首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rare gases He, Ne, Ar, Kr and Xe were measured in bulk samples of Yamato 74123. The 3He and 21Ne exposure ages are found to be 5.50 Ma and 2.83 Ma, respectively. In addition to the cosmogenic component the samples contain primordial rare gases of the fractionated type in amounts typical of ureilites. In a three-isotope plot neon turns out to be a mixture of planetary neon and cosmogenic neon.The elements Na, Mg, Al, Si, P, S, K, Ca, Cr, Mn, Fe, Co, and Ni have been determined by spark source mass spectrometry in Yamato 74123 and for comparison in the ureilites Haveröand Kenna. The chemical composition as well as the noble gas abundance pattern identify Yamato 74123 as an ureilite.  相似文献   

2.
Cosmogenic 21Ne was utilised to determine exposure ages of young subaerial basaltic lava flows from the Newer Volcanic Province, western Victoria, Australia. The ages (36–53 ka) determined from co-existing cosmogenic 21Ne and 3He in olivines separated from basalts are consistent within analytical uncertainties with ages previously determined by cosmogenic 36Cl exposure dating. This paper illustrates the potential of cosmogenic neon exposure ages in studying the eruption, surface morphology, and erosion history of young volcanic rocks, which are difficult to date using other conventional methods, such as K-Ar or 40Ar/39Ar dating. The present study demonstrates that combined cosmogenic 3He and 21Ne dating, specifically measured cosmogenic 3He/21Ne ratios, on the same samples, is powerful for evaluating the validity of calculated cosmogenic 3He and 21Ne surface exposure ages.  相似文献   

3.
Crustal neon: a striking uniformity   总被引:1,自引:0,他引:1  
By combining data from a diverse suite of crustal fluid samples representing a broad geographical distribution, we have identified a well-defined nucleogenic (crustal) neon component. The neon is produced from (α, n) and (n, α) nuclear interactions involving nuclei of O, Mg, and F [1]. In the limiting case of 20Ne/22Ne = 0, the composition is: 21Ne/22Ne = 0.47 ± 0.01 and 21Ne/4He = (0.46 ± 0.08) × 10−7. A crustal O/F ratio of 110 (atomic) calculated from the 21Ne/22Ne ratio is 4–10 times less than the average crustal O/F ratio. The discrepancy can be accounted for by an enhanced O/F ratio within the 10–40 μm range of the U-Th-generated α-particles.  相似文献   

4.
Various sources of 21Ne and 22Ne exist in surface rocks:cosmogenic,in situ nucleogenic from internal U and Th,trapped crustal nucleogenic and trapped atmospheric.This paper reports the first measurement,in China,of cosmogenic 21Ne and 22Ne in surface bedrocks.We developed a unique sample pre-treatment procedure that effectively removed inclusions inside quartz grains,and thus maximally reduced nucleogenic contributions of 21Ne and 22Ne.Step-heating experiments show that concen-trations of cosmogenic 21Ne and 22Ne in summit bedrock samples R9202 and R9203 from Grove Mountains,Antarctica,are(3.83±0.87)×108 and(5.22±0.51)×108 atoms/g,respectively.The corresponding minimum exposure ages are 2.2±0.5 and 3.0±0.3 Ma.This indicates that the ice sheet in East Antarctica was uncovered the crest of Mount Harding,a typical nunatak in Grove Mountains,since at least mid-Pliocene.  相似文献   

