首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two hundred and nineteen palaeomagnetic results are combined in calculating Gondwanan apparent polar wander paths, their confidence intervals, and the residual mean square errors about the paths, for six reconstructions.A quantitative assessment of the six reconstructions of Gondwanaland is made on the basis of the consistency of palaeomagnetic pole positions using a new statistical technique. Smith and Hallam's [1] Gondwanan reconstruction is the most effective in accounting for the distribution of the palaeomagnetic data and is used in calculating our preferred apparent polar wander path.  相似文献   

2.
Rapid polar shifts relative to Gondwanaland are identified in the Late Ordovician and Carboniferous. These shifts form part of the “Common polar wander path” interpretation of the palaeomagnetic poles for the Gondwana continents during the Palaeozoic. For western Europe a transition occurs between the Ordovician and Silurian poles, but is of smaller magnitude than the Late Ordovician Gondwana shift. Similarly Carboniferous shifts with respect to Europe and North America are smaller than the Gondwana shifts. A third shift in Europe is dated as mid-Devonian, but could be as old as Late Silurian, and has no counterpart in Gondwanaland. The differences in timing and magnitudes of these shifts provide evidence of the predominant role of continental drift rather than polar wandering. Attempts to explain the data exclusively in terms of polar wandering lead to geologically and geometrically untenable conclusions. Whilst there were one or perhaps two supercontinents in most of the upper Palaeozoic, it seems Laurasia was itself a set of separate fragments.  相似文献   

3.
Palaeomagnetic data for Australian Precambrian rocks allow the preparation of a tentative apparent polar wander curve. The proposed curve helps to “date” the magnetic remanence of many rocks whose age of magnetization or remagnetization is imprecise. Using this curve the CRMs of hematite ore deposits can be shown to have been acquired up to hundreds of millions of years after the deposition of the host rocks.Comparison of the Australian Precambrian apparent polar wander curve with proposed curves for Europe, Siberia, North America and Africa provides further evidence for the suggestion of relative continental movement during the Precambrian. If relative continental drift has not (or could not have) taken place, then “true” polar wander apparently varies relative to the continent for which it is determined.  相似文献   

4.
The survey of radiometric and paleomagnetic work on the mafic rocks of South Carolina is consistent with, and amplifies the studies on the acidic rocks of the southeast by Ellwood (1982). The westerly post-early Mesozoic tilt of the southeastern Appalachians proposed by Dooley and Smith (1982) over most of the Piedmont balances out the post-late Paleozoic southeastern tilt of Ellwood (1982). Only in the Elberton-Sparta block is the tilting important and here the interpretation proposed is of a greater initial tilt (approximately 25–30°) reduced by the post-early Mesozoic tilt.There is no evidence of displaced terrains as far as the King's Mountain, Charlotte, and Slate belts are concerned at least since 300 m.y. ago and perhaps as early as 350 m.y. ago. The anomalous paleomagnetic data from the Kiokee belt is best interpreted as due to tectonic displacements associated with the late Paleozoic event described by Secor and Snoke (1978) and Snokeet al. (1980).The paleopoles of the mafic rocks are in agreement with paleopoles on the North American apparent polar wander path (APWP) at about 300 m.y. The resolution of K–Ar apparent ages of 350 m.y. or older will require40Ar/39Ar studies and such age relationships are critical to the reasonable application of tilt corrections in the southern Appalachians.  相似文献   

5.
Four mafic and two dioritic igneous bodies intruding along the flanks of the Charlotte belt, within the King's Mountain belt and near the Slate-Kiokee-Charlotte belt boundaries in the South Carolina Piedmont, were studied paleomagnetically. The results suggest that these mafic rocks with a single characteristic magnetization are broadly contemporaneous. A mean paleomagnetic pole position of 38.9°N 120.8°E has been calculated for the six bodies. This pole position falls near the 300 Ma old point of Irving's apparent polar wander path (APWP) for North America. The α95 circle of confidence (10.2°) includes points on the APWP between 250–360 Ma. Anomalously old KAr apparent ages, greater than one billion years, are suggestive of excess 40Ar contamination for the mafic Buffalo pluton, whereas apparent ages in the range of 360–395 Ma old are interpreted as a maximum age for the other bodies, due to the possibility of small amounts of excess 40Ar being present. A 10° westerly tilt correction suggested by Dooley and Smith for early Mesozoic diabase brings the mafic pole position of this study to more nearly coincide with the 350 Ma virtual geomagnetic position of Irving's curve, but the test is inconclusive, awaiting better definition of radiometric ages. The simplest interpretation of the data is that the mafic pole position reflects the direction of the geomagnetic field in late Devonian Carboniferous times. The similarity of this pole position with the points on the APWP for North America provides little evidence for displaced terrains and, with the precision of this pole position, horizontal displacements on the order of that suggested by the Consortium for Continental Reflection Profile (COCORP) results, or by subsequent studies, are not detectable. This and other pole positions from granitic rocks in the southern Appalachian orogen suggest that if displaced terrains exist, the evidence must be found in older rocks, or in other geologic belts.  相似文献   

