首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The region of the 8200 Å Band of H2O was studied in spectra of Venus obtained with an echelle grating spectrograph operated at an altitude of 14.6 km in the NASA Learjet research aircraft. Taking advantage of low foreground absorption, observing at a time of velocity quadrature, differential spectroscopy with respect to lunar spectra, and spectrum averaging, we establish a value of H2O of 3 ± 20 μ for the total path over the entire disk. This value differs from earlier studies of the integrated disk but supports the low values recently derived from infrared bands and by very high spectral resolution groundbased studies.  相似文献   

2.
A.T. Young 《Icarus》1979,37(1):297-300
The 3150-Å absorption on Venus, found by Barker et al. (1975, J. Atmos. Sci.32), may be due to carbon disulfide. The stability and thermodynamics of the carbon chalcogenides are briefly discussed.  相似文献   

3.
Measurements of the Sun in the near-infrared He i 10830 Å absorption line were performed using the echelle spectrograph with a dispersion of 6.71 mÅ per pixel at the Vacuum Tower Telescope (German Solar Telescopes, Teide Observatory, Izaña, Tenerife, Spain) on May 26, 1993. These measurements were compared with full-disc soft X-ray images of the Sun (Japanese solar satellite Yohkoh), full-disc solar images in H (Big Bear Solar Observatory), full-disc solar images in the He i 10830 Å line (National Solar Observatory, Kitt Peak) and with full-disc microwave solar maps at 37 GHz (Metsähovi Radio Research Station). In the He 10830 Å line the Sun displays a limb darkening similar to that in the visible part of the spectrum. Active regions and H filaments show a strong absorption in the He 10830 Å line, whereas the absorption is weak in coronal holes.  相似文献   

4.
The Venus Express (VEX) mission has been in orbit to Venus for more than 4 years now. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet that can be used to sample the atmosphere at different altitudes. Day-side images in the ultraviolet range (380 nm) are used to study the dynamics of the upper cloud at 66–72 km while night-side images in the near infrared (1.74 μm) map the opacity of the lower cloud deck at 44–48 km. Here we present a long-term analysis of the global atmospheric dynamics at these levels using a large selection of orbits from the VIRTIS-M dataset covering 860 Earth days that extends our previous work (Sánchez-Lavega, A. et al. [2008]. Geophys. Res. Lett. 35, L13204) and allows studying the variability of the global circulation at the two altitude levels. The atmospheric superrotation is evident with equatorial to mid-latitudes westward velocities of 100 and 60 m s?1 in the upper and lower cloud layers. These zonal velocities are almost constant in latitude from the equator to 50°S. From 50°S to 90°S the zonal winds at both cloud layers decrease steadily to zero at the pole. Individual cloud tracked winds have errors of 3–10 m s?1 with a mean of 5 m s?1 and the standard deviations for a given latitude of our zonal and meridional winds are 9 m s?1. The zonal winds in the upper cloud change with the local time in a way that can be interpreted in terms of a solar tide. The zonal winds in the lower cloud are stable at mid-latitudes to the tropics and present variability at subpolar latitudes apparently linked to the activity of the South polar vortex. While the upper cloud presents a net meridional motion consistent with the upper branch of a Hadley cell with peak velocity v = 10 m s?1 at 50°S, the lower cloud meridional motions are less organized with some cloud features moving with intense northwards and southwards motions up to v = ±15 m s?1 but, on average, with almost null global meridional motions at all latitudes. We also examine the long-term behavior of the winds at these two vertical layers by comparing our extended wind tracked data with results from previous missions.  相似文献   

5.
In 1761, the Russian polymath Mikhail Vasilievich Lomonosov (1711–1765) discovered the atmosphere of Venus during its transit over the Sun’s disc. In this paper we report on experimental reenactments of Lomonosov’s discovery with antique refractors during the transit of Venus June 5–6, 2012. We conclude that Lomonosov’s telescope was fully adequate to the task of detecting the arc of light around Venus off the Sun’s disc during ingress or egress provided proper experimental techniques as described by Lomonosov in his 1761 report are employed.  相似文献   

