish terrestrial and martian basalts and make estimates on the bulk planetary chemistry. However, these estimates are based upon ratios that are assumed to have been unaffected by igneous processes. Since the extent to which this is valid is unknown, comparisons of terrestrial and martian rocks are best conducted on rocks with similar mineralogy and petrology, and therefore a good likelihood of similar crystallization histories. When the geochemistry of terrestrial ferropicrites is compared with the olivine-phyric and basaltic shergottites, previously observed differences in chemistry are no longer definitive (i.e. Mg/Si, Al/Si, Ca/Si, Fe/Si, FeO/MnO, Al/Ti, Na/Ti, Na/Al, K/La, K/Rb, K/Th, K/U, Th/U ratios). Since ferropicrites are geochemical terrestrial analogs for the shergottites, their formation history can provide useful information about the formation of the shergottites. This suggests that both ferropicrites and shergottites formed from a heavily processed mantle source region.  相似文献   

2.
Within Gusev Crater and Meridiani Planum on Mars, the Mars exploration rovers have found Br concentrations in soils and rocks in the hundreds of ppm range. Relative to Earth compositions, these are high Br concentrations. Because of low Br concentrations on Earth, Br largely precipitates from seawater as a minor constituent in halite crystals rather than as a separate phase mineral. This is also likely to be the case for Mars. But given that the surface chemistries on Mars are significantly different than on Earth, minerals other than halite could serve as sinks for Br. The specific objectives of this paper were to (1) incorporate Br solution phase chemistries into the FREZCHEM model, (2) integrate the Siemann–Schramm Br/Cl mineral model into FREZCHEM, and (3) apply this mineral model to Br/Cl partitioning in Burns formation rocks as an indicator of past environments in the Meridiani Planum region of Mars. We showed that: (1) a molar-based model for Br substitution into halite and bischofite provided a better fit to experimental data than the standard mass-based model; (2) the concentrations of all of the soluble salts (mainly of Na, Mg, Ca, Cl, Br, and SO4) in the Burns formation, except for Ca, were significantly related to stratigraphic depth; (3) the likely precipitation of Ca as gypsum on Mars precluded Ca precipitating as a CaCl2 salt and thus impacts the possible minimum eutectic brine temperatures relevant to the Burns formation; (4) bischofite (MgCl2⋅6H2O) was a much more important sink for Br than halite; (5) Br/Cl patterns in the Burns formation, and within the three formation layers, argued in support of salt upwelling through groundwater evaporation; and (6) the high concentrations of Br in the surface layers of the Burns formation suggested that there was little water leaching and removal of soluble phases from the upper part of the stratigraphic succession.  相似文献   

3.
A model for shock-lithification of terrestrial and lunar regolith is proposed that accounts for: (1) observed petrographic properties and densities of shock-lithified material from missile impact craters at White Sands, New Mexico and from Meteor Crater, Arizona; (2) observed petrographic textures of lunar soil and lunar soil analogues experimentally shocked to known pressures in laboratory experiments; (3) theoretical calculations of the behavior of air and water under shock compression; and (4) measured Hugoniot and release adiabat data on dry and wet terrestrial soils and lunar regolith. In this model it is proposed that air or an air-water mixture initially in the pores of terrestrial soil affects the behavior of the soil-air-water system under shock-loading. Shock-lithified rocks found at Meteor Crater are classified as ‘strongly lithified’ and ‘weakly lithified’ on the basis of their strength in hand specimen; only weakly lithified rocks are found at the missile impact craters. These qualitative strength properties are related to the mechanisms of bonding in the rocks. The densities of weakly lithified samples are directly related to the pressures to which they were shock-loaded. A comparison of the petrographic textures and densities of weakly lithified samples with textures and densities of ‘regolith’ shock-loaded to known pressures suggests that weakly lithified terrestrial samples formed at pressures well under 100 kb, probably under 50 kb. If terrestrial soils are shock-loaded to pressures between 100 and 200 kb by impact events of short duration, the pore pressure due to hot air or air-water mixtures exceeds the strength of the weak lithification mechanisms and fragmentation, rather than lithification, occurs. At pressures above 200 kb, lithification can occur because the formation of glass provides a lithification mechanism which has sufficient strength to withstand the pore pressure. During shock-lithification of lunar regolith at pressures below 50 kb, the material is compressed to intrinsic crystal density and remains at approximately that density upon release from the shocked state. It is proposed, however, that at pressures in excess of 50 kb, the release of trapped volatiles from lunar soil grains into fractures causes an expansion of the regolith during unloading from the shocked state.  相似文献   