6.
A palaeomagnetic pole is established at 25.1°N 273.9°E (dp = 10.6°, dm = 14.3°) from the norite-charnockite complex at Angmagssalik, emplaced at 1800 Ma. A somewhat older palaeomagnetic pole at 4.2°S 246.7°E (dp = 4.2°, dm = 8.3°) is obtained from Archaean gneisses close to the northern boundary of the Nagssugtoqidian mobile belt; reversals of magnetization are present here. Both magnetizations were imposed during slow cooling following the (late) Nagssugtoqidian metamorphism.In general the gneisses, dyke amphibolites and granite of the Nagssugtoqidian mobile belt are unstably magnetized; their magnetization is attributable to the Earth's present field, and is often extremely weak.A pseudotachylyte within the Archaean gneisses has had a long cooling history. A fragment of the remanence reflects the magnetization characteristic of the Archaean gneisses, whereas most of the magnetization corresponds to a palaeomagnetic pole near that of the Angmagssalik complex. The pseudotachylyte is much older than its magnetizations.An apparent polar wander path is presented for Greenland at ca. 1750 Ma based on the above results and data from west Greenland.  相似文献   

7.
A novel approach is described which can help to determine, from ground-based data, which of the possible production mechanisms for the mid-latitude F-region ionospheric trough is dominant during a particular event. This approach involves numerically modelling the possible causal mechanisms of the mid-latitude trough to see how each will affect the altitude of the F2-layer electron-concentration peak (hmF2), and then comparing these predictions with the observed variation of hmF2 during trough formation. The modelling work predicts that, if the neutral-wind velocity does not vary, hmF2 will remain almost constant if the trough is formed via stagnation, but will rise if it is formed as a result of high ion velocities or neutral upwelling. Observations made at Halley (76°S, 27°W, L=4.2), Antarctica, show that most frequently the only changes in hmF2 during trough formation are those expected due to variations in the neutral wind, which suggests that stagnation is the most common production mechanism. During the most geomagnetically active night studied, on which Ap varied between 18 and 32, there was a rise in hmF2 that cannot be explained by changes in the neutral wind. On this night the plasma also decayed faster, and the poleward edge of the trough was seen earlier than on other nights. These differences, together with the fact that the ion velocities remained relatively low, suggest the trough was caused by a change in neutral composition, possibly advected into the observing area.  相似文献   

8.
Proterozoic supracrustal rocks of southwest Greenland and amphibolite dykes intruding the basement possess a thermal remanent magnetisation acquired during slow regional uplift and cooling between 1800 and 1600 m.y. following the Ketilidian mobile episode. Most samples from amphibolite dykes (mean palaeomagnetic pole 214°E, 31°N) possess a stable remanence associated with development of hematite during regional thermal metamorphism. Metavolcanics from the eastern part (eight sites, palaeomagnetic pole 230°E, 60°N, A95 = 15°) and western part (twelve sites, 279°E, 59°N, A95 = 17°) of Ars?k Island have magnetisations postdating folding and are related to KAr ages dating regional cooling (1700-1600 m.y.); magnetic properties are highly variable and partially stable remanence resides predominantly in pyrrhotite.These results agree in part with other palaeomagnetic results from the northern margin of the same craton, and currently available palaeomagnetic results assigned to the interval 1850-1600 m.y. are evaluated to define apparent polar wander movements. Two large polar movements are recognised during this interval with the possibility of a third at ca. 1800 m.y. It is concluded that apparent polar wander movements in Proterozoic times are most accurately described in terms of closed loops.  相似文献   

