首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The techniques of electron paramagnetic resonance (EPR) were used to measure the concentration ratio of Eu2+ to Eu3+ in quenched CaMgSi2O6, Ca3Si3O12, and CaAl2Si2O8 liquids as functions of partial pressure of oxygen and temperature. The redox equilibrium of the Eu ions was described by the reaction 4Eu3+ + 202? = 4Eu2+ + O2. The reduction of Eu3+ to Eu2+ was endothermic, and for CaMgSi2O6 and Ca3Al2Si3O12 liquids the mean value of ΔH0 and the standard deviation from that mean were 25 ± 7 kcal/mole.The magnitude of the Eu anomaly in the distribution coefficients is discussed in terms of the compositions of the solid and liquid phases.  相似文献   

2.
The effect of the group IA and VIIA ions, as well as Mg2+, and the molecules H2O, CO2, H3O+ and OH? on the energy of the Si-O bond in a H6Si2O7 cluster has been calculated using semiempirical molecular orbital calculations (CNDO/2). Three types of elementary processes, i.e. substitution, addition, and polymerization reactions have been used to interpret data on the dynamic viscosity, surface tension and surface charge, hydrolytic weakening, diffusivity, conductivity, freezing point depression, and degree of polymerization of silicates in melts, glasses, and aqueous solutions. As a test of our calculational procedure, observed X-ray emission spectra of binary alkali silicate glasses were compared with calculated electronic spectra. The well known bondlength variations between the bridging bond [Si-O(br)] and the non-bridging bond [Si-O(nbr)] in alkali silicates are shown to be due to the propagation of oscillating bond-energy patterns through the silica framework. A kinetic interpretation of some results of our calculations is given in terms of the Bell-Evans-Polanyi reaction principle.  相似文献   

3.
Cyclic voltammetry has been done for Ni2+, Co2+, and Zn2+ in melts of diopside composition in the temperature range 1425 to 1575°C. Voltammetric curves for all three ions excellently match theoretical curves for uncomplicated, reversible charge transfer at the Pt electrode. This implies that the neutral metal atoms remain dissolved in the melt. The reference electrode is a form of oxygen electrode. Relative to that reference assigned a reduction potential of 0.00 volt, the values of standard reduction potential for the ions are E1 (Ni2+Ni0, diopside, 1500°C) = ?0.32 ± .01 V, E1 (Co2+Co0, diopside, 1500°C) = ?0.45 ± .02 V, and E1 (Zn2+Zn0, diopside, 1500°C) = ?0.53 ± .01 V. The electrode reactions are rapid, with first order rate constants of the order of 10?2 cm/sec. Diffusion coefficients were found to be 2.6 × 10?6 cm2/sec for Ni2+, 3.4 × 10?6 cm2/sec for Co2+, and 3.8 × 10?6 cm2/sec for Zn2+ at 1500°C. The value of E1 (Ni2+Ni0, diopside) is a linear function of temperature over the range studied, with values of ?0.35 V at 1425°C and ?0.29 V at 1575°C. At constant temperature the value of E1 (Ni2+Ni0, 1525°C) was not observed to vary with composition over the range CaO · MgO · 2SiO2 to CaO·MgO·3SiO2 or from 1.67 CaO·0.33MgO·2SiO2 to 0.5 CaO·1.5MgO·2SiO2. The value for the diffusion coefficient for Ni2+ decreased by an order of magnitude at 1525°C over the compositional range CaO · MgO · 1.25SiO2 to CaO · MgO · 3SiO2. This is consistent with a mechanism by which Ni2+ ions diffuse by moving from one octahedral coordination site to another in the melt, with the same Ni2+ species discharging at the cathode regardless of the SiO2 concentration in the melt.  相似文献   

4.
The concentrations of Mg2+ and Sr2+ incorporated within calcite overgrowths precipitated from seawater and related solutions, determined at 25°C, were independent of the precipitation rate over approximately an order of magnitude. The saturation states used to produce this range of precipitation rates varied from 3 to 17 depending on the composition of the solution.The amount of Mg2+ incorporated in the overgrowths was not directly proportional to Mg2+Ca2+ in solution over the entire range (1–20) of ratios studied. Below a ratio of 7.5, the overgrowth was enriched in MgCO3 relative to what is predicted by the constant distribution coefficient measured above a ratio of 7.5. This increased MgCO3 correlates with the relative enrichment of adsorbed Mg2+. Above a ratio of 7.5 the concentration of MgCO3 in the calcite overgrowths followed a classical thermodynamic behavior characterized by a constant distribution coefficient of 0.0123 (±0.008 std dev).The concentration of SrCO3 incorporated in the overgrowths was linearly related to the MgCO3 content of the overgrowths, and is attributed to increased solubility of SrCO3 in calcite due to the incorporation of the smaller Mg2+ ions.The kinetic data indicate that the growth mechanism involves the adsorption of the cations on the surface of the calcite prior to dehydration and final incorporation. It is suggested that dehydration of cations at the surface is the rate controlling step.  相似文献   