4.
The common appearance of hygroscopic brine (“sweating”) on ordinary chondrites (OCs) from Oman during storage under room conditions initiated a study on the role of water‐soluble salts on the weathering of OCs. Analyses of leachates from OCs and soils, combined with petrography of alteration features and a 11‐month record of in situ meteorite and soil temperatures, are used to evaluate the role of salts in OC weathering. Main soluble ions in soils are Ca2+, SO42?, HCO3?, Na+, and Cl?, while OC leachates are dominated by Mg2+ (from meteoritic olivine), Ca2+ (from soil), Cl? (from soil), SO42? (from meteoritic troilite and soil), and iron (meteoritic). “Sweating meteorites” mainly contain Mg2+ and Cl?. The median Na/Cl mass ratio of leachates changes from 0.65 in soils to 0.07 in meteorites, indicating the precipitation of a Na‐rich phase or loss of an efflorescent Na‐salt. The total concentrations of water‐soluble ions in bulk OCs ranges from 600 to 9000 μg g?1 (median 2500 μg g?1) as compared to 187–14140 μg g?1 in soils (median 1148 μg g?1). Soil salts dissolved by rain water are soaked up by meteorites by capillary forces. Daily heating (up to 66.3 °C) and cooling of the meteorites cause a pumping effect, resulting in a strong concentration of soluble ions in meteorites over time. The concentrations of water‐soluble ions in meteorites, which are complex mixtures of ions from the soil and from oxidation and hydrolysis of meteoritic material, depend on the degree of weathering and are highest at W3. Input of soil contaminants generally dominates over the ions mobilized from meteorites. Silicate hydrolysis preferentially affects olivine and is enhanced by sulfide oxidation, producing local acidic conditions as evidenced by jarosite. Plagioclase weathering is negligible. After completion of troilite oxidation, the rate of chemical weathering slows down with continuing Ca‐sulfate contamination.  相似文献   

5.
The discovery of microbiota in the Dry Valleys of Antarctica has encouraged the construction of new models of Martian ecosystems in order to determine if life could have once existed on Mars. The Antarctic cyanobacteria reside just below the surface of sandstone rocks where they are protected from the extreme cold and dry environment. Analogy with the Antarctic Dry Valleys supports speculation that hypothetical micro-organisms existed on Mars in the early history of the planet and could have migrated into suitable rocks as the availability of liquid water decreased. Although evidence for sandstone layers on Mars has not been substantiated, the palaeohydrology of Martian fluvial valleys (MFVs) reveals the evidence of lake bed sediment depositions which have formed consolidated sediments. As the MFVs formation may result from underground drainage processes, the sediment material would be expected to contain debris such as pumice washload, and pumilith of volcanic and meteoritic origin. These materials may have formed consolidated porous terrains similar to the Antarctic sandstone. Therefore, the endolithic model is consistent with the Martian liquid water habitat model of perenially ice-covered lakes.  相似文献   

