首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Mineral and whole-rock REE abundances in garnet lherzolite and megacrystalline nodules from The Thumb display broad correlations with major element compositions. Lherzolites with > 12 modal % clinopyroxene plus garnet (“high-CaAl lherzolites”) have relatively flat chondrite-normalized whole-rock REE patterns. Lherzolites poor in clinopyroxene and garnet (“low-CaAl lherzolites”) have lower HREE in clinopyroxenes and garnets and higher whole-rock LREE/HREE. It is concluded that the low-CaAl lherzolites may have undergone LREE metasomatism after depletion of the major element compositions by partial melting and that much of the garnet now present was originally dissolved in aluminous orthopyroxene. The high-CaAl lherzolites may be interpreted either as primordial mantle samples or as products of equilibration with very LREE-enriched liquids. The “megacrystalline” nodules are medium- to ultracoarse-grained intergrowths and megacrysts with mineral compositions similar to discrete nodule suites in kimberlites. The REE abundances of the megacrystalline minerals are consistent with an origin as cumulates from magma with extremely fractionated REE, similar to minette or kimberlite.The patterns of correlation of REE and major elements in this inclusion suite are similar to the patterns observed in the garnet lherzolite and discrete nodule suites of southern African kimberlites. Both of the subcontinental mantle provinces represented by these suites contain three distinct petrogenetic components: refractory garnet lherzolite enriched in LREE and depleted in HREE, fertile garnet lherzolite with generally chondritic REE abundances, and a suite of ultracoarse minerals precipitated from magma with extremely fractionated REE generally similar to the host magmas.  相似文献   

2.
Strontium isotope ratios and rare-earth element abundances have been measured in acid, intermediate and basic rocks from three late to postglacial volcanic complexes, and several other postglacial basalts in Iceland. Late and postglacial basalts in Iceland have been generated from a source region which is essentially homogeneous with respect to87Sr/86Sr. The mean87Sr/86Sr ratio for the basalts analysed is 0.70328 and the range is from 0.70317 ± 6to0.70334 ± 5 (2σ).Acid rocks from the Kerlinganfjöll and Namafjall volcanic complexes have87Sr/86Sr ratios which are indistinguishable from analysed basalts from the same complexes. However, intermediate and acid rocks from the Torfajökull complex have significantly higher87Sr/86Sr ratios and could not have been derived by fractional crystallization from basaltic magmas similar to those found in the same complex. These latter rocks have most probably been produced by remelting of Tertiary gabbroic rocks in Layer 3. Most of the basalts analysed have higher total rare-earth element abundances than typical dredged ocean-ridge tholeiites, and show less light rare-earth depletion. Intermediate and acid compositions show overall higher abundances and light rare-earth enrichments. The measured rare-earth abundances are compared with abundances generated by differential partial melting of various model source regions.It is shown that both the tholeiitic and alkali basalt compositions could be generated from the same source material by different degrees of partial melting. Variable partial melting of gabbroic material may account for the rare-earth element abundances of both the rhyolitic rocks (small degrees of melting) and the intermediate rocks (more extensive melting).  相似文献   

3.
We report REE and minor element distributions for perovskites from seven kimberlites (South Africa and U.S.A.). The REE (1.6–6.3 oxides wt.%) are always strongly light REE enriched, often with Ce > La (chondrite-normalized), and show an expected close correlation with whole-rock analyses. Where examined, perovskite contains far more REE than coexisting apatite, by about an order of magnitude. Calculations indicate that iron is mostly present as Fe3+ and is low (1.0–2.9 wt.% Fe2O3) compared with perovskite from carbonatite complexes such as Oka (4.4 wt.% FeO [3]). In addition to established Nb (0.3–1.7 oxide wt.%), geochemically interesting elements encountered include Zr (up to 1.5 oxide wt.%), Ba and Sr (up to 0.2, 0.4 oxide wt.% respectively). Specific geological applications suggest a possible genetic link between Wesselton pipe and Benfontein Sills kimberlites, and that carbonate-rich dikes in the Premier mine were derived from kimberlites. The overall similarities with incompatible element-rich titanates in veined mantle peridotites suggest a more direct link between kimberlite magmatism and mantle metasomatism.  相似文献   

