首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Accurate estimates of seasonal evapotranspiration (ET) at different temporal and spatial scales are essential for understanding the biological and environmental determinants of ecosystem water balance in arid regions and the patterns of water utilization by the vegetation. For this purpose, remote sensing ET estimates of a Patagonian desert in Southern Argentina were verified with field measurements of soil evaporation and plant transpiration using an open top chamber. Root distribution and seasonal variation in soil volumetric water content were also analysed. There was a high correlation between remote sensing and field measurements of ecosystem water fluxes. A substantial amount of the annual ET occurred in spring and early summer (73.4 mm) using winter rain stored in the soil profile and resulting in water content depletion of the upper soil layers. A smaller amount of annual ET was derived from few rainfall events occurring during the mid or late summer (41.4 mm). According to remote sensing, the 92.9% of the mean annual precipitation returns to the atmosphere by transpiration or evaporation from the bare soil and by canopy interception. Only 7.1% infiltrates to soil layers deeper than 200 cm contributing to the water table recharge. Fourier time series analysis, cross‐correlation methods and multiple linear regression models were used to analyse 11 years of remote sensing data to assess determinants of water fluxes. A linear model predicts well the variables that drive complex ecosystem processes such as ET. Leaf area index and air temperature were not linearly correlated to ET because of the multiple interaction among variables resulting in time lags with ET variations and thus these two variables were not included in the linear model. Soil water content, the fraction of photosynthetic active radiation and precipitation explained 86% of the ET monthly variations. The high volumetric water content and the small seasonal variations at 200‐cm depth were probably the result of little water uptake from deeper soil horizons by roots with low hydraulic conductivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Canopy interception and its evaporation into the atmosphere during irrigation or a rainfall event are important in irrigation scheduling, but are challenging to estimate using conventional methods. This study introduces a new approach to estimate the canopy interception from measurements of actual total evapotranspiration (ET) using eddy covariance and estimation of the transpiration from measurements of sap flow. The measurements were conducted over a small‐scale sprinkler‐irrigated cotton field before, during and after sprinkler irrigation. Evaporation and sap flow dynamics during irrigation show that the total ET during irrigation increased significantly because of the evaporation of free intercepted water while transpiration was suppressed almost completely. The difference between actual ET and transpiration (sap flow) during and immediately following irrigation (post irrigation) represents the total canopy evaporation while the canopy interception capacity was calculated as the difference between actual ET and transpiration (sap flow) during drying (post irrigation) following cessation of the irrigation. The canopy evaporation of cotton canopy was calculated as 0.8 mm, and the interception capacity was estimated to be 0.31 mm of water. The measurement uncertainty in both the non‐dimensional ET and non‐dimensional sap flow was shown to be very low. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Di Wang  Li Wang 《水文研究》2019,33(3):372-382
Canopy interception is one of the most important processes in an ecosystem, but it is still neglected when assessing evapotranspiration (ET) partitioning in apple orchards on the Loess Plateau in China. To explore the importance of canopy interception, we monitored two neighbouring apple orchards on the Loess Plateau in China, one 8‐year‐old and the other 18‐years old at the start of the study, from May to September for four consecutive years (2013–2016). We measured parameters of canopy interception (I) including precipitation, throughfall, stemflow, leaf area index, transpiration (T), and soil evaporation (S) to quantify ET. The importance of canopy interception was then assessed by comparing the relationship between water supply (precipitation) and water demand (ET), calculated with and without considering canopy interception (T + S and T + S + I, respectively). Tree age clearly influenced canopy interception, as estimates of annual canopy interception during the study years in the younger and older orchards amounted to 22.2–29.4 mm and 26.8–39.9 mm, respectively. Daily incident rainfall and rainfall intensity in both orchards were significantly positively correlated with daily canopy interception in each year. The relationship between annual precipitation and annual ET (calculated with and without consideration of canopy interception) in the younger orchard differed during 2015 and 2016. Ignoring canopy interception would result in underestimation of annual ET in both apple orchards and hence incorrect evaluation of the relationship between water supply and water demand, particularly for the younger orchard during 2015 and 2016. Thus, for a complete understanding of water consumption in apple orchards in this and similar regions, canopy interception should not be ignored when assessing ET partitioning.  相似文献   

