首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Abstract— The stratospheric interplanetary dust particles L2005T12 and L2011O3 are linked to CM chondrite matrix. Particle L2005T12 is dominated by tabular grains of partially dehydrated greenalite-rich serpentine. Its amorphous matrix contains abundant smectite nanocrystals and annular Fe, Ni, S units. A uniquely stratified (partial) maghémite rim occurs only on S-rich parts of the matrix. Formation of this rim and Mg depletions in the matrix occurred during atmospheric entry heating of this particle. Particle L2011O3 has large iron sulfide and magnesiowüstite grains in an amorphous low-Al, ferromagnesiosilica matrix. Hydrous crystallisation of this matrix produced ultrafine-grained smectites and disseminated iron sulfides. Atmospheric entry heating of both particles is indicated by the partial iron oxide rim, vesicular sulfides, and the scatter of matrix compositions due to loss of Mg. While many uncertainties remain, the high incidence of chondritic rough particles, which include an unknown amount of CM-like particles, in the lower stratosphere during 1984, 1989, and 1991 suggests annual variations in their abundances. The timing of lower stratospheric dust samplings is critical to collect these particles.  相似文献   

2.
Dust particles obtained by filtering fresh snow collected from May to September 2017 in the vicinity of Vostok station in Antarctica were examined using a scanning electron microscope. The collection of dust particles contains 197 spherules ranging from 0.5 to 117 μm in diameter, the most abundant ones (n = 188) by far being iron oxide spherules. Analyses of meteorological and human activity data suggest an extraterrestrial origin of most of the spherical particles. The particle size distribution histogram showed a smooth increase in their number with decreasing size and a dramatic drop at sizes smaller than 3 μm. The number of spherical particles has an uneven distribution over time, with an intense peak in July 27–28, 2017 which correlates by dates with the peak of the Southern Delta Aquariids meteor shower. The size distribution of the particles collected during the same period indicates the presence of a mechanism that accelerates their fall to the Earth. We propose that they are effective centers of condensation of ice crystals in stratospheric clouds. Our data indicate that collection of micrometeorites with sizes of several microns from the fresh snow is possible, opening a new way for sampling micrometeorites, including separate meteor showers.  相似文献   

3.
The Earth's extraterrestrial dust flux includes a wide variety of dust particles that include FeNi metallic grains. During their atmospheric entry iron micrometeoroids melt and oxidize to form cosmic spherules termed I‐type spherules. These particles are chemically resistant and readily collected by magnetic separation and are thus the most likely micrometeorites to be recovered from modern and ancient sediments. Understanding their behavior during atmospheric entry is crucial in constraining their abundance relative to other particle types and the nature of the zodiacal dust population at 1 AU. This article presents numerical simulations of the atmospheric entry heating of iron meteoroids to investigate the abundance and nature of these materials. The results indicate that iron micrometeoroids experience peak temperatures 300–800 K higher than silicate particles explaining the rarity of unmelted iron particles which can only be present at sizes of <50 μm. The lower evaporation rates of liquid iron oxide leads to greater survival of iron particles compared with silicates, which enhances their abundance among micrometeorites by a factor of 2. The abundance of I‐types is shown to be broadly consistent with the abundance and size of metal in ordinary chondrites and the current day flux of ordinary chondrite‐derived MMs arriving at Earth. Furthermore, carbonaceous asteroids and cometary dust are suggested to make negligible contributions to the I‐type spherule flux. Events involving such objects, therefore, cannot be recognized from I‐type spherule abundances in the geological record.  相似文献   

4.
Abstract— Four particles extracted from track 80 at different penetration depths have been studied by analytical transmission electron microscopy (ATEM). Regardless of their positions within the track, the samples present a comparable microstructure made of a silica rich glassy matrix embedding a large number of small Fe‐Ni‐S inclusions and vesicles. This microstructure is typical of strongly thermally modified particles that were heated and melted during the hypervelocity impact into the aerogel. X‐ray intensity maps show that the particles were made of Mg‐rich silicates (typically 200 nm in diameter) cemented by a fine‐grained matrix enriched in iron sulfide. Bulk compositions of the four particles suggest that the captured dust particle was an aggregate of grains with various iron sulfide fraction and that no extending chemical mixing in the bulb occurred during the deceleration. The bulk S/Fe ratios of the four samples are close to CI and far from the chondritic meteorites from the asteroidal belt, suggesting that the studied particles are compatible with chondritic‐porous interplanetary dust particles or with material coming from a large heliocentric distance for escaping the S depletion.  相似文献   