4.
The distribution and fractionation of rare-earth elements (REE) are studied in the surface and subsurface waters and rocks of the Albynskoe Gold-Bearing Placer. The obtained data show the rocks of the placer to be enriched with rare-earth elements and to feature the predominance of light lanthanides over heavy ones. Groundwater show an equality between the groups of light and heavy lanthanides, while in the surface waters the concentration of light REE is much higher than that of heavy ones, thus reflecting the composition of the drained ore rocks. The leaching of rare-earth elements from rocks by atmospheric water is intensified by agents produced by microorganisms in their vital activity.  相似文献   

5.
Characteristic geochemical features of the ophiolite suite from the Bay of Islands Complex have been determined by major and trace element analyses of 13 rocks. Based on elements, such as rare earth elements (REE), whose abundances are relatively immobile during alteration and metamorphism, we find that (1) the pillow lavas and diabases are relatively depleted in light REE similar to most tholeiites occurring along spreading oceanic ridges, in back-arc basins and comprising the early phases of volcanism in island arcs; (2) the gabbros, composed of cumulate plagioclase and olivine with poikilitic clinopyroxene, have REE contents consistent with formation as cumulates precipitated from magmas represented by the overlying pillow lavas and diabases; (3) as in most harzburgites from ophiolites, the Bay of Islands harzburgite and dunite have relative REE abundances inconsistent with a genetic relationship to the overlying basic rocks — this inconsistency may be primary or it may result from late-stage alteration, contamination and/or metamorphism; (4) some Bay of Islands lherzolites have major and trace element abundances expected in the mantle source of the overlying basic rocks. Overall, the geochemical features of this Bay of Islands ophiolite suite are similar to those from Troodos and Vourinos, but these data are not sufficient to distinguish between different tectonic environments such as deep ocean ridge, small ocean basin or young island arc.  相似文献   

6.
Six pairs of coexisting garnets and clinopyroxenes were separated from the sheared and granular garnet lherzolite nodules in kimberlites and analyzed for rare earth elements (REE). The sheared and granular nodules can be distinguished in terms of REE pattern of both clinopyroxene and garnet. However, there are no significant differences in REE partitioning between clinopyroxene and garnet, indicating that the partitioning may be insensitive toP, T and composition. REE partition coefficients between garnet and liquid were estimated by using clinopyroxene-liquid partition coefficients found in the literature and clinopyroxene-garnet partitioning reported here. The estimated values agree with those reported by Philpotts et al. (1972). The estimated whole-rock REE pattern for the sheared nodules is similar to a chondritic pattern suggesting that the sheared nodules appear to be close to the primary mantle material. The REE data suggest that the granular nodules were originally garnet-free assemblages equilibrated with kimberlitic or nepheline-melilite basalt-like liquid, and later recrystallized as a garnet lherzolite assemblage.  相似文献   

7.
Rare earth element (REE) abundances determined by activation analysis in rocks, plagioclase and mafic separates from the Fiskenaesset Complex are presented together with data on major and trace elements in the minerals. The REE data for the rocks and plagioclases are distinct from those of many other anorthositic complexes and the abundances are some of the lowest recorded for plagioclase from terrestrial anorthosites. The bulk and trace element compositions of the Fiskenaesset plagioclases show a number of similarities to those of lunar plagioclases. The plagioclases show a positive Eu anomaly of about 10 and a depletion in the heavy REE relative to the light ones. The mafic separates are enriched in the heavy REE relative to the light ones, and show no Eu anomaly except in one sample with a positive anomaly not attributable to plagioclase contamination. It is estimated, from experimental partition coefficient data, that the REE pattern in the magma at an early stage of fractionation was La (17×) to Lu (0.7× chondrites) with a possible positive Eu anomaly. This highly fractionated REE pattern may be attributed to partial melting of a garnet-bearing source.  相似文献   