5.
Primordial neon,helium, and hydrogen in oceanic basalts   总被引:3,自引:0,他引:3  
A primordial neon component in neon from Kilauea Volcano and deep-sea tholeiite glass has been identified by the presence of excess20Ne; relative to atmospheric neon the20Ne enrichments are 5.4% in Kilauea neon and about 2.5% in the basalts. The20Ne anomalies are associated with high3He/4He ratios; the ratio in Kilauea helium is 15 times the atmospheric ratio, while mid-ocean ridge basalts from the Atlantic, Pacific, and Red Sea have uniform ratios about 10 times atmospheric. Mantle neon and helium are quite different in isotopic composition from crustal gases, which are highly enriched in radiogenic21Ne and4He. The21Ne/4He ratios in crustal gases are consistent with calculated values based on G. Wetherill's18O (α,n) reaction; the lack of20Ne enrichment in these gases shows that the mantle20Ne anomalies are not radiogenic.21Ne enrichments in Kilauea neon and “high-3He” Pacific tholeiites are much less than in crustal neon, about 2 ± 2% vs. present atmospheric neon, as expected from the much lower4He/Ne ratios.Neon concentrations in two Atlantic tholeiites were found to be only 1–2% of the values obtained by Dymond and Hogan; helium concentrations are slightly greater and our He/Ne ratios are greater by a factor of 150. The large Ne excess relative to solar wind and meteoritic gases is thus not confirmed. Pacific and Atlantic basalts appear to be quite different in He/Ne ratios however, and He and Ne may be inversely correlated. He concentration variations due to diffusive loss can be distinguished from variations due to two-phase partitioning or mantle heterogeneity by the effects on3He/4He ratios. The He isotopic and concentration measurements on “low-3He” basalts are consistent with diffusive loss and dilution of the 3/4 ratio by in-situ radiogenic4He, and may provide a method for dating basalt glasses.Deuterium/hydrogen ratios in Atlantic and Pacific tholeiite glasses are 77% lower than the ratio in seawater. The inverse correlation between deuterium and water content observed by Friedman in erupting Kilauea basalts is consistent with a Rayleigh separation process in which magmatic water is separated from an initial melt with the same D/H ratio as observed in deep-sea tholeiites. The consistency of the D/H ratios in tholeiites containing primordial He and Ne components indicates that these ratios are probably characteristic of primordial or juvenile hydrogen in the mantle.  相似文献   

6.
A systematic calibration of the production rate of one specific cosmic-ray-produced nuclide in chondrites, that of21Ne, was achieved by using four independent methods:P21(1.11) = 0.507 ± 0.039, 0.302 ± 0.013, 0.312 ± 0.017and0.292 ± 0.019 (in units of 10?8 cm3 STP/g My) based on26Al-age,53Mn-age,81Kr-83Kr and22Na-22Ne methods, respectively. These production rates are all normalized to a shielding parameter ratio22Ne/21Ne= 1.11 and to the chemical composition of L chondrites. The results obtained by the latter three methods are in good agreement, but they disagree in a systematic way with the26Al-age calibration. Based on these results, we recommend a valueP21(1.11) = 0.31 and a production rate equation:P21 = 4.845 P21 (1.11) F[21.77(22Ne/21Ne) ? 19.32]?, whereF = 1.00 for L and LL, andF = 0.93 for H chondrites, for the calculation of cosmic ray exposure ages on the basis of Ne concentrations. In an attempt to assess possible causes for this discrepancy, we discuss the26Al half-life measurements, we evaluate effects resulting from pre-irradiation of meteorites, and we discuss the evidence regarding the constancy of the cosmic ray flux in the past, in the light of some recent astronomical observations.  相似文献   

7.
Mass spectrometric analyses of neutron-irradiated targets of natural magnesium yield cross sections of59 ± 14,160 ± 8, and11.0 ± 3.3mb for20Ne,21Ne, and22Ne, respectively, at 14.1 MeV and of94 ± 8,152 ± 12, and13.0 ± 2.0mb at 14.7 MeV. With the incorporation of these cross sections, calculations modeling cosmic-ray interactions in stony meteoroids of radii 20 and 26 cm predict that between the surface and center the22Ne/21Ne ratio falls more than 10% while the21Ne production rate rises about 30%. The reaction24Mg(n,α)21Ne predominantly controls these trends: the22Ne/21Ne ratio due to magnesium decreases over 15% while that due to silicon remains constant with increasing depth. The calculations are compared with published neon measurements for the Keyes and St. Séverin meteorites.  相似文献   

8.
The production rate profiles of21Ne and22Ne as a function of depth in meteoroids due to spallation by solar flare cosmic rays (SCR) and galactic cosmic rays (GCR) are calculated and their dependence on size and composition of meteoroids has been evaluated. The GCR production rate at a given depth increases with size for radii<25cm and then decreases whereas the22Ne21Ne ratio (NeR) generally decreases with size and depth. The calculated GCR production rates and NeR are consistent with the measurements in several Chondrites. A plot of track production rate vs. NeR shows that some chondrites have NeR values smaller than those expected for their sizes. Thes obeervation suggestsat least a two-stage irradiation for such meteorites; the meteoroid exposure as a small body in the interplanetary space must have been preceded by exposure under deep shielding, possibly in its parent body.  相似文献   