5.
Paul G. Lucey  Miriam A. Riner 《Icarus》2011,212(2):451-1125
Submicroscopic iron particles larger than about 50 nm, infused throughout mineral grains or glasses, are abundant in planetary materials altered by their environment such as shocked meteorites and lunar agglutinate glasses. Such particles darken their host material but do not redden their spectra but to date there has been no theoretical treatment of their optical effects. Using Mie theory, we modify the Hapke (2001) radiative transfer model of the effects of space weathering to include these effects. Comparison with laboratory measurements shows that the new treatment reproduces the relationship between submicroscopic iron size, abundance and reflectance. We apply this new model to near-IR spectra of Mercury recently obtained by the MESSENGER spacecraft and find that submicroscopic iron is much more abundant on Mercury than in lunar soils, with typical total submicroscopic iron abundances near 3.5 wt.% compared to about 0.5 wt.% for lunar soils We also find that the ratio of iron particles that darken but do not redden to the abundance of very small iron particles that impart the red slope to space weathered material is much larger than lunar (6 vs. 2). Both the total submicroscopic iron abundance and ratio of particle size fractions are consistent with the higher production of melt and vapor in micrometeorite impact on Mercury relative to the Moon (Cintala, 1992) that enables more accumulation of space weathering products before sequestration by regolith overturn. The radiative transfer model cannot directly constrain the abundance of opaque minerals on Mercury because of ambiguities between the darkening effects of opaques and submicroscopic iron particles larger than 50 nm, but assuming the opaques are the ultimate source of the submicroscopic iron, our results place a lower limit of 4-20 wt.% on opaque abundance on Mercury depending on the composition of the opaque phase and whether titanium metal also contributes to the space weathering effect.  相似文献   

6.
Abstract— A new empirical cooling rate indicator for metal particles is proposed. The cooling rate indicator is based on the relationship between the size of the island phase in the cloudy zone, which abuts the outer taenite rim (clear taenite I), and the cooling rate of the host meteorite as obtained by conventional metallographic techniques. The size of the island phase was measured by high-resolution scanning electron microscopy (SEM) in 26 meteorites and decreases from 470 nm to 17 nm, while the cooling rate of the host meteorite increases from 0.5 K/Ma to 325 K/Ma. This island phase size vs. cooling rate relationship is independent of whether the host is an iron, stony-iron, or stony meteorite and can be used to estimate the low-temperature cooling rate of the host meteorite. The measurement of the size of the island phase in the cloudy zone can also be applied to a large number of meteorites.  相似文献   

7.
Abstract— We examined partially molten dust particles that have a solid core and a surrounding liquid mantle, and estimated the maximal size of chondrules in a framework of the shock wave heating model for chondrule formation. First, we examined the dynamics of the liquid mantle by analytically solving the hydrodynamics equations for a core‐mantle structure via a linear approximation. We obtained the deformation, internal flow, pressure distribution in the liquid mantle, and the force acting on the solid core. Using these results, we estimated conditions in which liquid mantle is stripped off from the solid core. We found that when the particle radius is larger than about 1–2 mm, the stripping is expected to take place before the entire dust particle melts. So chondrules larger than about 1–2 mm are not likely to be formed by the shock wave heating mechanism. Also, we found that the stripping of the liquid mantle is more likely to occur than the fission of totally molten particles. Therefore, the maximal size of chondrules may be determined by the stripping of the liquid mantle from the partially molten dust particles in the shock waves. This maximal size is consistent with the sizes of natural chondrules.  相似文献   