6.
Abstract— Fifty-eight lunar rocks have been analysed by prompt gamma neutron activation for B, Gd and Sm. The data were interpreted together with published analyses for Li and other elements. The behaviour of B in lunar rocks is virtually identical to that of Sm, Gd, Li and the other incompatible LIL (Large Ion Lithophile) and HFS (High Field Strength) elements, collectively known as the KREEP component. To a first approximation, the distribution of B concentrations in all lunar rocks can be described as a two-component mixture of KREEP, with ~32 ppm, and B-free mare basalts and anorthositic rocks. The lunar B abundance, estimated from correlations with other KREEP elements, is ~0.14 ppm. Alpha-track images of the analysed lunar rocks were made from thin sections specially prepared to avoid contamination from terrestrial B. They provided surprising evidence that the distributions of B and Li within individual rocks fall into four categories: (1) substitution in mineral structures; (2) in irregular minute particles, disseminated through the rock with no apparent connection with mineralogy; (3) as aggregate properties of rock fragments, acquired prior to assembly in a breccia; and, (4) as aggregate properties of a breccia matrix, distinct from unaffected clasts. Only category (1) is encountered in terrestrial rocks. Categories (2), (3) and (4) become progressively more important as the abundance of KREEP components increases, and it is concluded that the alpha-track images probably show the localisation of not only B and Li but all the KREEP elements. In terrestrial rocks, such textures could be understood in terms of successive episodes of permeation by solutions followed by brecciation, then cementation. It is difficult to adapt such a mechanism to a dry Moon, with brecciation imposed by impact melting. The linear correlation of lunar B and Gd contrasts strongly with the relationship seen in terrestrial rocks, where the presence of water creates a terrestrial B cycle quite different from that of Gd and other lunar incompatible elements.  相似文献   

7.
Laboratory measurements of seismic wave velocities and electrical properties of Apollo lunar samples and similar material of terrestrial origin are discussed in this paper. Measurements of the electrical properties show that in the frequency range above a few hundred Hz the outer region of the Moon may be considered as a low loss dielectric. This observation supports a longstanding speculation that dry, powdered rocks in which the dielectric loss tangent is frequency-independent over a wide range of frequency are present in the uppermost lunar surface layers. The surface layers of the Moon are likely to have an extremely low electrical conductivity. Thus future electromagnetic probing of the Moon to a few hundred kilometer depth is possible in the few kHz frequency range. Based on ultrasonic experiments with pressure as a variable, we next present the elastic constants and equations of state of lunar materials and characteristic dispersion of seismic wave velocities of the Moon. We find thatP andS wave velocities increase sharply within the first 30 km depth and then level off gradually. Combining this observation with lunar seismic and geophone data, we believe that the first 30 km of the Moon may be interpreted as a scattering region. If H2O exists on the Moon, H2O may occur at some shallow depth beneath the outermost surface layer in solid ice interlocking cracks and pores and mineral grains. The rocks in this permafrost state have relatively low seismic velocity and highQ. If permafrost does exist, we would expect a wide range of electrical conductivity and dielectric constant. Future electromagnetic probing of the Moon should yield very usefull information on the physical state of the lunar interior; when this electrical information is combined with the seismic information, we should learn much more about the internal constitution and the state of the Moon than is known today.  相似文献   

8.
A long-popular model for producing Ganymede's bright terrain involves flooding of low-lying graben with liquid water, slush, or warm, soft ice. The model suffers from major problems, however, including the absence of obvious near-surface heat sources, the negative buoyancy of liquid water, and the lack of a mechanism for confining the flows to graben floors. We present new models for cryovolcanic resurfacing to overcome these difficulties. Tidal heating within an ancient Laplace-like orbital resonance (Showman and Malhotra 1997, Icarus 127, 93; Showman et al., 1997, Icarus 129, 367) provides a plausible heat source and could allow partial melting to occur as shallow as 5-10 km depth. Our favored mechanism for delivering this water to the surface invokes the fact that topography—such as a global set of graben—causes subsurface pressure gradients that can pump water or slush upward onto the floors of topographic lows (graben) despite the negative buoyancy of the liquid. These eruptions can occur only within the topographic lows; furthermore, as the low areas become full, the pressure gradients disappear and the resurfacing ceases. This provides an explanation for the observed straight dark-bright terrain boundaries: water cannot overflow the graben, so resurfacing rarely embays craters or other rough topography. Pure liquid water can be pumped to the surface from only 5-10 km depth, but macroscopic bodies of slush ascending within fractures can reach the surface from much greater depths due to the smaller negative buoyancy of slush. A challenge for these models is the short predicted gravitational relaxation timescale of topographic features at high heat flows; the resurfacing must occur before the graben topography disappears. We also evaluate alternate resurfacing mechanisms, such as pumping of liquid water to the surface by thermal expansion stresses and buoyant rise of water through a silicate-contaminated crust that is denser than liquid water, and conclude that they are unlikely to explain Ganymede's bright terrain.  相似文献   