9.
The melting curves of CaCO3 and MgCO3 have been extended to pressures of 36 kb by experiments in piston-cylinder apparatus. At 30 kb, the melting temperatures of calcite and magnesite are 1610°C and 1585°C, respectively. New data for the magnesite dissociation reaction permit the location of an invariant point for the assemblage magnesite + periclase + liquid + vapor near 26 kb-1550°C. New data are also presented for the calcite-aragonite transition at 800°C, 950°C and 1100°C. At pressures above 36–50 kb, calcite and magnesite melt at temperatures lower than the solidus of dry mantle peridotite. Natural and experimental evidence suggests that carbon dioxide in the Earth's mantle could be present in a variety of forms: (a) a free vapor phase, (b) vapor dissolved in silicate magma, (c) crystalline carbonate, (d) carbonatite liquid, (e) carbon-bearing silicate analogs, or (f) carbonato-silicates (such as scapolite, spurrite, tilleyite, and related compounds).  相似文献   

10.
Contrary to many laboratory investigations, common empirical correlations from in situ tests consider that the increase in the percentage of fines leads to an increase of the cyclic liquefaction resistance of sands. This paper draws upon the integrated Critical State Soil Mechanics framework in order to study this seemingly not univocal effect. Firstly the effect of fines on the Critical State Line (CSL) is studied through a statistical analysis of a large data set of published monotonic triaxial tests. The results show that increasing the content of non-plastic fines practically leads to a clockwise rotation of the CSL in (e–ln p) space. The implication of this effect on cyclic liquefaction resistance is subsequently evaluated with the aid of a properly calibrated critical state elasto-plastic constitutive model, as well as a large number of published experimental results and in situ empirical correlations. Both sets of data show clearly that a fines content, less than about 30% by weight, may prove beneficial at relatively small effective stresses (p0<50–70 kPa), such as the in situ stresses prevailing in most liquefaction case studies, and detrimental at larger confining stresses, i.e. the stresses usually considered in laboratory tests. To the extent of these findings, a correction factor is proposed for the practical evaluation of liquefaction resistance in terms of the fines content and the mean effective confining stress.  相似文献   

11.
Calc-alkaline intermediate rocks are spatially and temporally associated with high-Mg andesites (HMAs, Mg#>60) in Middle Miocene Setouchi volcanic belt. The calc-alkaline rocks are characterized by higher Mg# (strongly calc-alkaline trend) than ordinary calc-alkaline rocks at equivalent silica contents. Phenocrysts in the intermediate rocks have petrographical features such as: (1) coexisting reversely and normally zoned orthopyroxene phenocrysts in single rock; (2) sieve type plagioclase in which cores are mantled by higher An%, melt inclusion-rich zone; and (3) reversely zoned amphibole phenocrysts with opacite cores. In addition, mingling textures and magmatic inclusions were observed in some rocks. These petrographic features and the mineral chemistry indicate that magma mixing was the most important process in producing the strongly calc-alkaline rocks. The core composition of normally zoned orthopyroxene phenocrysts and the mantle composition of reversely zoned orthopyroxene phenocrysts have relatively high Mg# (85–90) in maximum. Although basaltic and high-Mg andesitic magmas are candidate as possible mafic end-member magmas, basaltic magma is excluded in terms of phenocryst assemblage and bulk composition. HMA magmas are suitable mafic end-member magmas that precipitated high Mg# (90) orthopyroxene, whereas andesitic to dacitic magma are suitable felsic end-members. In contrast, it is difficult to produce the strongly calc-alkaline trend through fractional crystallization from a HMA magma, because it would require removal of plagioclase together with mafic minerals from the early stage of crystallization, whereas the precipitation of plagiolase is suppressed due to the high water content of HMA magmas. These results imply that Archean Mg#-rich TTGs (>45–55), which are an analog of the strongly calc-alkaline rocks in terms of chemistry and magma genesis, can be derived from magma mixing in which a HMA magma is the mafic end-member magma, rather than by fractional crystallization from a HMA magma.  相似文献   

12.
In the Nordre Strømfjord shear zone of central West Greenland it is believed that the gneisses exposed at the coast reached a maximum depth of burial about 10 km deeper than those now adjacent to the inland ice. This theory was tested palaeomagnetically. Further sampling up the mountain K?llingeh?tten was carried out to ascertain changes of direction of magnetization with height.The magnetic susceptibility ellipsoids were determined for each specimen and were used to correct their directions of magnetization for the effects of anisotropy. Complicated but compact polar wander paths were derived for both the fjord and mountain traverses. The path for the fjord is consistent with the geological model but does not support it. This inconclusive result may be the consequence of a low rate of polar wander. The mean palaeomagnetic poles are 27.7°N, 276.6° E (dp = 13.8°,dm = 17.3°) for Nordre Strømfjord and 25.3°N, 300.4°E (dp = 11.5°,dm = 14.1°) for K?llingeh?tten.  相似文献   