8.
Abstract— During preliminary examination of 81P/Wild 2 particles collected by the NASA Stardust spacecraft, we analyzed seven, sulfur embedded and ultramicrotomed particles extracted from five different tracks. Sections were analyzed using a scanning transmission X‐ray microscope (SXTM) and carbon X‐ray absorption near edge structure (XANES) spectra were collected. We compared the carbon XANES spectra of these Wild 2 samples with a database of spectra on thirty‐four interplanetary dust particles (IDPs) and with several meteorites. Two of the particles analyzed are iron sulfides and there is evidence that an aliphatic compound associated with these particles can survive high temperatures. An iron sulfide from an IDP demonstrates the same phenomenon. Another, mostly carbon free containing particle radiation damaged, something we have not observed in any IDPs we have analyzed or any indigenous organic matter from the carbonaceous meteorites, Tagish Lake, Orgueil, Bells and Murchison. The carbonaceous material associated with this particle showed no mass loss during the initial analysis but chemically changed over a period of two months. The carbon XANES spectra of the other four particles varied more than spectra from IDPs and indigenous organic matter from meteorites. Comparison of the carbon XANES spectra from these particles with 1. the carbon XANES spectra from thirty‐four IDPs (<15 micron in size) and 2. the carbon XANES spectra from carbonaceous material from the Tagish Lake, Orgueil, Bells, and Murchison meteorites show that 81P/Wild 2 carbon XANES spectra are more similar to IDP carbon XANES spectra then to the carbon XANES spectra of meteorites.  相似文献   

9.
Abstract— Glacial deposits at the margins of the ice cap of the northern island of the Novaya Zemlya archipelago, Russia, contain numerous spherules and rare scoriaceous particles thought to be extraterrestrial. The 1 Kyr old glacier has decreased in volume and coverage during the last 40 years, leaving the spherules contained in the ice at the margins of the glacier where they can be easily collected. The spherules are similar in their appearance, texture, and mineralogy to cosmic spherules found in deep‐sea sediments in Greenland and Antarctica. Silicate spherules have typical bar‐like textures (75%) or porphyritic textures (15%), while other spherules are glassy (7%). The spherules from Novaya Zemlya are altered only slightly. There are spherules consisting of iron oxides, metal cores with iron oxide rims, a continuous network of iron oxide dendrites in a glass matrix, and particles rich in chromite (3%). Some spherules contain metal droplets and relict forsterite and low‐Ca pyroxene. Silicate spherule compositions match compositions of other cosmic spherules. Both Nova Zemlya and other cosmic spherules are close to carbonaceous chondrite matrices in patterns of variations for Ca, Mg, Si, and Al, which might suggest that their predecessor was similar to carbonaceous chondrite matrices. Unmelted micrometeorites are generally depleted in Ca and Mg and enriched in Al relative to cosmic spherules. The depletion of the micrometeorites in Ca and Mg can be connected with their terrestrial alteration (Kurat et al. 1994), while the Al enrichment seems to be primary.  相似文献   

10.
Nanophase iron (np-Fe0) particles produced by space weathering have been widely observed in lunar soil. Current research suggests that np-Fe0 could have important effects on the chemical, optical and magnetic properties of the lunar soil. To investigate the relationship between np-Fe0 and these properties of lunar soil, simulation of the production process of np-Fe0 by space weathering is necessary because of the scarcity of lunar samples for research purposes. New methods using microwave heating and magnetron sputtering techniques to simulate np-Fe0 production both in the glass phase and on the grain surfaces, respectively, are investigated in this study. Both the formation and occurrence of np-Fe0 are taken into account in the experiment. The X-ray Diffraction (XRD) spectra show that metallic iron has formed in the glass phase produced by microwave heating of ilmenite. Using scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the size of np-Fe0 particles produced in a microwave heating experiment, which is held for 8 min at 1300 °C, is determined to be about 100–500 nm. Compared to the glass of lunar sample 10084, the major composition of the glass matrix is formed by microwave heating compares favorably. In magnetron sputtering experiment the size of np-Fe0 particles is about 20–30 nm, and appears on the grain surfaces. The characteristics of np-Fe0 produced in the simulations are consistent with those of lunar samples documented in the literature.  相似文献   

11.
Abstract— It has now been about a decade since the first demonstrations that hypervelocity particles could be captured, partially intact, in aerogel collectors. But the initial promise of a bonanza of partially‐intact extraterrestrial particles, collected in space, has yet to materialize. One of the difficulties that investigators have encountered is that the location, extraction, handling and analysis of very small (10 μm and less) grains, which constitute the vast majority of the captured particles, is challenging and burdensome. Furthermore, current extraction techniques tend to be destructive over large areas of the collectors. Here we describe our efforts to alleviate some of these difficulties. We have learned how to rapidly and efficiently locate captured particles in aerogel collectors, using an automated microscopic scanning system originally developed for experimental nuclear astrophysics. We have learned how to precisely excavate small access tunnels and trenches using an automated micromanipulator and glass microneedles as tools. These excavations are only destructive to the collector in a very small area—this feature may be particularly important for excavations in the precious Stardust collectors. Using actuatable silicon microtweezers, we have learned how to extract and store “naked” particles—essentially free of aerogel—as small as 3 μm in size. We have also developed a technique for extracting particles, along with their terminal tracks, still embedded in small cubical aerogel blocks. We have developed a novel method for storing very small particles in etched nuclear tracks. We have applied these techniques to the extraction and storage of grains captured in aerogel collectors (Particle Impact Experiment, Orbital Debris Collector Experiment, Comet‐99) in low Earth orbit.  相似文献   