6.
Line profiles of He ii 4686 Å and He i 4713 Å from active regions in the chromosphere were observed during the total solar eclipse of February 16, 1980, with a grazing incidence objective grating spectrograph. The Doppler width of the He i triplet line of 4713 Å increases with height and the average width is compatible with width of metallic and hydrogen lines, suggesting that the kinetic temperature of He i triplet emitting region is T 8000 K. This can only be explained by recombination after photo-ionization due to coronal UV radiation. The Doppler width of the Paschen line of He ii 4686 is, without any correction for the separation of subcomponents of the line nor non-thermal velocity, 18.4 km s-1. This line width also shows a tendency to increase with height. After comparison with Doppler widths of He i 4713 and the EUV lines, and a necessary subtraction of non-thermal velocity, it is shown that this line is emitted in a 2 × 104 K temperature region, which again supports the view that this line is emitted through the recombination process after photoionization due to coronal XUV radiation below 228 Å.  相似文献   

7.
The optical spectrum of the post-AGB star HD56126 identified with the infrared source IRAS07134+1005 is studied in detail using high spectral resolution observations (R = 25000 and 60000) performed with the echelle spectrographs of the 6-m telescope. A total of about one and a half thousand absorptions of neutral atoms and ions, absorption bands of C2, CN, and CH molecules, and interstellar bands (DIBs) are identified in the 4012 to 8790 Å Å wavelength interval, and the depths and radial velocities of these spectral features are measured. Differences are revealed between the variations of the radial velocities measured from spectral features of different excitation. In addition to the well-known variability of the Hα profile, we found variations in the profiles of a number of FeII, YII, and BaII lines. We also produce an atlas of the spectrum of HD56126 and its comparison star α Per. The full version of the Atlas is available in electronic form from: http://www.sao.ru/hq/ssl/Atlas/Atlas.html.  相似文献   

8.
We show that heterocyclic aromatic compounds could explain the interstellar absorption feature at 2200 Å, requiring 10% of the available interstellar C and N to be tied up in this form.  相似文献   

9.
It is shown that variations in 6300 Å airglow intensities can, under certain assumptions, be simply related to ?0F2 and its time derivative. In deriving the relationship it is not necessary to assume that the concentration of the neutral atmosphere remains constant and so the relationship is useful on occasions when changes in the neutral atmosphere do occur making it difficult to obtain agreement between observed and calculated 6300 Å intensities; An example is given of a night in which a post-midnight enhancement occurred in the airglow and for which the observations could not be reproduced using a neutral atmosphere constant with time. It is shown that the airglow variations can be explained in terms of the variations of f0F2, implying that the airglow is due to recombination and that, during the night, changes occurred in the concentrations of the constituents of the neutral atmosphere.  相似文献   

10.
High-resolution (0.1-Å) spectra of the 6815-Å band of methane are presented for Jupiter, Saturn, Uranus, and Neptune. Spectra for Uranus, Neptune, and the equatorial region of Saturn were acquired with the SPIFI (W. H. Smith, T. R. Hicks, and J. P. Born (1978). Proceedings of the 4th International Colloquium on Astrophysics, Triest, July 3–7, 1978. pp. 593–599) at the 2.2-m telescope of the Mauna Kea Observatory during May and June 1980. Additional spectra were obtained for Jupiter and the northern temperate and polar regions of Saturn in December 1980 and January 1981 from Kitt Peak National Observatory's McMath Solar Telescope. The spectra show a dichotomy in strength of methane absorption between Jupiter-Saturn and Uranus-Neptune. A simple model analysis, based on homogeneous scattering models, is unable to resolve whether this dichotomy is due to an actual increase in the methane mixing ratio with solar distance or to the temperature dependence of line strengths and absorption pathlengths in these atmospheres. If the rotational quantum number for the prominent 6818.9-Å feature is J < 4, then significant aerosol extinction must exist within the visibly accessible portion of Uranus' atmosphere for the methane mixing ratio to be greater than the solar value.  相似文献   