5.
Partitioning of Ni2+, Co2+, Fe2+, Mn2+ and Mg2+ between olivine and silicate melts has been determined near the join (Mg0.5·-Fe0.5)2SiO4-K2O 4SiO2 and for seven different basaltic compositions. The experiments were made at 1 atm total pressure, 1500-1100°C, and under moderate to reducing oxygen fugacities. The concentration factor, defined as KMO = (MO)ol/(MO)liq (molar ratio), increases markedly for all the cations studied as the olivine component of the liquid decreases. Much of the increase in KMO is considered as due to the compositional effect of the coexisting liquid: the temperature effect on KMO is probably opposite to the compositional effect (KMO decreases as temperature decreases).The partition coefficient KMO-MgO = (MO/MgO)ol/(MO/MgO)liq for the reaction, Mol2+ + Mgliq2+ = Mliq2+ + Mgol2+. is relatively constant over a wide range of SiO2 content of the liquid, except in the case of Ni2+. The partition coefficients have similar ranges both in synthetic and natural rock systems: KNiO-MgO = 1.8–3.0, KCoO-MgO = 0.6–0.8, KFeO-MgO = 0.27–0.38, and KMnO-MgO = 0.23–0.32. There is a systematic variation in the partition coefficient KMO-MgO with the composition of liquid; KMO-MgO increases with increasing SiO2 content of melt. The partition coefficients for Co2+, Fe2+ and Mn2+ are useful to test the equilibration of olivine with magma of a wide compositional range.  相似文献   

6.
The partitioning of Fe and Mn between the large M(4) site and the octahedral sites, M(1,2,3) in the amphibole structure has been investigated in two natural manganogrunerites of compositions Ca0.1Mn1.9 Mg1.25Fe2+ 3.56Fe3+ 0.38Si7.81O22(OH)2 and Ca0.24Mn1.57 Mg2.27 Fe2+ 2.76Fe3+ 0.32Si7.84O22(OH)2. The long-range cation distribution in the two samples has been elucidated by in situ neutron powder diffraction revealing that Mn is preferentially ordered onto M(4) ? M(2) >M(1) >M(3) in both samples. Partitioning of Mn from M(4) into the octahedral sites begins at 350 °C, with site exchange energies of ?16.6 kJ mol?1 and ?14.9 kJ mol?1, in samples containing 1.90 and 1.57 Mn apfu, respectively. Mössbauer and infrared spectroscopy have been used to study the samples at room temperature, and Mössbauer data agree well with the diffraction results, confirming that high-temperature cation distributions are retained during cooling. The fine structure in the hydroxyl-stretching region of the IR absorption spectra has been used to discuss qualitatively the site occupancies of the coordinating M(1)M(3)M(1) triplet, linked by O(3). On the basis of such modelling, we conclude that a degree of local clustering is present in both samples.  相似文献   