8.
Major, minor and trace element abundances were determined in seven Angra dos Reis samples including whole rocks, fassaite (clinopyroxene), olivine and whitlockite separates via sequential instrumental neutron activation analysis. The chondritic normalized rare earth element (REE) abundance pattern for the Angra dos Reis clinopyroxene separates shows a concave downward shape with a small negative Eu anomaly. The strong fractionation between the light and the heavy REE in olivine separates could be attributed to the presence of islands of kirschsteinite in the olivines. The large-ion lithophile trace elements were highly enriched in the whitlockite separate as expected (e.g. La ≈ 370 ppm). The lower Hf and Sc abundances in whitlockite compared to that in the equilibrium “magma” could be the result of favorable partitioning of Hf and Sc in baddeleyite, which may have crystallized prior to or with whitlockite in the interstitial liquid. Comparison of whole rock with mineral separate data shows the presence of ~3% olivine, ~2.6% spinel and small amounts of metallic Ni-Fe and troilite in the whole rock.The trace element abundances in the derivative magma from which the Angra dos Reis clinopyroxene crystallized were estimated from the clinopyroxene data and the clinopyroxene mineral-liquid partition coefficients. From the derivative magma, the trace element abundances in the possible parent magmas were calculated by assuming that these parent magmas have undergone different degrees of clinopyroxene fractional crystallization to yield the Angra dos Reis derivative magma. Using the trace element abundances in these possible parent magmas, a two-stage crystal-liquid fractionation model with source material containing olivine, orthopyroxene and clinopyroxene is presented for the genesis of Angra dos Reis. Possible combinations of the degree of equilibrium non-modal partial melting, the source mineral composition and the initial element abundances required to generate possible Angra dos Reis parent magmas are calculated by the multilinear regression analysis method. Favorable solutions for this two-stage crystal-liquid fractionation model could be that Angra dos Reis crystallized at ~70% fractional crystallization of clinopyroxene from magmas generated by reasonable degrees of equilibrium partial melting (~7–10%) of deep-seated primitive source materials (olivine ~54–30%, orthopyroxene ~33–53%, and clinopyroxene ~13–17%) with trace element (Ba, Sr, REE and Sc) abundances ~3.5–4.7 × chondrites. These calculated REE abundances in the Angra dos Reis parent body are very similar to those suggested for the primordial moon (~3–5 × chondrites).Possible genetic relationships between Angra dos Reis and other achondrites, especially cumulate eucrites and nakhlites, are studied. Apparently, the unique Angra dos Reis could not be related to those achondrites by crystal-liquid fractionation of the same parent body.  相似文献   

9.
Post-glacial tholeiitic basalts from the western Reykjanes Peninsula range from picrite basalts (oldest) to olivine tholeiites to tholeiites (youngest). In this sequence there are large systematic variations in rare earth element (REE) abundances (La/Sm normalized to chondrites ranges from 0.33 in the picrite basalts to 1.25 in the fissure tholeiites) and corresponding variations in 143Nd/144Nd (0.51317 in the picrite basalts to 0.51299 in the fissure tholeiites). The large viaration in 143Nd/144Nd, more than one-third the total range observed in most ocean islands and mid-ocean ridge basalts (MORB), is accompanied by only a small variation in 87Sr/86Sr (0.7031–0.7032). These 87Sr/86Sr ratios are within the range of other Icelandic tholeiites, and distinct from those of MORB.We conclude that the mantle beneath the Reykjanes Peninsula is heterogeneous with respect to relative REE abundances and 143Nd/144Nd ratios. On a time-averaged basis all parts of this mantle show evidence of relative depletion in light REE. Though parts of this mantle have REE abundances and Nd isotope ratios similar to the mantle source of “normal” MORB, 87Sr/86Sr is distinctly higher. Unlike previous studies we find no evidence for chondritic relative REE abundances in the mantle beneath the Reykjanes Peninsula; in fact, the data require significant chemical heterogeneity in the hypothesized mantle plume beneath Iceland, as well as lateral mantle heterogeneity from the Reykjanes Ridge to the Reykjanes Peninsula. The compositional range of the Reykjanes Peninsula basalts is consistent with mixing of magmas produced by different degrees of melting in different parts of the heterogeneous mantle source beneath the Reykjanes Peninsula.  相似文献   