9.
Syrtis Major Planum is a volcanic plain dominated by lava flows. High resolution stereo camera (HRSC) images of the northern Syrtis Major region display erosional features such as grooves, teardrop-shaped islands and valleys. These landforms are characteristics of outflow channels seen on Mars, therefore implying that a flood event took place in this region. The flow of 100 km long and a few kilometer wide followed the local slopes in most locations. Maximum flood discharges estimated from images and topography vary from about 0.3×106 to 8×106 m3/s, and therefore are in the range of terrestrial mega-floods in the Scablands or Lake Bonneville. In North Syrtis Major, the relationships with surrounding lava flows and the timing of the flood coeval to Syrtis Major volcanic activity suggest that it could be related to the subsurface water discharge mobilized by the volcanic activity. The proximity of Noachian age basement rocks 20 km away from the flood and below lava flows might have played a role in its formation and water presence.  相似文献   

10.
Thermal contraction crack polygons are complex landforms that have begun to be deciphered on Earth and Mars by the combined investigative efforts of geomorphology, environmental monitoring, physical models, paleoclimate reconstruction, and geochemistry. Thermal contraction crack polygons are excellent indicators of the current or past presence of ground ice, ranging in ice content from weakly cemented soils to debris-covered massive ice. Relative to larger topographic features, polygons may form rapidly, and reflect climate conditions at the time of formation—preserving climate information as relict landforms in the geological record. Polygon morphology and internal textural characteristics can be used to distinguish surfaces modified by the seasonal presence of a wet active layer or dry active layer, and to delimit subsurface ice conditions. Analysis of martian polygon morphology and distribution indicates that geologically-recent thermal contraction crack polygons on Mars form predominantly in an ice-rich latitude-dependent mantle, more likely composed of massive ice deposited by precipitation than by cyclical vapor diffusion into regolith. Regional and local heterogeneities in polygon morphology can be used to distinguish variations in ice content, deposition and modification history, and to assess microclimate variation on timescales of ka to Ma. Analyses of martian polygon morphology, guided by investigations of terrestrial analog thermal contraction crack polygons, strongly suggest the importance of excess ice in the formation and development of many martian thermal contraction crack polygons—implying the presence of an ice-rich substrate that was fractured during and subsequent to obliquity-driven depositional periods and continually modified by ongoing vapor equilibration processes.  相似文献   

11.
Mars appears to have experienced little compositional differentiation of primitive lithosphere, and thus much of the surface of Mars is covered by mafic lavas. On Earth, mafic and ultramafic rocks present in ophiolites, oceanic crust and upper mantle that have been obducted onto land, are therefore good analogs for Mars. The characteristic mineralogy, aqueous geochemistry, and microbial communities of cold-water alkaline springs associated with these mafic and ultramafic rocks represent a particularly compelling analog for potential life-bearing systems. Serpentinization, the reaction of water with mafic minerals such as olivine and pyroxene, yields fluids with unusual chemistry (Mg–OH and Ca–OH waters with pH values up to ~12), as well as heat and hydrogen gas that can sustain subsurface, chemosynthetic ecosystems. The recent observation of seeps from pole-facing crater and canyon walls in the higher Martian latitudes supports the hypothesis that even present conditions might allow for a rock-hosted chemosynthetic biosphere in near-surface regions of the Martian crust. The generation of methane within a zone of active serpentinization, through either abiogenic or biogenic processes, could account for the presence of methane detected in the Martian atmosphere. For all of these reasons, studies of terrestrial alkaline springs associated with mafic and ultramafic rocks are particularly timely. This study focuses on the alkaline Adobe Springs, emanating from mafic and ultramafic rocks of the California Coast Range, where a community of novel bacteria is associated with the precipitation of Mg–Ca carbonate cements. The carbonates may serve as a biosignature that could be used in the search for evidence of life on Mars.  相似文献   