11.
Thirty well-exposed photographic plates showing the spectrum of the carbon-dioxide band at 8689 Å in the atmosphere of Venus were obtained during 1968 and 1969. All spectra were obtained at a dispersion of 2 Å/mm for Venus phase angles varying from 10° to 126°. We find rotational temperatures ranging from 236 to 274 K. The average value of the rotational temperature is 246 ± 1 K (one standard deviation); for our 1967 observations, the rotational temperatures ranged from 222 to 248 K, with an average value of 238 ± 4 K. The variation of the equivalent width of the 8689 Å band, with Venus phase angle, was very similar for the two sets of observations (53 plates). The temporal variations, of approximately 30% were comparable with the phase variations over this limited range of phase angle.  相似文献   

12.
Nine plates of the 7820 Å CO2 band were taken in 1971. A curve-of-growth analysis of the CO2 lines indicates a rotational temperature of 241 ± 2°K, with an average slope to the curve of growth of 0.60 ± 0.03. The Venus phase angle ranged from 7.2 to 10.7°. The equivalent widths of the 1971 data fall on a smooth curve fit through the 1969 data for this band; there does not appear to be any discontinuity in the phase curve at small phase angles.  相似文献   

13.
Nine plates of the 7883-Å CO2 band were taken between phase angles 7.2 and 10.7° in 1971. A curve-of-growth analysis of 28 rotational lines in the band indicates an average rotational temperature of 236 ± 8°K; the average slope of the curve of growth was 0.63 ± 0.06. The results for this band are compared to those for the 7820-Å band.  相似文献   

14.
To investigate further the Venus inverse phase effect, 12 plates of the 8689 Å CO2 band, taken in 1971, were analyzed for abundances and temperatures using the curve-of-growth method. We found an average rotational temperature of 230 ± 1°K for an average slope of the curve of growth of 0.56 ± 0.03. Day-to-day variations in the equivalent widths of the CO2 lines can be as large as 25%, and long-term changes in the cloud-top temperature are confirmed. On the other hand, the widely accepted “inverse” phase effect of CO2 line equivalent widths near superior conjunction receives no firm support from these results.  相似文献   

15.
Forty-seven well exposed photographic plates of Venus which show the spectrum of the carbon dioxide band at 7820Å were obtained at Table Mountain Observatory in September and October 1972. These spectra showed a semiregular four-day variation in the CO2 abundance over the disk of the planet (Young et al., 1974). We also find evidence for temporal variations in the rotational temperature of this band and temperature variations over the disk. The two quantities, CO2 abundance and temperature, do not show any obvious relationship; however, an increase in the temperature usually is accompanied by a decrease in the abundance of CO2. The average temperature, found from a curve-of-growth analysis assuming a constant CO2 line width, is 249±1.4K (one standard deviation). This temperature is noticeably higher than the rotational temperature of 242±2K found for this same band in 1967 (Schorn et al., 1969) and of 242±1.2K in 1968–1969 (Young et al., 1971).  相似文献   

16.
Measurements from the 1225 to 1340 Å region by the ultraviolet detectors on Mars-3 are presented. Model calculations of the intensity of the OI triplet lines at 1304 Å are compared with the measurements made on December 27, 1971, and February 17, 1972. Agreement is found between experimental data and a model in which the neutral oxygen density at 100 km is 2–8 × 109 cm?3.  相似文献   

17.
The two-dimensional equation of transfer is solved for the case of locally-controlled source function (LTE) and radiationally-controlled ionization. Horizontal fluctuations in electron temperature and macroscopic velocity fields are superposed on the basic one-dimensional model (cf. Altrock and Cannon, 1972). Output intensities are compared with observed rms intensity fluctuations and spatially-averaged intensities in Mg i 4571 Å. We find that at least one model (with a height-independent temperature fluctuation T/T=±0.02 in the range 0h450 km) can predict the magnitude of the intensity fluctuations in both the continuum and 4571 Å. The asymmetry of the line can be explained by adding a height-independent, temperature-correlated flow of amplitude 1 to 2 km s–1. The relationship between these results and other multi-dimensional analyses is discussed.On leave from Department of Applied Mathematics, University of Sydney, Sydney, Australia.  相似文献   