4.
Studies of evapotranspiration (ET) processes in forests often only measure one component of total ET, most commonly interception. This study examined all three components of annual ET (interception, evaporation from the forest floor and transpiration) and the correlations between them at 18 plantation forest sites in two species. All plantations had closed canopies, and sparse or no understorey. Single‐sided leaf area index averaged 3.5 (standard deviation ±0.5) in Eucalyptus globulus Labill. and 6.1 (±0.8) in Pinus radiata D.Don. Measurements included annual totals of rainfall in the open and under the canopy, stem flow (four sites only), evaporation from the forest floor and transpiration by the overstorey. Interception (I) averaged 19% (±4.9) of annual rainfall in E. globulus compared with 31% (±11.1) in P. radiata. However, higher annual interception in P. radiata did not result in higher total ET because annual evaporation from the forest floor (E) averaged 29% (±4.9) of rainfall in E. globulus but only 15% (±3.5) in P. radiata. Hence, the relative contribution of annual I plus E to ET did not differ significantly between the two species, averaging 48% (±7.3) of annual rainfall in E. globulus compared with 46% (±11.8) in P. radiata. As reported previously, transpiration did not differ significantly between the two species either, but was strongly related to depth‐to‐groundwater. In closed canopy plantations, mean annual ET did not differ between the two species. We conclude that when grown in plantations under similar soil and climatic conditions, conifer and broad‐leaved tree species can have similar annual ET, once the canopy of the plantation has closed. Lower average annual interception in broad‐leaved trees was offset by higher soil evaporation. These results highlight the importance of measuring all components of ET in studies of vegetation water use. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Evapotranspiration (ET) and canopy wetness were measured over a 2‐year intensive field campaign at the Chi‐Lan Mountain cloud forest site in Taiwan. Eddy covariance and sap flow methods were applied to measure ET and tree sap flow of the endemic yellow cypress (Chamaecyparis obtusa var. formosana). ET was 553 mm yr?1 over the study period with an annual rainfall and fog deposition of 4893 and 288 mm yr–1, respectively. The duration of canopy wetness exceeded actual fog or rain events (mostly in the afternoon), and the intercepted water was evaporated later in the following dry morning. The cumulative wet duration accounted for 52% of time over the study period, which was longer than the duration of rainfall and fog altogether (41%). As it adapted to the extremely moist environment, the yellow cypress behaved in a wet‐enhanced/dry‐reduced water use strategy and was sensitive to short periods of dry atmosphere with high evaporation potential. During dry days, the sap flow rate rose quickly after dawn and led to conservative water use through midday and the afternoon. During periodically wet days, the canopy was mostly wetted in the morning, and the interception evaporation contributed largely to the morning ET. The initiation of morning sap flow was postponed 1–3 h, and the sap flow rate tended to peak later at midday. The midday canopy conductance was higher in the periodically wet days (10.6 mm s–1) as compared with 7.6 mm s?1 in the dry days. Consequently, the dry‐reduced water use strategy led to much lower annual ET with respect to the available energy (~46%) and high precipitation input (~11%). The moist‐adapted ecohydrology we report reveals the vulnerability of montane cloud forests to prolonged fog‐free periods. More research is urgently needed to better understand the resilience of these ecosystems and formulate adaptive management plans. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Accurate estimation of groundwater recharge (GR) and evapotranspiration (ET) are essential for sustainable management of groundwater resources, especially in arid and semi-arid regions. In the Manas River Basin (MRB), water shortage is the main factor restricting sustainable development of irrigated agriculture, which relies heavily on groundwater. Film-mulched drip irrigation significantly changes the pattern and dominant processes of water flow in the unsaturated zone, which increases the difficulty of GR and ET estimation. To better estimate GR and ET under film-mulched drip irrigation in the MRB, bromide tracer tests and soil lithologic investigation were conducted at 12 representative sites. A one-dimensional variably saturated flow model (HYDRUS-1D) was calibrated at each site using soil evaporation data inferred from the bromide tracer tests. The results showed that average annual soil evaporation in uncultivated lands calculated from bromide trace tests was 25.55 mm. The annual GR ranged from 5.5 to 37.0 mm under film-mulched drip irrigation. The annual ET ranged from 507.0 to 747.1 mm, with soil evaporation between 35.7 and 117.0 mm and transpiration between 460.9 and 642.3 mm. Soil evaporation represented 7% to 16% of the total ET and more than 70% of precipitation and irrigation water was used by cotton plants. Spatial variations of soil lithology, water table depth and initial soil water content led to the spatial differences of GR and ET in the MRB. Our study indicated that bromide tracer tests are useful for inferring ET in the arid and semi-arid oases. The combination of bromide tracer tests and HYDRUS-1D enhances reliability for estimation of GR and ET under film-mulched drip irrigation in the MRB and shows promise for other similar arid inland basins around the world.  相似文献   