12.
In the framework of in situ exploration of planetary interiors, electromagnetic survey is one of the geophysical methods constraining the structure and composition of the mantle. One of the main parameters which governs the internal structure is the bulk iron content of the mantle. Unfortunately, the effect of iron on the electrical conductivity of mantle minerals is only known through a few high-pressure and high-temperature experiments. Reliable measurements on samples with different iron contents were reported for olivine, pyroxene, magnesiowüstite and perovskite/magnesiowüstite assemblage. In a first part, we parameterize the effect of iron on the electrical conductivity of these minerals. In a second part, we propose assumptions to extend this formulation to all minerals considered by the review of Xu et al. [2000b. Laboratory-based electrical conductivity in the Earth's mantle. J. Geophys. Res. 105, 27865–27875], in order to extrapolate the conductivity of terrestrial samples (i.e. with iron fraction close to 10%) to the conductivity of iron-rich minerals (up to 40%). In a third part, we apply this formulation to the computation of a synthetic electrical conductivity profile of the Martian mantle. The computed conductivity profile is 1–1.5 order of magnitude higher than terrestrial profiles, because of the higher iron content of the Martian mantle. This result highlights the possible application of electrical conductivity for constraining the composition of planetary mantles.  相似文献   

13.
Abstract— Physical properties were determined in a first step on post‐impact tertiary limestones from the depth interval of 404–666 m of the Yaxcopoil‐1 (Yax‐1) scientific well, drilled in the Chicxulub impact crater (Mexico). Thermal conductivity, thermal diffusivity, density, and porosity were measured on 120 dry and water‐saturated rocks with a core sampling interval of 2–2.5 m. Nondestructive, non‐contact optical scanning technology was used for thermal property measurements including thermal anisotropy and inhomogeneity. Supplementary petrophysical properties (acoustic velocities, formation resisitivity factor, internal surface, and hydraulic permeability) were determined on a selected subgroup of representative samples to derive correlations with the densely measured parameters, establishing estimated depth logs to provide calibration values for the interpretation of geophysical data. Significant short‐ and long‐scale variations of porosity (1–37%) turned out to be the dominant factor influencing thermal, acoustic, and hydraulic properties of this post impact limestone formation. Correspondingly, large variations of thermal conductivity, thermal diffusivity, acoustic velocities, and hydraulic permeability were found. These variations of physical properties allow us to subdivide the formation into several zones. A combination of experimental data on thermal conductivity for dry and water‐saturated rocks and a theoretical model of effective thermal conductivity for heterogeneous media have been used to calculate thermal conductivity of mineral skeleton and pore aspect ratio for every core under study. The results on thermal parameters are the necessary basis for the determination of heat flow density, demonstrating the necessity of dense sampling in the case of inhomogeneous rock formations.  相似文献   