13.
In order to test two different proposals for the poorly defined African Paleozoic apparent polar wander path (APWP), a paleomagnetic study was carried out on Ordovician through Carboniferous clastic sediments from the Cape Fold belt, west of the 22nd meridian. One proposal involves a relatively simple APWP connecting the Ordovician Gondwana poles in North Africa with the Late Paleozoic poles to the east of South Africa in a more or less straight line crossing the present equator in the Devonian. The other proposal adds a loop to this path, connecting Ordovician poles in North Africa with poles to the southwest of South Africa and then returning to central Africa. This loop would occur mainly in Silurian time. New results reported herein yield paleopoles in northern and central Africa for Ordovician to lowermost Silurian and Lower to Middle Devonian formations. The best determined paleopole of our study is for the Early Ordovician Graafwater Formation and falls at 28°N, 14°E (k = 25, α95 = 8.8°, N = 28 samples). The other paleopoles are not based on sufficient numbers of samples, but can help to constrain the apparent polar wander path for Gondwana. Our results give only paleopoles well to the north of South Africa and we observe no directions within the proposed loop. Hence, if the loop is real, it must have been of relatively short duration (60–70 Ma) and be essentially of Silurian/Early Devonian age, implying very high drift velocities for Gondwana (with respect to the pole) during that interval.  相似文献   

14.
We present new paleomagnetic results from the well dated Miyako Cretaceous sediments (100–110 Ma) from Northeast Japan. These results, combined with those of Tosha [1], yield an in-situ characteristic directionD = 321°,I = 54.5° (α95 = 4.5°),N = 14 sites; reduced to a reference point at 40°N, 142°E). This direction is found to coincide with that of most older plutonic and sedimentary rocks of Devonian to lower Cretaceous age. It is also identical with the westerly pre-folding direction which is preserved in many Oligocene (20–40 Ma) formations from Northeast Japan [1,2]. In contrast, all recent formations (0–17 Ma) have been magnetized in the direction of the present axial dipole field. Only the Oligocene and Miocene results appear to be primary, or at least pre-folding. The Miyako sulfide-bearing sediments and lower Cretaceous (110–125 Ma) magnetite-bearing granites could either still bear a primary magnetization or be completely remagnetized by a low temperature chemical event. Evidence for such events is now found in many places, and as close as South Korea. Available data constrain the Oligo-Miocene history of Northeast Japan and indicate at least20/30° counterclockwise rotation with respect to mainland Asia during the opening of the Sea of Japan. On the other hand, the pre-40 Ma history of Northeast Japan is not well constrained and three models are proposed which are compatible with various interpretations of the data. None of them can presently document pro-Oligocene motion of Northeast Japan with respect to Asia. The most “economical” model implies widespread remagnetization. We conclude that, because of the scarcity of well tested primary magnetization directions, the classical bending of the Japanese Islands rests on weaker grounds than generally realized and that no pre-40 Ma apparent polar wander path of the Japanese Islands can safely be proposed.  相似文献   

15.
The results on the Early Paleozoic from the North China Block (NCB) are reported. and a series of reliable poles are selected from the available Phanerozoic data, based on the conventional reliability criteria, e.g. the number of samples, the uncertainty limit, any suspected incomplete demagnetization or overprint and field test (including fold, reversal, conglomerate tests). Especially, paleopole data is excluded if the sampling area suffered from the tectonic (e.g. rotation) and thermal effects. A new Phanerozoic apparent polar wander (APW) path for the NCB is compiled, and its tectonic evolution is discussed.  相似文献   

16.
The advent of signal energy on a VSP or check-shot trace may be defined as the first break. An accurate pick of this first break would be possible in the absence of noise. However, real data traces are inevitably corrupted by noise and this leads to difficulty in identifying a break because the signal-to-noise ratio is low in its neighbourhood. Under such conditions, an obvious alternative is to pick “troughs” where the local signal-to-noise ratio is likely to be much higher. Although trough picking is an effective way to minimize the noise problem, it is sensitive to signal properties (such as absorption and multiple reflections) which have no effect upon the accuracy of break picks. Thus, trough picking is signal-sensitive and break picking is noise-sensitive. Clearly, an ideal first-arrival picking scheme would combine the noise-tolerant features of trough picking with the signal-tolerant features of break picking. This ideal may be approached by exploiting known properties of the VSP trace using conventional signal processing techniques. The result of such processing is to reduce the problem to that of picking a trough correctly centered about the true break time.  相似文献   