7.
Partitioning transpiration (T) from evapotranspiration (ET) is a key process for understanding the interaction between land surfaces and the atmosphere. This paper reports daily partitioning results for a grassland over a 10-year period, obtained using the Community Land Model 3.5 (CLM3.5) land surface model. Hourly forcing data were collected from a long-term observation system located in the northeast of Japan ( http://doi.org/10.24575/0001.198108 ). To test the model behavior, total ET was validated using eddy correlation measurements combined with the energy balance method. The results were compared with previous research using an isotope approach for partitioning. The results demonstrate that our model can capture the dynamics of ET and its components at this location. Evaporation (E), originating from the ground and canopy, varied inter-annually, and from 2006 to 2015, average annual E was approximately 285 mm/year from the ground and 45 mm/year from the canopy. Average, T, was approximately 302 mm/year, accounting for approximately 48% of the total ET. Inter-annual results demonstrate that the water flux transported by vegetation ranges from 17 to 83% during the April–October period. A sensitivity test conducted with forcing data indicates air temperature, incident solar radiation, and longwave radiation exhibited a notable effect on all ET components. Relative humidity exhibited the only negative feedback to both evaporation and transpiration, contrary to the other forcing parameters. Our study reemphasized the effectiveness of CLM3.5 in partitioning T from ET and in understanding the complex interaction between land surfaces and the atmosphere.  相似文献   

8.
Evaporation from a willow short‐rotation forest was analysed using a modified version of the Shuttleworth–Wallace model. The main modification consisted of a two‐layer soil module, which enabled soil surface resistance to be calculated as a function of the wetness of the top soil. Introduction of the threshold value of the leaf area index when scaling up from the leaf to the canopy resistance resulted in improvement to the simulated evaporation. The analysis was concentrated mainly on the 1988 season (May–October) when total evaporation was measured by the energy balance/Bowen ratio method throughout the growing season, covering all stages of canopy development. At the beginning of the 1994 season, soil evaporation were also measured with a ventilated chamber system. The general seasonal dynamics of the evaporation were fairly well simulated with the model. The largest deviation between measured and simulated evaporation occurred in June, when the model underestimated evaporation by about 1 mm day?1. The model underestimated also in May but not as much as in June. In September and October the performance of the model was very good. For 130 days of the period May–October the cumulated measured evaporation was 364 mm and the simulated evaporation for the same days was 362 mm. It should be pointed out that this result was obtained without calibrating the model against the measured evaporation. The total simulated evaporation for the season was 450 mm with transpiration constituting 298 mm (66%), soil evaporation 102 mm (23%) and interception evaporation 50 mm (11%). The sensitivity analysis showed, in general, that simulated evaporation was most sensitive to changes in resistances when the leaf area index was smallest, i.e. under non‐closed canopy conditions. Changes in stomatal resistance, which is one of the most sensitive parameters, with associated changes in canopy transpiration, resulted in a negative feedback effect on soil evaporation. This reduced the total evaporation's sensitivity to stomatal resistance. This type of interaction between canopy and soil or undergrowth fluxes has been observed in other studies as well. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
The study of the environmental factors that control evapotranspiration and the components of evapotranspiration leads to a better understanding of the actual evapotranspiration (ET) process that links the functioning of the soil, water and atmosphere. It also improves local, regional and global ET modelling. Globally, few studies so far focussed on the controls and components of ET in alpine grasslands, especially in mountainous sites such as the tussock grasslands located in the páramo biome (above 3300 m a.s.l.). The páramo occupies 35 000 km2 and provides water resources for many cities in the Andes. In this article, we unveiled the controls on ET and provided the first insights on the contribution of transpiration to ET. We found that the wet páramo is an energy-limited region and net radiation (Rn) is primarily controlling ET. ET was on average 1.7 mm/day. The monthly average evaporative fraction (ET/Rn) was 0.47 and it remained similar for wet and dry periods. The secondary controls on ET were wind speed, aerodynamic resistance and surface resistance that appeared more important for dry periods, where significantly higher ET rates were found (20% increase). During dry events, transpiration was on average 1.5 mm/day (range 0.7–2.7 mm/day), similar to other tussock grasslands in New Zealand (range 0.6–3.3 mm/day). Evidence showed interception contributes more to ET than transpiration. This study sets a precedent towards a better understanding of the evapotranspiration process and will ultimately lead to a better land-atmosphere fluxes modelling in the tropics.  相似文献   