10.
Soluble rare earth element (REE) concentrations have been measured for five Pacific Northwest rivers (Columbia, Fraser, Klamath, Rogue, and Sacramento) using radiochemical neutron activation analysis. The relative abundances of the REE in river water resemble the REE abundance pattern in average sedimentary type rocks. The La material balance in the oceans is discussed.  相似文献   

11.
Rare earth element abundances have been measured in pyroxenitic (19.6% MgO) to gabbroic (7.7% MgO) rocks from the upper part of a thick, layered komatiite lava flow (Fred's Flow) in Munro Township, Ontario. This flow apparently erupted as a highly basic liquid which subsequently differentiated into layers of ultramafic cumulate rocks and a basaltic residual liquid. The analyzed rocks have compositions and spinifex or equigranular textures interpreted to indicate that they represent the complete range of liquids that were present during the differentiation of the lava.All the analyzed rocks are depleted in light REE, and also exhibit a slight depletion of Yb and Er relative to Gd and Dy. Chondrite-normalized Ce and Yb abundances range from 3.2 to 7.8 and 5.1 to 9.7 respectively. Proportions of fractionating minerals were estimated using a major element petrological mixing program and petrographic data. REE modeling based on these results indicates that the dominant process relating the samples is low-pressure fractional crystallization of olivine, followed at lower temperatures by clinopyroxene and plagioclase. Except for Eu, correspondence between observed and calculated REE abundances obviates any need to appeal to processes of major REE redistribution during diagenesis and low-grade metamorphism. Major differences in REE patterns of other ultramafic and mafic komatiitic lava flows [6,11], therefore, probably reflect different episodes of partial melting and/or differences in mantle source composition. The consistency of the REE in the layered flow, however, supports the concept that mafic komatiites can also be derived from ultrabasic parental magmas by low-pressure fractional crystallization. The light-REE-depleted patterns of these komatiites resemble those of modern MORB, suggesting that the mantle source of the komatiites had undergone a previous melting episode.  相似文献   

12.
REE abundances in gabbros and peridotites from Site 334 of DSDP Leg 37 show that these rocks are cumulates produced by fractional crystallization of a primitive oceanic tholeiite magma. They may be part of a layered oceanic complex. The REE distributions in the residual liquids left after such a fractionation are similar to those of incompatible element-depleted oceanic tholeiites. The REE data indicate that the basalts which overlie the gabbro-peridotite complex, are not genetically related to plutonic rocks.  相似文献   

13.
Lewisian gneiss geochemistry and Archaean crustal development models   总被引:1,自引:0,他引:1  
The geochemistry of Lewisian amphibolite-facies gneisses from northwest Scotland is described with particular reference to the rare earth elements (REE) and compared with the geochemistry of Lewisian granulite-facies gneisses. The results show that there are no significant differences between “Laxfordian” amphibolite-facies and “Scourian” granulite-facies gneisses in terms of REE and other immobile trace elements (at equivalent silica levels), although the mobile radioactive heat-producing elements, K, Rb, Th, U, are significantly lower in the granulites. In both types the basic gneisses have moderately fractionated REE patterns while the intermediate and acid gneisses have strongly fractionated REE patterns with low heavy REE abundances and decreasing levels of total REE with increasing SiO2. The most silicic gneisses develop large positive europium anomalies.These gross chemical similarities between gneisses from intermediate (amphibolite-facies) and lower (granulite-facies) crustal levels constrain models for the evolution of the Archaean crust. The depletion of K, Rb, Cs, Th and U in granulites, but not other incompatible trace elements cannot be explained by magmatic processes. The positive Eu anomaly in the more siliceous gneisses of both facies is a function of the primary processes of crustal generation and not secondary processes such as intracrustal melting or fractional crystallisation. Fractionation of radioactive heat-producing elements from other trace elements is a result of granulite-facies metamorphism with these elements being removed by an active fluid phase. The apparent lack of partial melting in lower crustal granulites suggests a model for Archaean crustal growth largely through underplating by primary tonalitic magmas.  相似文献   