7.
Synthetic melilites on the join Ca2MgSi2O7 (åkermanite: Ak)-Ca2Fe3+AlSiO7 (ferrialuminium gehlenite: FAGeh) were studied using X-ray powder diffraction and 57Fe Mössbauer spectroscopic methods to determine the distribution of Fe3+ between two different tetrahedral sites (T1 and T2), and the relationship between ionic substitution and incommensurate (IC) structure. Melilites were synthesized from starting materials with compositions of Ak100, Ak80FAGeh20, Ak70FAGeh30 and Ak50FAGeh50 by sintering at 1,170–1,350 °C and 1 atm. The average chemical compositions and end-member components, Ak, FAGeh and Geh (Ca2Al2SiO7), of the synthetic melilites were Ca2.015Mg1.023Si1.981O7 (Ak100), Ca2.017Mg0.788Fe 0.187 3+ Al0.221Si1.791O7 (Ak78FAGeh19Geh3), Ca1.995Mg0.695Fe 0.258 3+ Al0.318Si1.723O7 (Ak69FAGeh25Geh6) and Ca1.982Mg0.495Fe 0.449 3+ Al0.519Si1.535O7 (Ak49FAGeh44Geh7), respectively. Rietveld refinements using X-ray powder diffraction data measured using CuK α -radiation at room temperature converged successfully with goodness-of-fits of 1.15–1.26. The refined Fe occupancies at the T1 and T2 sites and the Mg and Si contents determined by electron microprobe analysis gave the site populations of [0.788Mg + 0.082Fe3+ + 0.130Al]T1[0.104Fe3+ + 0.104Al + 1.792Si]T2 for Ak78FAGeh19Geh3, [0.695Mg + 0.127Fe3+ + 0.178Al]T1[0.132Fe3+ + 0.144Al + 1.724Si]T2 for Ak69FAGeh25Geh6 and [0.495Mg + 0.202Fe3+ + 0.303Al]T1[0.248Fe3+ + 0.216Al + 1.536Si]T2 for Ak49FAGeh44Geh7 (apfu: atoms per formula unit), respectively. The results indicate that Fe3+ is distributed at both the T1 and the T2 sites. The mean T1–O distance decreases with the substitution of Fe3+ + Al3+ for Mg2+ at the T1 site, whereas the mean T2–O distance increases with substitution of Fe3+ + Al3+ for Si4+ at the T2 site, causing decrease in the a dimension and increase in the c dimension. However, in spite of the successful Rietveld refinements for the X-ray powder diffraction data measured using CuK α-radiation at room temperature, each Bragg reflection measured using CuK α1-radiation at room temperature showed weak shoulders, which were not observed in those measured at 200 °C. The Mössbauer spectra of the melilites measured at room temperature consist of two doublets assigned to Fe3+ at the T1 site and two or three doublets to Fe3+ at the T2 site, implying the existence of multiple T1 and T2 sites with different site distortions. These facts can be interpreted in terms of the IC structure in all synthetic melilites at room temperature, respectively. The results of Mössbauer analysis indicate that the IC structure in melilite is caused by not only known multiple T1 site, but also multiple T2 site at room temperature.  相似文献   

8.
The study of radiation of intrinsic and impurity excitations in natural barite showed that the patterns of BaSO4 luminescence were mostly controlled by the presence of the [SO4] anion complex. Several types of self-radiation were registered including those at the expense of the presence of O2– ions of the axial and nonaxial configurations of the anionic group (emission bands within the wavelength ranges of 209–213 and 330–350 nm, respectively). Exitons located near the impurity and intrinsic defects largely participate in emission. Impurity defects participating in the luminescent centers of barite from the Ore Altai include Pb2+, Gd3+, Eu2+, Eu3+, Cu+, and Ag+ (under X-ray excitation). Variations in the spectral composition of barite indicate the different conditions of its formation.  相似文献   

9.
应育浦  宋仁奎 《地质科学》1995,30(4):355-362
21个多硅白云母来自4个低温高压变质带。用电子探针、X射线粉末衍射及穆斯堡尔谱测定其化学成分、b0值及Fe2+占位。建立Fe2+(M1)/Fe2+(M2)对b0值相关图,发现Fe2+在八面体晶位有序化并解释其有序机理。  相似文献   

10.
The techniques of electron paramagnetic resonance (EPR) were used to measure the concentration ratio of Eu2+ to Eu3+ in quenched silicate liquids as a function of their compositions. The compositional end members were CaAl2Si2O8 and either MSiO3 or M2Si04, M = Mg, (Ca0.5, Mg0.5), and Ca. All of the liquids were quenched from 1650 ± 25°C, 10?6.9±0.6 atm of oxygen, and 10?6.1±0.6 atm total pressure. For a particular choice of M, the ratio of Eu2+ to Eu3+ increased as much as a factor of 24 with increasing atomic ratio (Al + Si)/(O); for a constant value of (Al + Si)/(O), the ratio of Eu2+ to Eu3+ increased in the order Mg > (Ca0.5,Mg0.5) >Ca. In order to interpret the compositional dependence of the redox equilibrium of Eu in a systematic manner, the concept of a solvent coefficient was introduced.  相似文献   

11.
Ab-initio interionic potentials for Mg2+, Si4+, and O2– have been used in molecular dynamics (MD) simulations to investigate diffusivity changes, pressure-induced structural transitions, and temperature effects on polymerization in MgSiO3 and Mg2SiO4 melts and glasses. The potential gives reasonable agreement with the 0.1 MPa radial distribution function of MgSiO3 glass. Maxima in the diffusion coefficients of Si4+ and O2– occur as pressure is increased on the MgSiO3 melt. The controlling structural mechanism for this behavior is the Q1 species of SiO4 tetrahedra. Mg2+ diffusion coefficients decrease monotonically with pressure in both melt compositions. Increasing Mg2+ coordination number and population of 3- and 4-membered SiO4 rings with pressure combine to hinder translation of the Mg2+ ions. The dominant changes in structure with pressure are a decrease in the intertetrahedral (Si-O--Si) angle up to approximately 4 g/cm3 and coordination changes of the ions above this density. Temperature effects on viscosity in these simulated melts are indirectly studied by analyzing polymerization changes with temperature. Polymerization and coordination numbers increase with decreasing temperature and a small quench rate effect is observed. Fair agreement is found between the MD simulations and experimental equation of state for Mg2SiO4, but the equation of state predictions for MgSiO3 melts are much less accurate. The zero pressure volume, V 0, is significantly higher and K 0 is lower in the simulations than empirical values. The inadequacies reflect error in using the ionic approximation for polymerized systems and a need to collect more data for a variety of molecular configurations in the development of ab-initio potentials.  相似文献   