17.
Permanent magnetism and conventional dynamo theory are possible but problematic explanations for the magnitude of the Mercurian magnetic field. A new model is proposed in which thermoelectric currents driven by temperature differences at a bumpy core-mantle boundary are responsible for the (unobserved) toroidal field, and the helicity of convective motions in a thin outer core (thickness 102 km) induces the observed poloidal field from the toroidal field. The observed field of 3 × 10−7 T can be reproduced provided the electrical conductivity of Mercury's semiconducting mantle approaches 103 Ω−1 m−1. This model may be testable by future missions to Mercury because it predicts a more complicated field geometry than conventional dynamo theories. However, it is argued that polar wander may cause the core-mantle topography to migrate so that some aspects of the rotational symmetry may be reflected in the observed field.  相似文献   

18.
The idea of curvature analysis has been widely used in subsurface structure interpretation from three-dimensional seismic data (e.g., fault/fracture detection and geomorphology delineation) by measuring the lateral changes in the geometry of seismic events. However, such geometric curvature utilizes only the kinematic information (two-way traveltime) of the available seismic signals. While analysing the dynamic information (waveform), the traditional approaches (e.g., complex trace analysis) are often trace-wise and thereby fail to take into account the seismic reflector continuity and deviate from the true direction of geologic deposition, especially for steeply dipping formations. This study proposes extending the three-dimensional curvature analysis to the waveforms in a seismic profile, here denoted as the waveform curvature, and investigates the associated implications for assisting seismic interpretation. Applications to the F3 seismic dataset over the Netherlands North Sea demonstrate the added values of the proposed waveform curvature analysis in four aspects. First, the capability of the curvature operator in differentiating convex and concave bending allows automatic decomposition of a seismic image by the reflector types (peaks, troughs and zero crossings), which can greatly facilitate computer-aided horizon interpretation and modelling from three-dimensional seismic data. Second, the signed minimum curvature offers a new analytical approach for estimating the fundamental and important reflector dip attribute by searching the orientation associated with least waveform variation. Third, the signed maximum curvature makes it possible to analyse the seismic signals along the normal direction of the reflection events. Finally, the curvature analysis promotes the frequency bands of the seismic signals and thereby enhances the apparent resolution on identifying and interpreting subtle seismic features.  相似文献   

19.
The results of palaeomagnetic surveys of Mesozoic and Tertiary rocks from Gondwanaland can be reconciled with the results of modelling the evolution of oceanic floors from analyses of marine magnetic anomalies. Previous inconsistencies were mainly due to errors apparent in the Australian Cenozoic palaeomagnetic data. An alternative Tertiary apparent polar wander path (APWP) has been constructed from an analysis of all published laterite and weathered profile data. Palaeomagnetic results for Africa, Antarctica, Australia, India, Madagascar and South America are compared for rotations corresponding to marine magnetic anomalies 16, 22, 28, 34 and M1 and for “fit”. India has been selected as the reference continent since it provides the most detailed APWP having drifted about 50° of latitude since breakup.  相似文献   

20.
Spatial variability of infauna with respect to distribution of topographic habitat features was examined in hydrodynamically mobile sandy sediments on the inner continental shelf off New Jersey, USA (39° 27.69′ N, 74° 15.81′W). Sediment cores for infauna were taken by SCUBA divers at multiple spatial scales over time at 12-m depth in the LEO-15 research area on Beach Haven Ridge. Crests, troughs and less consistently flanks of sand ripples 5–15-cm in height, were characterized by different infaunal community patterns at spatial scales of centimeters to kilometers on several sampling dates. Overall, infaunal community differences among ripple crests, troughs, and/or flanks within areas <1-m2 were greater than those found for each of these habitats (i.e., either crests, troughs, or flanks) that were separated by distances of 2 m–4 km. Infaunal density and species richness were consistently higher in troughs compared to crests. Indirect measures of food resources such as particulate organic carbon, chl a, and pheophytin were associated with ripple crests and troughs. Troughs contained significantly higher levels of particulate organic carbon (~1.2 times higher) associated with finer sediments, compared with crests and flanks. Various combinations of taxa had higher densities in either crests or troughs of sand ripples depending on date, and the relative abundances of three taxa, the deposit-feeding polychaete Polygordius jouinae, the suspension-feeding surfclam Spisula solidissima, and predatory nemerteans were important in distinguishing between crests and troughs on most dates. Thus, a priori knowledge of whether a benthic sample comes from a crest or trough helped to explain small-scale infaunal patchiness in relatively homogeneous, subtidal sandy sediments. Consideration of such topographic features in sampling designs can help in explaining variation in species’ distributions at several spatial and temporal scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号