14.
Tabaksblat  L. S. 《Water Resources》2002,29(3):333-345
High concentrations of rare, trace, and rare-earth elements, which cannot exist outside the sphere of long-term active technogenesis, have been determined in the highly transformed anthropogenic water of the sulfide (ore) and sulfidized (coal and ore) deposits characterized by the sulfuric acid environment. It has been established that many deposits of the traditional raw materials can be considered rare metal water pools (liquid ore accumulations) because of high rare-earth element (REE) concentrations in water in the case of a sulfuric hydrolysis and stable anthropogenic water flow rates. The environment-controlling systems of anthropogenic solutions have been substantiated, the boundaries of the inorganic forms of element transportation have been determined, and the degrees of hydration of these elements and the geoenvironmental consequences have been studied.  相似文献   

15.
The Aegean volcanic arc formed in response to northeasterly subduction of the Mediterranean sea floor beneath the Aegean Sea. The active arc lies over 250 km from the Hellenic Trench in a region which has suffered considerable extension and subsidence since the mid-Tertiary. Suites of samples from the different volcanic centres making up the arc have been studied geochemically in order to assess lateral variations and to constrain the contribution of crustal contamination and sediment subduction in their petrogenesis.Lavas from all the major volcanic centres exhibit typical calc-alkaline major-element characteristics, and show enrichment in light REE and LIL elements but low contents of HFS elements. The enrichment in light REE is greater in the eastern (Nisyros, Kos) and western (Milos, Poros, Methana, Aegina) sectors of the arc (Cen/Ybn=4) than in the central Santorini sector (Cen/Ybn=2). All lavas have significant negative Eu anomalies and many have slight negative Ce anomalies. Less coherence is observed in the abundances and ratios of the other LIL elements, compared with the REE, along the island chain.Whereas the effects of crystal fractionation are evident in the trace-element patterns of lavas from individual islands, and are particularly well marked for Santorini, it is clear that there are consistent differences in trace-element abundances and ratios in the lavas of the various islands which reflect compositional differences in the mantle source and/or in melting conditions. Lavas from the eastern and western sectors have much higher levels of Ba and Sr but relatively lower Th, K and Rb than those from Santorini. Although some geochemical features could be explained through involvement of a component of subducted sediment in the source regions of the volcanoes, other element abundances and ratios indicate that this component must be very small. Detailed consideration of the inter-island geochemical variations suggests a complex make-up of the underlying lithosphere, resulting from a long history of subduction. In the region of Santorini, where crustal stretching is greatest, the underlying asthenosphere may be involved in magma production.  相似文献   

16.
The abundances of nine rare earth elements (REE) in phosphate separates from three ordinary chondrites, Saint Séverin (LL6), Bruderheim (L6) and Richardton (H5), were measured by instrumental neutron activation analysis. All REE except europium are enriched in the phosphate minerals (merrillite and chlorapatite) by factor of 200–300 relative to the chondritic average, whereas Eu is enriched by a factor of 40–50. Electron microprobe analysis showed no significant differences in phosphate mineral composition among the three chondrites studied, though the relative proportions of two minerals varied.According to our data, REE are enriched by almost the same factor in merrillite and chlorapatite in the Bruderheim and, with less certainty, in the other two chondrites. This behavior of REE contrast with that of the actinoid elements, Th, U and Pu, which are also enriched in phosphate but are fractionated between merrillite and chlorapatite. Since Pu and REE show different fractionation behavior in chondritic phosphates, it may be difficult to use REE as stand-ins for Pu in244Pu chronology.  相似文献   