12.
The lunar regolith contains a variety of chemically reduced phases of interest to planetary scientists and the most common, metallic iron, is generally ascribed to space weathering processes (Lucey et al. 2006 ). Reports of silicon metal and iron silicides, phases indicative of extremely reducing conditions, in lunar samples are rare (Anand et al. 2004 ; Spicuzza et al. 2011 ). Additional examples of Fe‐silicides have been identified in a survey of particles from Apollo 16 sample 61501,22. Herein is demonstrated the utility of low keV electron probe microanalysis (EPMA), using the Fe Ll X‐ray line, to analyze these submicron phases, and the necessity of accounting for carbon contamination. We document four Fe‐Si and Si0 minerals in lunar regolith return material. The new Fe‐Si samples have a composition close to (Fe,Ni)3Si, whereas those associated with Si0 are close to FeSi2 and Fe3Si7. Atom probe tomography of (Fe,Ni)3Si shows trace levels of C (60 ppma and nanodomains enriched in C, Ni, P, Cr, and Sr). These reduced minerals require orders of magnitude lower oxygen fugacity and more reducing conditions than required to form Fe0. Documenting the similarities and differences in these samples is important to constrain their formation processes. These phases potentially formed at high temperatures resulting from a meteorite impact. Whether carbon played a role in achieving the lower oxygen fugacities—and there is evidence of nearby carbonaceous chondritic material—it remains to be proven that carbon was the necessary component for the unique existence of these Si0 and iron silicide minerals.  相似文献   

13.
X-ray diffraction is a widely used technique for measuring the crystal structure of a compressed material. Recently, short pulse x-ray sources have been used to measure the crystal structure in-situ while a sample is being dynamically loaded. To reach the ultra high pressures that are unattainable in static experiments at temperatures lower than using shock techniques, shockless quasi-isentropic compression is required. Shockless compression has been demonstrated as a successful means of accessing high pressures. The National Ignition Facility (NIF), which will begin doing high pressure material science in 2010, it should be possible to reach over 2 TPa quasi-isentropically. This paper outlines how x-ray diffraction could be used to study the crystal structure in laser driven, shocklessly compressed targets the same way it has been used in shock compressed samples. A simulation of a shockless laser driven iron is used to generate simulated diffraction signals, and recent experimental results are presented.  相似文献   

14.
Abstract— Understanding the fundamental crystal chemical controls on visible and near‐infrared reflectance spectra of pyroxenes is critical to quantitatively assessing the mineral chemistry of pyroxenes viewed by remote sensing. This study focuses on the analysis of spectroscopic measurements of a comprehensive set of synthetic Mg‐Fe pyroxenes from the visible through the near‐infrared (0.3–2.6 μm) to address the constraints of crystal structure and Fe2+ content on spin‐forbidden and spin‐allowed crystal field absorptions in Ca‐free orthopyroxenes. The chemistry and oxidation state of the synthetic pyroxenes are characterized. Coordinated Mössbauer spectroscopy is used to determine site occupancy of Fe2+ in the M1 and M2 crystallographic sites. Properties of visible and near‐infrared absorption bands of the synthetic pyroxenes are quantified using the modified Gaussian model. The 1 and 2 μm spin‐allowed crystal field absorption bands move regularly with increasing iron content, defining a much tighter trend than observed previously. A spin‐allowed crystal field absorption band at 1.2 μm is explicitly verified, even at low total iron contents, indicating that some portion of Fe2+ resides in the M1 site. The 1.2 μm band intensifies and shifts to longer wavelengths with increasing iron content. At visible wavelengths, spin‐forbidden crystal field absorptions are observed in all iron‐bearing samples. The most prominent absorption near 506 nm, attributed to iron in the M2 site, shifts to slightly longer wavelengths with iron content. The purity and extent of this pyroxene series allows visible wavelength absorption bands to be directly assigned to specific transitions of Fe2+ in the M1 and M2 sites.  相似文献   