14.
We model the fluids involved in the alteration processes recorded in the Sheepbed Member mudstones of Yellowknife Bay (YKB), Gale crater, Mars, as revealed by the Mars Science Laboratory Curiosity rover investigations. We compare the Gale crater waters with fluids modeled for shergottites, nakhlites, and the ancient meteorite ALH 84001, as well as rocks analyzed by the Mars Exploration rovers, and with terrestrial ground and surface waters. The aqueous solution present during sediment alteration associated with phyllosilicate formation at Gale was high in Na, K, and Si; had low Mg, Fe, and Al concentrations—relative to terrestrial groundwaters such as the Deccan Traps and other modeled Mars fluids; and had near neutral to alkaline pH. Ca and S species were present in the 10?3 to 10?2 concentration range. A fluid local to Gale crater strata produced the alteration products observed by Curiosity and subsequent evaporation of this groundwater‐type fluid formed impure sulfate‐ and silica‐rich deposits—veins or horizons. In a second, separate stage of alteration, partial dissolution of this sulfate‐rich layer in Yellowknife Bay, or beyond, led to the pure sulfate veins observed in YKB. This scenario is analogous to similar processes identified at a terrestrial site in Triassic sediments with gypsum veins of the Mercia Mudstone Group in Watchet Bay, UK.  相似文献   

15.
Data on thermophysical properties measured on lunar material returned by Apollo missions are reviewed. In particular, the effects of temperature and interstitial gaseous pressure on thermal conductivity and diffusivity have been studied. For crystalline rocks, breccias and fines, the thermal conductivity and diffusivity decrease as the interstitial gaseous pressure decreases from 1 atm to 10–4T. Below 10–4T, these properties become insensitive to the pressure. At a pressure of 10–4T or below, the thermal conductivity of fines is more temperature dependent than that of crystalline rocks and breccias. The bulk density also affects the thermal conductivity of the fines. An empirical relationship between thermal conductivity, bulk density and temperature derived from the study of terrestrial material is shown to be consistent with the data on lunar samples. Measurement of specific heat shows that, regardless of the differences in mineral composition, crystalline rocks and fines have almost identical specific heat in the temperature range between 100 and 340K. The thermal parameter calculated from thermal conductivity, density and specific heat shows that the thermal properties estimated by earth-based observations are those characteristic only of lunar fines and not of crystalline rocks and breccias. The rate of radioactive heat generation calculated from the content of K, Th and U in lunar samples indicates that the surface layer of the lunar highland is more heat-producing than the lunar maria. This may suggest fundamental differences between the two regions.Now at Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York, U.S.A.  相似文献   

16.
Abstract— Due to the effects of erosion, tectonism and burial, impact structures are often obscured or destroyed. Geophysical methods are increasingly being used in detecting the signatures of impact structures. While gravity lows associated with impact structures are well understood, associated magnetic anomaly lows are not. In this study, drill cores from three Canadian impact structures were analyzed for rock magnetic properties and mineralogy, in order to explain the magnetic anomaly lows associated with these structures. Samples from the drill cores were cut and measured for anisotropy of magnetic susceptibility (AMS) and natural remanent magnetization (NRM) parameters. Drill cores from the twin impact craters of the Clearwater structure exhibited different NRM characteristics, and samples from their respective drill cores were subject to demagnetization by alternating field and thermal techniques. The difference noted in their NRM characteristics was attributed to the acquisition of a viscous remanent magnetization (VRM) at depth in Clearwater East. At all three structures, both magnetic susceptibilities and remanent magnetizations are well below regional values in impact generated breccias, melt rocks, shocked crystalline rocks, and in postimpact sedimentary infill. The processes of brecciation, alteration, shock, and infill by nonmagnetic sediments contribute to the development of the magnetic lows. However, a significant contribution to the observed magnetic anomalies was found, by first-order forward modelling, to arise from basement rocks beneath the impact structures. This zone of reduced magnetization may be caused by the partial demagnetization of magnetite by the impact-induced transient stress wave traveling away from the point of impact.  相似文献   