17.
In order to investigate the genetic nature of the polymict breccia howardite Melrose-b, a whole-rock sample was separated into four fractions after pulverization and the rare earth element (REE) abundances were precisely determined by isotopic dilution in those fractions. Such an investigation shows that the three precipitated fine-particle fractions are depleted in Ce by the same factor (0.62 ~ 0.64) in spite of differences in mineralogy, while the corresponding factor of Ce depletion for the suspended-matter fraction is 0.462; the smaller value indicates a greater depletion in Ce.The weight fraction values of four fractions calculated from the REE abundances are in satisfactory agreement with the actual values. The concentration ratios between plagioclase and mainly pigeonite fractions accord with those observed in similar phases of the Juvinas eucrite [1]. Moreover, the bulk pattern synthesized from the three fine-particle fractions is similar in absolute level to that for the Zmenj howardite [1]. It is concluded that the negative Ce anomaly reflects the effect predating the igneous activity in the parent planetary body.  相似文献   

18.
Trace element abundances in Ivory Coast normal microtektites and Australasian bottle-green microtektites confirm that microtektites are genetically related to tektites in the associated strewn field. Although major and compatible trace element abundances imply that bottle-green microtektites are members of a fractional crystallization sequence, the similar rare earth element distributions in Australasian normal and bottle-green microtektites and tektites cannot be explained by a simple fractionation model. The similar REE abundances in tektites and microtektites of widely different major element composition also preclude simple models calling for sedimentary rock precursors.  相似文献   

19.
Isotopic ratios and abundances of all REE in two Oklo ore samples have been measured. We have succeeded in developing a new method to estimate the neutron fluence, the conversion factor of uranium and the average neutron energy (or temperature) based on Gd and U isotopic ratios. This new calculation is found to be useful in evaluating those parameters for the natural nuclear reactors at Oklo. Comparison is made between the neutron fluence values evaluated by our new method employing Gd isotopes and a previous one [11] employing Sm and Nd isotopes. The relative agreement becomes better with the increase of fluence. A relationship between the abundances of fissiongenic nuclides of La, Ce, Nd, Sm, and Gd and their mass numbers is also presented.  相似文献   

20.
Palaeomagnetic techniques for estimating the emplacement temperatures of volcanic deposits have been applied to pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa. Lithic clasts were sampled from a variety of lithofacies from three pipes for which the internal geology is well constrained (the Cretaceous A/K1 pipe, Orapa Mine, Botswana, and the Cambrian K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling breccias with varying abundances of lithic inclusions, layered crater-filling pyroclastic deposits, talus breccias and volcaniclastic breccias. Basalt lithic clasts in the layered and massive vent-filling pyroclastic deposits in the A/K1 pipe at Orapa were emplaced at >570°C, in the pyroclastic crater-filling deposits at 200–440°C and in crater-filling talus breccias and volcaniclastic breccias at <180°C. The results from the K1 and K2 pipes at Venetia suggest emplacement temperatures for the vent-filling breccias of 260°C to >560°C, although the interpretation of these results is hampered by the presence of Mesozoic magnetic overprints. These temperatures are comparable to the estimated emplacement temperatures of other kimberlite deposits and fall within the proposed stability field for common interstitial matrix mineral assemblages within vent-filling volcaniclastic kimberlites. The temperatures are also comparable to those obtained for pyroclastic deposits in other, silicic, volcanic systems. Because the lithic content of the studied deposits is 10–30%, the initial bulk temperature of the pyroclastic mixture of cold lithic clasts and juvenile kimberlite magma could have been 300–400°C hotter than the palaeomagnetic estimates. Together with the discovery of welded and agglutinated juvenile pyroclasts in some pyroclastic kimberlites, the palaeomagnetic results indicate that there are examples of kimberlites where phreatomagmatism did not play a major role in the generation of the pyroclastic deposits. This study indicates that palaeomagnetic methods can successfully distinguish differences in the emplacement temperatures of different kimberlite facies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号