10.
We used the new process‐based, tracer‐aided ecohydrological model EcH2O‐iso to assess the effects of vegetation cover on water balance partitioning and associated flux ages under temperate deciduous beech forest (F) and grassland (G) at an intensively monitored site in Northern Germany. Unique, multicriteria calibration, based on measured components of energy balance, hydrological function and biomass accumulation, resulted in good simulations reproducing measured soil surface temperatures, soil water content, transpiration, and biomass production. Model results showed the forest “used” more water than the grassland; of 620 mm average annual precipitation, losses were higher through interception (29% under F, 16% for G) and combined soil evaporation and transpiration (59% F, 47% G). Consequently, groundwater (GW) recharge was enhanced under grassland at 37% (~225 mm) of precipitation compared with 12% (~73 mm) for forest. The model tracked the ages of water in different storage compartments and associated fluxes. In shallow soil horizons, the average ages of soil water fluxes and evaporation were similar in both plots (~1.5 months), though transpiration and GW recharge were older under forest (~6 months compared with ~3 months for transpiration, and ~12 months compared with ~10 months for GW). Flux tracking using measured chloride data as a conservative tracer provided independent support for the modelling results, though highlighted effects of uncertainties in forest partitioning of evaporation and transpiration. By tracking storage—flux—age interactions under different land covers, EcH2O‐iso could quantify the effects of vegetation on water partitioning and age distributions. Given the likelihood of drier, warmer summers, such models can help assess the implications of land use for water resource availability to inform debates over building landscape resilience to climate change. Better conceptualization of soil water mixing processes and improved calibration data on leaf area index and root distribution appear obvious respective modelling and data needs for improved simulations.  相似文献   

11.
Evaporation of intercepted rain by a canopy is an important component of evapotranspiration, particularly in the humid boreal forest, which is subject to frequent precipitation and where conifers have a large surface water storage capacity. Unfortunately, our knowledge of interception processes for this type of environment is limited by the many challenges associated with experimental monitoring of the canopy water balance. The objective of this study is to observe and estimate canopy storage capacity and wet canopy evaporation at the sub-daily and seasonal time scales in a humid boreal forest. This study relies on field-based estimates of rainfall interception and evapotranspiration partitioning at the Montmorency Forest, Québec, Canada (mean annual precipitation: 1600 mm, mean annual evapotranspiration: 550 mm), in two balsam fir-white birch forest stands. Evapotranspiration was monitored using eddy covariance sensors and sap flow systems, whereas rainfall interception was measured using 12 sets of throughfall and six stemflow collectors randomly placed inside six 400-m2 plots. Changes in the amount of water stored on the canopy were also directly monitored using the stem compression method. The amount of water intercepted by the forest canopy was 11 ± 5% of the total rainfall during the snow-free (5 July–18 October) measurement periods of 2017 and 2018. The maximum canopy storage estimated from rainfall interception measurements was on average 1.6 ± 0.7 mm, though a higher value was found using the stem compression method (2.2 ± 1.6 mm). Taking the average of the two forest stands studied, evaporation of intercepted water represented 21 ± 8% of evapotranspiration, while the contribution of transpiration and understory evapotranspiration was 36 ± 9% and 18 ± 8%. The observations of each of the evapotranspiration terms underestimated the total evapotranspiration observed, so that 26 ± 12% of it was not attributed. These results highlight the importance to account for the evaporation of rain intercepted by humid boreal forests in hydrological models.  相似文献   