9.
The isotopic composition of neon was measured for seventeen samples of submarine basalt glass from the Mid-Atlantic Ridge between 54° and 73°N. They include the Reykjanes, Kolbeinsey, and Mohns Ridge segments. Neon isotopic anomalies, relative to the atmospheric ratios, exist in both20Ne/22Ne and21Ne/22Ne. A maximum excess20Ne of 7% was measured in two samples from the Reykjanes Ridge. Samples with lower20Ne excesses (six samples with δ20Ne between 2 and 4%) from all three ridge segments, appear to result from mixing of a mantle component with a δ20Ne of 7% and atmospheric neon.21Ne/22Ne ratios are up to 8% above the atmospheric value, with no apparent correlation with the20Ne excesses. The anomalies in20Ne/22Ne are difficult to explain by mass fractionation of an atmospheric reservoir since several of the samples have δ20Ne values greater than could be produced by single-stage fractionation. Most likely, the excess21Ne results from nuclear reactions in the mantle source, although there is no definite correlation between the δ21Ne or the excess21Ne (cm3 STP/g) and the uranium concentration. Large variations in the observed4He/20Ne ratio (40–12,000) remain unexplained at this time.  相似文献   

10.
We have performed systematic analyses of both cosmogenic 3He (3Hec) and cosmogenic 21Ne (21Nec) in ultramafic xenoliths from Central Asia and in a quartz sample from Antarctica. Five xenoliths, which show no or insignificant 21Nec excesses, were used to estimate the initial 4He/3He ratio of 90,470 in the subcontinental lithospheric mantle under the Baikal extension zone. Seven xenoliths show large 21Ne/22Ne anomalies ranging up to 0.204 and 4He/3He down to 31,000, due to the presence of cosmogenic 21Ne and 3He. The (3He/21Ne)c ratio is 1.41 ± 0.22 in the xenoliths and 2.76 in the quartzite. This difference is due to the dependence of the 21Nec production rate on the elemental composition of the target material. We estimated the 3Hec and 21Nec production rates at different locations worldwide and calculated the 3Hec and 21Nec exposure ages. These ages range between 7100 and 28,000 years for the xenoliths, and we determined their relative positions within the volcanic tuff layer. The mean 3Hec and 21Nec exposure ages of the quartz sample are 1.35 ± 0.07 and 2.21 ± 0.12 Ma, respectively. This difference is most probably related to 3Hec diffusive losses from the quartz mineral grains, even at low temperatures, due to the relatively high diffusion coefficient for cosmogenic 3He.  相似文献   

11.
In an attempt to determine the helium and neon isotopic composition of the lower oceanic crust, we report new noble gas measurements on 11 million year old gabbros from Ocean Drilling Program site 735B in the Indian Ocean. The nine whole rock samples analyzed came from 20 to 500 m depth below the seafloor. Helium contents vary from 3.3×10−10 to 2.5×10−7 ccSTP/g by crushing and from 5.4×10−8 to 2.4×10−7 ccSTP/g by melting. 3He/4He ratios vary between 2.2 and 8.6 Ra by crushing and between 2.9 and 8.2 by melting. The highest R/Ra ratios are similar to the mean mid-ocean ridge basalt (MORB) ratio of 8±1. The lower values are attributed to radiogenic helium from in situ α-particle production during uranium and thorium decay. Neon isotopic ratios are similar to atmospheric ratios, reflecting a significant seawater circulation in the upper 500 m of exposed crust at this site. MORB-like neon, with elevated 20Ne/22Ne and 21Ne/22Ne ratios, was found in some high temperature steps of heating experiments, but with very small anomalies compared to air. These first results from the lower oceanic crust indicate that subducted lower oceanic crust has an atmospheric 20Ne/22Ne ratio. Most of this neon must be removed during the subduction process, if the ocean crust is to be recirculated in the upper mantle, otherwise this atmospheric neon will overwhelm the upper mantle neon budget. Similarly, the high (U+Th)/3He ratio of these crustal gabbros will generate very radiogenic 4He/3He ratios on a 100 Ma time scale, so lower oceanic crust cannot be recycled into either MORB or oceanic island basalt without some form of processing.  相似文献   