18.
Some results of observations of the spectrum of the spectroscopic-binary Ap star CrB in the region of the lithium line Li I 6708Å are presented. The observations were made at the Crimean Astrophysical Observatory over the period 1993–1995 with the coudé spectrograph equipped with a CCD camera on the 2.6-m telescope. Several factors which can affect the behavior of the lithium blend are examined: stellar rotation, magnetic field, isotopic shift, the binary system, and blending by unidentified elements. The principal result of this work is the detection of variability of the lithium blend Li I 6708Å over the period of rotation of the star. The variations of the radial velocity Vr, and the FWHM of the lithium blend are reported here for the first time. They indicate either a nonuniform distribution of lithium or a nonuniform distribution of conditions for excitation of the lithium resonance doublet in the complex structure of the strong surface magnetic field. Similar variations are also shown by the lines of the rare-earth elements Gd II 6702.10 Å, Gd II + Ce II 6704.3Å, and Ce II + Fe I 6706.0 Å.Translated fromAstrofizika, Vol. 39, No. 1, pp. 19–30, January–March, 1996.  相似文献   

19.
The dependence of the equivalent widths of the 2786–2810 Å spectral band and the MgII 4481 Å line on the basic parameters (Teff, logg and [M/H]) for 137 bright A-stars shows that 60 of them are candidate peculiar stars. Given the similar behavior of W(2800) and W(4481), it can be assumed that 34 of the stars are chemically peculiar stars. The anomalous values of W(2800), W(4481), and [M/H] vary over wide limits for the rest of the stars, possibly because they are binary. Translated from Astrofizika, Vol. 51, No. 4, pp. 577–593 (November 2008).  相似文献   

20.
On its highly elliptical 24 h orbit around Venus, the Venus Express (VEX) spacecraft briefly reaches a periapsis altitude of nominally 250 km. Recently, however, dedicated and intense radio tracking campaigns have taken place in August 2008, October 2009, February and April 2010, for which the periapsis altitude was lowered to the 186–176 km altitude range in order to be able to probe the upper atmosphere of Venus above the North Pole for the first time ever in situ. As the spacecraft experiences atmospheric drag, its trajectory is measurably perturbed during the periapsis pass, allowing us to infer total atmospheric mass density at the periapsis altitude. A Precise Orbit Determination (POD) of the VEX motion is performed through an iterative least-squares fitting process to the Doppler tracking data, acquired by the VEX radioscience experiment (VeRa). The drag acceleration is modelled using an initial atmospheric density model (VTS3 model, Hedin, A.E., Niemann, H.B., Kasprzak, W.T., Seiff, A. [1983]. J. Geophys. Res. 88, 73–83). A scale factor of the drag acceleration is estimated for each periapsis pass, which scales Hedin’s density model in order to best fit the radio tracking data. Reliable density scale factors have been obtained for 10 passes mainly from the second (October 2009) and third (April 2010) VExADE campaigns, which indicate a lower density by a factor of about 1.8 than Hedin’s model predicts. These first ever in situ polar density measurements at solar minimum have allowed us to construct a diffusive equilibrium density model for Venus’ thermosphere, constrained in the lower thermosphere primarily by SPICAV-SOIR measurements and above 175 km by the VExADE drag measurements (Müller-Wodarg et al., in preparation). The preliminary results of the VExADE campaigns show that it is possible to obtain with the POD technique reliable estimates of Venus’ upper atmosphere densities at an altitude of around 175 km. Future VExADE campaigns will benefit from the planned further lowering of VEX pericenter altitude to below 170 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号