12.
Evapotranspiration (ET) is one of the major water exchange processes between the earth's surface and the atmosphere. ET is a combined process of evaporation from open water bodies, bare soil and plant surfaces, and transpiration from vegetation. Remote sensing-based ET models have been developed to estimate spatially distributed ET over large regions, however, many of them reportedly underestimate ET over semi-arid regions (Jamshidi et al., Journal of Hydrometeorology, 2019, 20, 947–964). In this work, we show that underestimation of ET can occur due to the open water evaporation from flooded rice paddies ignored in the existing ET models. To address the gap in ET estimation, we have developed a novel approach that accounts for the missing ET component over flooded rice paddies. Our method improved ET estimates by a modified Penman-Monteith algorithm that considered the fraction of open water evaporation from flooded rice paddies. Daily ET was calculated using ground based meteorological data and the MODIS satellite data over the Krishna River Basin. Seasonal and annual ET values over the Krishna Basin were compared with two different ET algorithms. ET estimates from these two models were also compared for different crop combinations. Results were validated with flux tower-based measurements from other studies. We have identified a 17 mm/year difference in average annual ET over the Krishna River Basin with this new ET algorithm. This is very critical in basin scale water balance analysis and water productivity studies.  相似文献   

13.
The evapotranspiration and groundwater recharge from two natural areas with high (oak) and low (heath) vegetation were estimated by calibrating a semi-physical numerical soil water and heat model to fit 8 and 7 years of TDR-measurements of water content, respectively. The measurements were made between the surface and 7 m depth. For the oak stand, the estimated annual recharge for the years 1992–1999 is 390 mm, the evaporation from soil and interception is 205 mm, and the transpiration is 285 mm. For the heath area estimation was carried out for the years 1993–1999. However, the heath was struck by a heavy beetle attack in 1994, which strongly affected the vegetation and thus the water balance for the following 3 years. For years not affected, the estimated recharge is 733 mm (about 50% larger than for the oak stand for the same years), the evaporation is 316 mm, and the transpiration is 128 mm. The estimated recharge values compare fairly well to estimates obtained from bromide tracer experiments. However, the recharge estimates obtained from the tracer experiments are very uncertain. The uncertainty is mainly due to spatial heterogeneity making the three replicate samples taken here for each time and depth insufficient.

The analyses of TDR-measurements and tracer data showed that water front movement depends on the antecedent soil water content. Some layers are bypassed, especially at low water contents, and at high soil water contents preferential flow was observed at the heath site.  相似文献   