17.
Numerous investigations of the electrical conductivity of lunar and terrestrial materials as a function of temperature have been performed to date in an attempt to provide data on which to base lunar interior temperatures from magnetometer-derived lunar conductivity profiles (Schwereret al., 1971, 1972, 1973; Dubaet al., 1972 and others). There are several pitfalls inherent in the extrapolation of lunar temperatures from laboratory measurements of electrical conductivity. These include the choice of representative material for the lunar interior, appropriate environmental conditions (pressure, fugacity, etc.) and the various measurement difficulties.Presented at the Geophysical and Geochemical Exploration of the Moon and Planets Conference, January, 1973, Lunar Science Institute, Houston, Tex., U.S.A.  相似文献   

18.
The notion of a dry Moon has recently been challenged by the discovery of high water contents in lunar apatites and in melt inclusions within olivine crystals from two pyroclastic glasses. The highest and most compelling water contents were found in pyroclastic glasses that are not very common on the lunar surface. To obtain more representative constraints on the volatile content of the lunar interior, we measured the Zn content, a moderately volatile element, of mineral and rock fragments in lunar soils collected during Apollo missions. We here confirm that the Moon is significantly more depleted in Zn than the Earth. Combining Zn with existing K and Rb data on similar rocks allows us to anchor a new volatility scale based on the bond energy of nonsiderophile elements in their condensed phases. Extrapolating the volatility curve to H shows that the bulk of the lunar interior must be dry (≤1 ppm). This contrasts with the water content of the mantle sources of pyroclastic glasses, inferred to contain up to approximately 40 ppm water based on H2O/Ce ratios. These observations are best reconciled if the pyroclastic glasses derive from localized water‐rich heterogeneities in a dominantly dry lunar interior. We argue that, although late addition of 0.015% of a chondritic veneer to the Moon seems required to explain the abundance of platinum group elements (Day et al. 2007), the volatile content of the added material was clearly heterogeneous.  相似文献   

19.
Recent studies have demonstrated that terrestrial subaqueous basalts and hyaloclastites are suitable microbial habitats. During subaqueous basaltic volcanism, glass is produced by the quenching of basaltic magma upon contact with water. On Earth, microbes rapidly begin colonizing the glassy surfaces along fractures and cracks that have been exposed to water. Microbial colonization of basaltic glass leads to the alteration and modification of the rocks and produces characteristic granular and/or tubular bioalteration textures. Infilling of the alteration textures by minerals such as phyllosilicates, zeolites and titanite may enable their preservation through geologic time. Basaltic rocks are a major component of the Martian crust and are widespread on other solar system bodies. A variety of lines of evidence strongly suggests the long-term existence of abundant liquid water on ancient Mars. Recent orbiter, lander and rover missions have found evidence for the presence of transient liquid water on Mars, perhaps persisting to the present day. Many other solar system bodies, notably Europa, Enceladus and other icy satellites, may contain (or have once hosted) subaqueous basaltic glasses. The record of terrestrial glass bioalteration has been interpreted to extend as far back as ∼3.5 billion years ago and is widespread in oceanic crust and its metamorphic equivalents. The terrestrial record of glass bioalteration strongly suggests that glassy or formerly glassy basaltic rocks on extraterrestrial bodies that have interacted with liquid water are high-value targets for astrobiological exploration.  相似文献   

20.
A summary is given of the literature data on the content of volatiles in the lunar regolith, the characterization of the likely sources of the volatiles, and the possible processes of their migration and burial. The main sources of volatiles in the regolith are the solar wind, small Solar System bodies (comets and meteorites), and the lunar interior. Different sources are the leading ones for different volatiles. Water and other volatiles can accumulate on the surface and in the near-surface layers of the Moon only in the so-called cold traps in polar basins, where other volatiles, as well as water ice, including highly toxic elements such as mercury and cadmium must be accumulated. The content of volatiles in the lunar interior is comparable to that in terrestrial rocks. Water could have played an important role in the early stages of the Moon’s history, e.g., in the formation of mare basalts. The isotopic composition of the lunar juvenile water is similar to that on the Earth, which suggests a common origin of the terrestrial and lunar water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号