15.
M.J. Loeffler  R.A. Baragiola 《Icarus》2008,196(1):285-292
We present quantitative laboratory studies that simulate the effect of redeposition of impact-ejecta on mineral surfaces. We produced deposits of natural olivine (Fo90) and forsterite on olivine and forsterite powder samples by ns-pulsed laser ablation. The deposits produce changes in the optical reflectance (0.66-2.5 μm). We show that significant darkening and reddening of the surface occurs when the deposit is olivine but not if it is forsterite. This is attributed to the formation of metallic iron nanoparticles in the olivine deposits. We also characterized structural and chemical changes using scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy (XPS). In situ XPS measurements show that the olivine deposits are reduced, with 50% of the iron becoming metallic. Transmission electron microscope studies confirm the presence of 2-3 nm crystalline iron nanoparticles in the olivine deposits. The scanning electron microscope shows that both olivine and forsterite deposits smoothen the topography of the powder surface, which could have effects on processes such as exosphere-surface interactions and sputtering. We conclude that the effect of coatings produced by micrometeorite impacts will not be uniform on airless bodies but will depend on the composition of the terrain.  相似文献   

16.
Abstract— We have measured the size of the high‐Ni particles in the cloudy zone and the width of the outer taenite rim in eight low shocked and eight moderately to heavily shocked IVA irons using a transmission electron microscope (TEM). Thin sections for TEM analysis were produced by a focused ion beam instrument. Use of the TEM allowed us to avoid potential artifacts which may be introduced during specimen preparation for SEM analysis of high Ni particles <30 nm in size and to identify microchemical and microstructural changes due to the effects of shock induced reheating. No cloudy zone was observed in five of the eight moderately to highly shocked (>13 GPa) IVA irons that were examined in the TEM. Shock induced reheating has allowed for diffusion from 20 nm to 400 nm across kamacite/taenite boundaries, recrystallization of kamacite, and the formation, in Jamestown, of taenite grain boundaries. In the eleven IVA irons with cloudy zone microstructures, the size of the high‐Ni particles in the cloudy zone increases directly with increasing bulk Ni content. Our data and the inverse correlation between cooling rate and high‐Ni particle size for irons and stony‐irons show that IVA cooling rates at 350‐200 °C are inversely correlated with bulk Ni concentration and vary by a factor of about 15. This cooling rate variation is incompatible with cooling in a metallic core that was insulated with a silicate mantle, but is compatible with cooling in a metallic body of radius 150 ± 50 km. The widths of the tetrataenite regions next to the cloudy zone correlate directly with high‐Ni particle size providing another method to measure low temperature cooling rates.  相似文献   

17.
Abstract— Outside the Earth's atmosphere, silica aerogel is one of the best materials to capture finegrained extraterrestrial particles in impacts at hypervelocities. Because silica aerogel is a superior insulator, captured grains are inevitably influenced by frictional heat. Therefore, we performed laboratory simulations of hypervelocity capture by using light‐gas guns to impact into aerogels finegrained powders of serpentine, cronstedtite, and Murchison CM2 meteorite. The samples were shot at >6 km s?1 similar to the flyby speed at comet P/Wild‐2 in the Stardust mission. We investigated mineralogical changes of each captured particle by using synchrotron radiation X‐ray diffraction (SR‐XRD), transmission electron microscope (TEM), and field emission scanning electron microscope (FE‐SEM). SR‐XRD of each grain showed that the majority of the bulk grains keep their original mineralogy. In particular, SR‐XRD and TEM investigations clearly exemplified the presence of tochilinite whose decomposition temperature is about 300 °C in the interior of the captured Murchison powder. However, TEM study of these grains also revealed that all the samples experienced melting and vesiculation on the surface. The cronstedtite and the Murchison meteorite powder show remarkable fracturing, disaggregation, melting, and vesiculation. Steep thermal gradients, about 2500 °C/μm were estimated near the surface of the grains (<2 μm thick) by TEM observation. Our data suggests that the interior of >4 μm across residual grains containing abundant materials that inhibit temperature rise would have not experienced >300 °C at the center.  相似文献   