14.
Measurements of water vapour flux from semi‐arid perennial woodland (mallee) were made for 3 years using eddy covariance instrumentation. There have been no previous long‐term, detailed measures of water use in this ecosystem. Latent energy flux (LE) on a half hourly basis was the measure of the combined soil and plant evaporation, ‘evapotranspiration’ (ELE) of the site. Aggregation over 3 years of the site measured rain (1136 mm) and the estimated evaporation (794 mm) suggests that 342 mm or 30% of rain had moved into or past the root zone of the vegetation. Above average rainfall during 2011 and the first quarter of 2012 (633 mm, 15 months) would likely have been the period during which significant groundwater recharge occurred. At times immediately after rainfall, ELE rates were the same or exceeded estimates of potential E calculated from a suitably parameterized Penman–Monteith (EPMo) equation. Apparent free water E from plant interception and soil evaporation was about 2.3 mm and lasted for 1.3 days following rainfall in summer, while in autumn, E was 5.1 mm that lasted over 5.4 days. The leaf area index (LAI) needed to adjust a wind function calibrated Penman equation (EPMe) to match the ELE values could be back calculated to generate seasonal change in LAI from 0.12 to 0.46 and compared well with normalized difference vegetation index; r = 0.38 and p = 0.0213* and LAI calculated from digital cover photography. The apparently conservative response of perennial vegetation evaporation to available water in these semi‐arid environments reinforces the conclusion that these ecosystems use this mechanism to survive the reasonably common dry periods. Plant response to soil water availability is primarily through gradual changes in leaf area. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Surface mining in the Elk Valley, British Columbia, involves removing vegetation, soil, and rock to access underlying metallurgical coal. Subsequent waste rock is placed into adjacent valleys, frequently burying headwater streams. Due to their coarse texture, waste rock piles increase infiltration and percolation, increasing solute transport and concentration of geochemicals in downstream surface waters. Previous research suggests that weathering solutes are transport limited, and it is hypothesized that revegetation will enhance evapotranspiration (ET) and reduce percolation through the waste rock, potentially reducing loading. This study examined the surface‐atmosphere water and energy exchanges using the eddy covariance technique for three waste rock surfaces with different levels of reclamation: (a) an ~25‐year‐old mixed coniferous forest, (b) a grass site, and (c) bare waste rock. Measurements were taken from May to October in 2013 and 2014. Soil moisture and matric suction were measured to 1‐m depth. Sap flow at the forested site was measured to partition transpiration from total ET. In all years, ET rates were greatest at the forested site, followed by the grass cover and lowest at the bare waste rock site. Growing season ET rates at the forest were 56% higher than grass in 2013 and 35% higher in 2014. At the vegetated sites, climate was the main driver of ET, with high radiation, and warm and dry conditions enhancing fluxes. Maximum ET at these sites corresponded with peak growing season, with vegetation increasing both transpiration and rainfall interception. At the bare rock site, ET was weakly related to atmospheric conditions, and ET rates briefly increased during periods following rainfall when near‐surface soil moisture was enhanced. Transpiration comprised 29% of overall ET at the forest site from late July to early October. Results suggest that vegetation establishment can be incorporated into mine reclamation plans to enhance ET rates and limit percolation, potentially reducing downstream geochemical loads.  相似文献   

16.
Understanding soil water dynamics and the water balance of tropical coral islands is important for the utilization and management of their limited freshwater resources, which is only from rainfall. However, there is a significant knowledge gap in the influence of soil water on the water cycle of coral islands. Soil water dynamics and the water balance of Zhaoshu Island, Xisha Archipelago were thus investigated using soil moisture measurements and the Hydrus-1D model from October 2018 to September 2019. Over the study period, vegetation transpiration, soil evaporation, groundwater recharge and storage in the vadose zone were approximately 196, 330, 365 and 20 mm, occupying 22%, 36%, 40% and 2% of annual rainfall total (911 mm), respectively. For the wet season (from May to October) these values became 75, 202, 455 and 40 mm, occupying 10%, 26% and 59% and 5% of the seasonal rainfall total (772 mm), respectively. During the dry season (from November to April), a dry soil layer between 40 and 120 cm depth of the soil profile was identified that prevented water exchange between the upper soil layers and the groundwater resulting in the development of deep roots so that vegetation could extract groundwater to supplement their water requirements. Vegetation not only consumes all dry season rainfall (140 mm) but extracts water deeply from groundwater (90 mm) as well as from the vadose layer (20 mm). As such, the vegetation appears to be groundwater-dependent ecosystems. The research results aid us to better understand the process of water dynamics on coral islands and to protect coral island ecosystems.  相似文献   