12.
Three physical quantities define the essentials of the cosmic ray exposure history of a sample of an iron meteorite: (1) the cosmic ray exposure age T, (2) the pre-atmospheric “size” S of the irradiated body, and (3) the location, i.e. the “depth” D, of the samples within the body. To establish these quantities for a given sample three independent quantities must be determined experimentally. In the present work T is ascertained by the 41K/40K method and the 4He and 21Ne concentrations (C4 and C21) are measured by the isotope dilution method. Signer and Nier's evaluation of the rare gas distribution in the meteorite Grant and the measured exposure age for this meteorite provide the relationships allowing to ascertain for any meteorite the quantities S and D from the 21Ne production rate (P21 = C21/T) and the 4He/21Ne ratio.Earlier measurements have provided data on the isotopic composition of potassium in 74 different iron meteorites. New rare gas measurements are reported for some 40 samples. Results on the age, size and depth are obtained for almost 60 samples. These data suggest that Signer and Nier's model is well suited for describing not only the rare gas distribution in a single selected meteorite (Grant) but also the exposure histories of the great majority of all irons. For a few samples, however, secondary breakups of the meteoroid and a two- or multiple-stage irradiation must be invoked. Further measurements are proposed for testing and, possibly, refining the still somewhat uncertain relationships between the abundances of cosmogenic nuclides and the quantities T, S, and D in very large meteorites.Histograms are presented showing the age distributions for irons of different chemical groups and of different size ranges.The feasibility and the relative merits of other methods for the determination of T, S, and D are discussed.  相似文献   

13.
A comprehensive study of the cosmic-ray exposure history of five ordinary chondrites from China was carried out using measurements of the noble gas isotopic abundances and10Be concentrations. The following average cosmic-ray exposure ages, based on cosmogenic21Ne and on81KrKr dating were obtained: Zhaodong (L4) — 15.7 ± 3.0 m.y., Nan Yang Pao (L6) — 48 ± 10.0 m.y., Guangrao (L6) — 16.8 ± 3.5 m.y., and Lunan (H6) — 26.7 ± 5.0 m.y. The H5 chondrite Zaoyang was exposed for only 0.90 ± 0.12 m.y. to galactic cosmic rays as calculated from the10Be activity and from the low amounts of cosmic-ray-produced noble gases. The Zhaodong chondrite contains large amounts of80Kr and82Kr produced by neutron capture of bromine. From the high slowing down density for neutrons we derive a preatmospheric mass of more than 1800 kg for this meteorite.  相似文献   

14.
We performed an interlaboratory comparison study with the aim to determine the accuracy of cosmogenic 21Ne measurements in quartz. CREU-1 is a natural quartz standard prepared from amalgamated vein clasts which were crushed, thoroughly mixed, and sieved into 125–250 μm and 250–500 μm size fractions. 50 aliquots of CREU-1 were analyzed by five laboratories employing six different noble gas mass spectrometers. The released gas contained a mixture of 16–30% atmospheric and 70–84% non-atmospheric (predominantly cosmogenic) 21Ne, defining a linear array on the 22Ne/20Ne-21Ne/20Ne three isotope diagram with a slope of 1.108 ± 0.014. The internal reproducibility of the measurements is in good agreement with the formal analytical precision for all participating labs. The external reproducibility of the 21Ne concentrations between labs, however, is significantly overdispersed with respect to the reported analytical precision. We report an average reference concentration for CREU-1 of 348 ± 10 × 106 at [21Ne]/g[SiO2], and suggest that the 7.1% (2σ) overdispersion of our measurements may be representative of the current accuracy of cosmogenic 21Ne in quartz. CREU-1 was tied to CRONUS-A, which is a second reference material prepared from a sample of Antarctic sandstone. We propose a reference value of 320 ± 11 × 106 at/g for CRONUS-A. The CREU-1 and CRONUS-A intercalibration materials may be used to improve the consistency of cosmogenic 21Ne to the level of the analytical precision.  相似文献   