18.
We detail the production of metallic spherules in laboratory oblique shock impact experiments, and their applicability (1) to textures in a partly shock‐melted chondritic meteorite and (2) to the occurrence of palaeomagnetically important fine iron or iron alloy particles in the lunar regolith. Samples recovered from 29–44 GPa, 800 ns, experiments revealed melting and textures reminiscent of metallic spherules in the Yanzhuang H‐chondrite, including “dumbbell” forms and other more complex morphologies. Our experiments demonstrate that metallic spherules can be produced via oblique impact sliding at lower velocities (1.85 km s?1) than are generally assumed in previous work associated with bulk‐shock melting, and that oblique impact sliding is a viable mechanism for producing spherules in shock‐induced veins in moderately shocked meteorites. Significantly, our experiments also produced fine metallic (iron alloy) spherules within the theoretical narrow size range (a few tens of nanometers for slightly ellipsoidal particles) for stable single‐domain (SSD) particles, which are the most important palaeomagnetically, since they can record lunar and planetary magnetic fields over geological time periods. The experiments also produced spherules consistent with superparamagnetic (SP) and multidomain (MD) particle sizes. The fine SSD and SP particles on the lunar surface are currently thought to have been formed predominantly by space weathering processes. Our experiments suggest that oblique shock impact sliding may be a further means of producing the SSD and SP iron or iron alloy particles observed in the lunar regolith, and which are likely to occur in the regoliths of Mercury and other planetary bodies.  相似文献   

19.
The center of the 35.3 Ma Chesapeake Bay impact structure (85 km diameter) was drilled during 2005/2006 in an ICDP–USGS drilling project. The Eyreville drill cores include polymict impact breccias and associated rocks (1397–1551 m depth). Tens of melt particles from these impactites were studied by optical and electron microscopy, electron microprobe, and microRaman spectroscopy, and classified into six groups: m1—clear or brownish melt, m2—brownish melt altered to phyllosilicates, m3—colorless silica melt, m4—melt with pyroxene and plagioclase crystallites, m5—dark brown melt, and m6—melt with globular texture. These melt types have partly overlapping major element abundances, and large compositional variations due to the presence of schlieren, poorly mixed melt phases, partly digested clasts, and variable crystallization and alteration. The different melt types also vary in their abundance with depth in the drill core. Based on the chemical data, mixing calculations were performed to determine possible precursors of these melt particles. The calculations suggest that most melt types formed mainly from the thick sedimentary section of the target sequence (mainly the Potomac Formation), but an additional crystalline basement (schist/gneiss) precursor is likely for the most abundant melt types m2 and m5. Sedimentary rocks with compositions similar to those of the melt particles are present among the Eyreville core samples. Therefore, sedimentary target rocks were the main precursor of the Eyreville melt particles. However, the composition of the melt particles is not only the result of the precursor composition but also the result of changes during melting and solidification, as well as postimpact alteration, which must also be considered. The variability of the melt particle compositions reflects the variety of target rocks and indicates that there was no uniform melt source. Original heterogeneities, resulting from melting of different target rocks, may be preserved in impactites of some large impact structures that formed in volatile‐rich targets, because no large melt body exists, in which homogenization would have taken place.  相似文献   

20.
Abstract– Simulants of lunar dust are needed when researching the lunar environment. However, unlike the true lunar dust, today’s simulants do not contain nanophase iron. Two different processes have been developed to fabricate nanophase iron to be used as part of a lunar dust simulant. (1) The first is to sequentially treat a mixture of ferric chloride, fluorinated carbon, and soda lime glass beads at about 300 °C in nitrogen, at room temperature in air, and then at 1050 °C in nitrogen. The product includes glass beads that are gray in color, can be attracted by a magnet, and contains α‐iron nanoparticles (which seem to slowly lose their lattice structure in ambient air during a period of 12 months). This product may have some similarity to the lunar glassy agglutinate, which contains FeO. (2) The second is to heat a mixture of carbon black and a lunar simulant (a mixed metal oxide that includes iron oxide) at 1050 °C in nitrogen. This process simulates lunar dust reactions with the carbon in a micrometeorite at the time of impact. The product contains a chemically modified simulant that can be attracted by a magnet and has a surface layer whose iron concentration increased during the reaction. The iron was found to be α‐iron and Fe3O4 nanoparticles, which appear to grow after the fabrication process. This growth became undetectable after 6 months of ambient air storage, but may last for several years or longer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号