17.
Rapidly transforming headwater catchments in the humid tropics provide important resources for drinking water, irrigation, hydropower, and ecosystem connectivity. However, such resources for downstream use remain unstudied. To improve understanding of the behaviour and influence of pristine rainforests on water and tracer fluxes, we adapted the relatively parsimonious, spatially distributed tracer‐aided rainfall–runoff (STARR) model using event‐based stable isotope data for the 3.2‐km2 San Lorencito catchment in Costa Rica. STARR was used to simulate rainforest interception of water and stable isotopes, which showed a significant isotopic enrichment in throughfall compared with gross rainfall. Acceptable concurrent simulations of discharge (Kling–Gupta efficiency [KGE] ~0.8) and stable isotopes in stream water (KGE ~0.6) at high spatial (10 m) and temporal (hourly) resolution indicated a rapidly responding system. Around 90% of average annual streamflow (2,099 mm) was composed of quick, near‐surface runoff components, whereas only ~10% originated from groundwater in deeper layers. Simulated actual evapotranspiration (ET) from interception and soil storage were low (~420 mm/year) due to high relative humidity (average 96%) and cloud cover limiting radiation inputs. Modelling suggested a highly variable groundwater storage (~10 to 500 mm) in this steep, fractured volcanic catchment that sustains dry season baseflows. This groundwater is concentrated in riparian areas as an alluvial–colluvial aquifer connected to the stream. This was supported by rainfall–runoff isotope simulations, showing a “flashy” stream response to rainfall with only a moderate damping effect and a constant isotope signature from deeper groundwater (~400‐mm additional mixing volume) during baseflow. The work serves as a first attempt to apply a spatially distributed tracer‐aided model to a tropical rainforest environment exploring the hydrological functioning of a steep, fractured‐volcanic catchment. We also highlight limitations and propose a roadmap for future data collection and spatially distributed tracer‐aided model development in tropical headwater catchments.  相似文献   

18.
Accurate estimation of the soil water balance (SWB) is important for a number of applications (e.g. environmental, meteorological, agronomical and hydrological). The objective of this study was to develop and test techniques for the estimation of soil water fluxes and SWB components (particularly infiltration, evaporation and drainage below the root zone) from soil water records. The work presented here is based on profile soil moisture data measured using dielectric methods, at 30‐min resolution, at an experimental site with different vegetation covers (barley, sunflower and bare soil). Estimates of infiltration were derived by assuming that observed gains in the soil profile water content during rainfall were due to infiltration. Inaccuracies related to diurnal fluctuations present in the dielectric‐based soil water records are resolved by filtering the data with adequate threshold values. Inconsistencies caused by the redistribution of water after rain events were corrected by allowing for a redistribution period before computing water gains. Estimates of evaporation and drainage were derived from water losses above and below the deepest zero flux plane (ZFP), respectively. The evaporation estimates for the sunflower field were compared to evaporation data obtained with an eddy covariance (EC) system located elsewhere in the field. The EC estimate of total evaporation for the growing season was about 25% larger than that derived from the soil water records. This was consistent with differences in crop growth (based on direct measurements of biomass, and field mapping of vegetation using laser altimetry) between the EC footprint and the area of the field used for soil moisture monitoring. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
《Journal of Hydrology》1999,214(1-4):103-110
During the growing season of 1995, canopy water fluxes were measured within a northern hardwood stand in southern Ontario, Canada. Observed canopy interception loss, throughfall, and stemflow fluxes from the stand were 19.3±3.5%, 76.4±2.9%, and 4.3±2.0% of incident precipitation, respectively. Both the original and revised Gash analytical rainfall interception loss models simulated these fluxes within the standard error of the observed estimates, suggesting that the analytical model may be appropriate for further applications within this forest type. The revised Gash model is recommended for further applications as it is better physically based. Both the original and revised models suggest that ∼60% of interception loss during the study period was evaporation from the canopy once rainfall has ceased while evaporation from the saturated canopy during rainfall accounted for ∼27%–33% of interception loss. Additional components of interception (e.g., evaporation from trunks) were computed to be minor contributors to total canopy interception loss.  相似文献   

20.
Abstract

Abstract Accurate estimates of water losses from mature Sitka spruce (Picea sitchensis) plantations in the UK uplands are required to assess the sustainability of water supply in the event of land-use change. Many investigations have demonstrated that afforestation increases water losses from temperate upland catchments, to up to 40% of annual site rainfall. In a 0.86 km2 upland water supply catchment in southwest Scotland, interception loss in a Sitka spruce-dominated 37-year old plantation, was 52% of annual precipitation (2912 mm), considerably higher than reported in previous studies of similar catchments. From direct measurements of rainfall, cloudwater, discharge and soil evaporation, the catchment water balance was 96–117% complete, within the limits of measurement error. The most probable explanation for the higher forest interception loss reported here is the inclusion of cloudwater measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号