15.
Because the intensity and energy spectrum of the cosmic ray flux are affected by atmospheric depth and geomagnetic-field strength, cosmogenic nuclide production rates increase considerably with altitude and to a lesser degree with latitude. The scaling methods used to account for spatial variability in production rates assume that all cosmogenic nuclides have the same altitude dependence. In this study we evaluate whether the production rates of cosmogenic 36Cl, 3He and 21Ne change differently with altitude, which is plausible due to the different threshold energies of their production reactions. If so, nuclide-specific scaling factors would be required.Concentrations of the three cosmogenic nuclides were determined in mafic phenocrysts over an altitude transect between 1000 and 4300 m at Kilimanjaro volcano (3°S). Altitude dependence of relative production rates was assessed in two ways: by determination of concentration ratios and by calculation of apparent exposure age ratios for all nuclide pairs. The latter accounts for characteristics of 36Cl that the stable nuclides 3He and 21Ne do not possess (radioactive decay, high sensitivity to mineral composition and significant contributions from production reactions other than spallation). All ratios overlap within error over the entire transect, and altitudinal variation in relative production rates is not therefore evident. This suggests that nuclide-specific scaling factors are not required for the studied nuclides at this low-latitude location. However, because previous studies have documented anomalous altitude-dependent variations in 3He production at mid-latitude sites, the effect of latitude on cross-calibrations should be further evaluated.We determined cosmogenic 21Ne/3He concentration ratios of 0.1864 ± 0.0085 in pyroxenes and 0.377 ± 0.018 in olivines, agreeing with those reported in previous studies.Despite the absence of independently determined ages for the studied lava surfaces, the consistency in the dataset should enable progress to be made in the determination of the production rates of all three nuclides as soon as the production rate of one of the nuclides has been accurately defined.To our knowledge this is the first time that 36Cl has been measured in pyroxene. The Cl extraction method was validated by measuring 36Cl in co-existing plagioclase phenocrysts in one of the samples.  相似文献   

16.
The amount of trapped inert gases present in rock 66095, as well as the elemental and isotopic composition of these gases can be explained by “contamination” of this rock - on the lunar surface - with as little as 0.2% of fines There is no compelling evidence that these gases come from the impact of a comet or a carbonaceous meteorite on the Moon, or that they represent genuine primordial lunar gas.The21Ne radiation age of 66095 is (1.1 ± 0.5) × 106yr, which strongly suggests that this rock was excavated by the South Ray Crater event.  相似文献   

17.
Eight silicate samples from the Orgueil carbonaceous chrondrite were analyzed for He, Ne, Ar, and Xe by a stepwise heating technique. Six of the samples, including two etched with NaOH, were density fractions covering the following ranges: < 2.35, 2.35–2.45, 2.45–2.48, and > 2.48 g/cm3. Two others were grain-size fractions, separated according to their ability to form a colloid at pH 11.5.All fractions are grossly deficient in cosmogenic neon, having retained only 8–33% of their normal complement. Retentivity increases with density.All fractions give low20Ne/22Ne ratios above 950°C, suggestive of D.C. Black's exotic “Neon-E” component of20Ne/22Ne ≤ 3.4. The lowest ratios were found in the low-density and especially the non-colloidal fractions. This suggests that the host phase of Ne-E is a clay mineral of lower iron content and coarser grain size than the main silicates of Orgueil.The main fraction,ρ = 2.35–2.45g/cm3, is inhospitable to Xe; it contains less Xe and releases it more readily at low temperatures (30–35% in 1 hour at 550°C) than do any of the other fractions.  相似文献   

18.
Stable cosmogenic isotopes such as 3He and 21Ne are useful for dating of diverse lithologies, quantifying erosion rates and ages of ancient surfaces and sediments, and for assessing complex burial histories. Although many minerals are potentially suitable targets for 3He and 21Ne dating, complex production systematics require calibration of each mineral–isotope pair. We present new results from a drill core in a high-elevation ignimbrite surface, which demonstrates that cosmogenic 3He and 21Ne can be readily measured in biotite and hornblende. 21Ne production rates in hornblende and biotite are similar, and are higher than that in quartz due to production from light elements such as Mg and Al. We measure 21Nehbl/21Neqtz = 1.35 ± 0.03 and 21Nebio/21Neqtz = 1.3 ± 0.02, which yield production rates of 25.6 ± 3.0 and 24.7 ± 2.9 at g? 1 yr? 1 relative to a 21Neqtz production rate of 19.0 ± 1.8 at g? 1 yr? 1. We show that nucleogenic 21Ne concentrations produced via the reaction 18O(α,n)21Ne are manageably small in this setting, and we present a new approach to deconvolve nucleogenic 21Ne by comparison to nucleogenic 22Ne produced from the reaction 19F(α,n)22Ne in F-rich phases such as biotite. Our results show that hornblende is a suitable target phase for cosmogenic 3He dating, but that 3He is lost from biotite at Earth surface temperatures. Comparison of 3He concentrations in hornblende with previously measured mineral phases such as apatite and zircon provides unambiguous evidence for 3He production via the reaction 6Li(n,α)3H  3He. Due to the atypically high Li content in the hornblende (~ 160 ppm) we estimate that Li-produced 3He represents ~ 40% of total 3He production in our samples, and must be considered on a sample-specific basis if 3He dating in hornblende is to be widely implemented.  相似文献   

19.
Combining cosmogenic 3He and 21Ne (3Hec and 21Nec) measurements on both pyroxene and olivine from the Pleistocene Bar Ten flows (85–107 ka) greatly increases our ability to evaluate the accuracy of 3Hec and 21Nec production rates and, therefore, 3Hec and 21Nec surface exposure ages. Comparison of 3Hec and 21Nec age-pairs yielded by experimentally determined production rates and composition-based model calculations indicates that the former give more accurate surface exposure ages than the latter in this study. However, experimental production rates should be adjusted to the composition of the minerals being analyzed to obtain the best agreement between 3Hec and 21Nec ages for any given sample. 21Nec/3Hec values are 0.400 ± 0.029 and 0.204 ± 0.014 for olivine and pyroxene, respectively, in Bar Ten lava flows, in agreement with previously published values, and indicate that 21Nec/3Hec in olivine and pyroxene is not affected by erosion and remains constant with latitude, elevation, and time (up to 10 Myr). Samples with 21Nec/3Hec that do not agree with these values may indicate the presence of non-cosmogenic helium and/or neon. The neon three-isotope diagram can also indicate whether or not all excess neon in mineral separates comes from cosmogenic sources. An error-weighted regression for olivine defines a spallation line [y = (1.033 ± 0.031)x + (0.09876 ± 0.00033)], which is indistinguishable from that for pyroxene (Schäfer et al., 1999). We have derived a production rate of 25 ± 8 at/g/yr for 21Nec in clinopyroxene (En43–44) based on the 40Ar/39Ar age of the upper Bar Ten flow. Our study indicates that the production rate of 21Nec in olivine may be slightly higher than previously determined. Cosmogenic 3He and 21Ne remain extremely useful, particularly when paired, in determining accurate eruption ages of young olivine- and pyroxene-rich basaltic lava flows.  相似文献   

20.
The Apollo 11 soil breccias are samplers of the ancient lunar environment due to their history in the regolith and their efficient closure to addition of recent solar wind upon compaction. These breccias contain the lowest15N/14N isotopic ratio yet reported for any lunar sample (in fact, for any natural sample). This extends the range of variation of15N/14N of the solar wind to greater than 30%, from a δ15N of ?190‰ in the past to +120‰ at present. No mechanism is yet known that is capable of accounting for such a large change in the15N/14N ratio without producing a substantial concomitant change in the13C/12C ratio, although some sort of nuclear reaction in the sun appears to be required. Apollo 11 soil breccias and 15086 are all formed by meteoritic impacts which compact the lower regolith against the basement rock without much heating. Rock 15086 formed from the layer of regolith between 100 and 200 cm depth, as shown by the close agreement between the nitrogen content and isotopic ratios of 15086 and those of the Apollo 15 deep drill core. Cosmic ray exposure ages, based on spallation-produced15N, are 2.3 ± 0.4 b.y. for Apollo 11 breccias. This age is much greater than the estimate from cosmogenic21Ne, presumably due to diffusive loss of neon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号