12.
Plagioclase feldspar/magmatic liquid partition coefficients for Sr, Ba, Ca, Y, Eu2+, Eu3+ and other REE have been determined experimentally at 1 atm total pressure in the temperature range 1150–1400°C. Natural and synthetic melts representative of basaltic and andesitic bulk compositions were used, crystallizing plagioclase feldspar in the composition range An35–An85. Partition coefficients for Sr are greater than unity at all geologically reasonable temperatures, and for Ba are less than unity above approximately 1060°C. Both are strongly dependent upon temperature. Partition coefficients for the trivalent REE are relatively insensitive to temperature. At fixed temperature they decrease monotonically from La to Lu. The partition of Eu is a strong function of oxygen fugacity. Under extreme reducing conditions DEu approaches the value of DSr.  相似文献   

13.
Three minerals of the mayenite supergroup have been found in fluorellestadite-bearing metacarbonate rock (former fragment of petrified wood of ankeritic composition) from the dump at the Baturinskaya-Vostochnaya-1-2 mine. These are eltyubyuite Ca12Fe1°Si4O32Cl6, its fluorine analog Ca12Fe103+Si4O30F10, and chlormayenite-wadalite Ca12(Al,Fe)14O32Cl2-Ca12(Al,Fe)10Si4O32Cl2. The first two phases occur in the reaction mantle around hematite, magnesioferrite, and Ca-ferrite aggregates (“calciohexaferrite” CaFe12O19, “grandiferrite” CaFe4O7, and “dorrite phase” Ca2(Fe53 +Mn00.5Mg0.5)(Si0.5Fe5.53+)O20) and, rarely, as individuals in grained aggregates of fluorellestadite-cuspidine (± lar- nite ± rusinovite Ca10(Si2O7)3Cl2). Assemblages of zoned chlormayenite-wadalite crystals are found in grained aggregates of fluorellestadite- cuspidine, which lack Ca-ferrite. Also, harmunite CaFe2O4, chlorellestadite, fluorapatite, anhydrite, rondorfite CasMg(SiO4)4Cl2, fluorine analog of rondorfite CasMg(SiO4)4F2, “Mg-cuspidine” Ca3.5(Mg,Fe)0.5(Si2O7)F2, fluorite, barioferrite BaFe12O19, zhangpeishanite BaFCl, and other rare phases are identified in this rock. Data on the chemical composition and Raman spectroscopy of the mayenite-supergroup minerals are given. The genesis of metacarbonate rock is considered in detail: “oxidizing calcination” of Ca-Fe-carbonates with the formation of hematite and lime; reaction between hematite and lime with the formation of different Ca-ferrites; formation of larnite as a result of reaction between SiO2 and lime or CaCO3; and reactionary impact of hot Cl-F-S-bearing gases on early assemblages. Eltyubyuite and its fluorine analog crystallized at the stages of gas impact. It is presumed that the maximum temperature during the formation of rock reached 1200–1230 °C. © 2015, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.  相似文献   

14.
High-resolution core level and valence band (VB) X-ray photoelectron spectra (XPS) of olivine [(Mg0.87Fe0.13)2SiO4], bronzite [(Mg0.8Fe0.2)2Si2O6] and diopside [Ca(Mg0.8Fe0.2)Si2O6] were collected before and after leaching in pH ∼2 solutions with the Kratos magnetic confinement charge compensation system which minimizes differential charge broadening. The leached samples yield Si 2p, Mg 2p, Ca 2p and O 1s XPS spectral linewidths and lineshapes similar to those collected from the respective pristine samples prior to leaching. As with previous XPS studies on crushed samples, our broadscan XPS spectra show evidence for initial, preferential leaching of cations (i.e., Ca2+ and Mg2+) from the near-surface of these minerals. The O 1s spectra of leached olivine and pyroxenes show an additional peak due to OH, which arises from H+ exchange with near-surface cations (Ca2+ and Mg2+) via electrophilic attack of H+ on the M-O-Si moiety to produce the H2Mg(M1)SiO4(surf) complex at olivine surfaces, and two complexes, H2Mg(M1)Si2O6(surf) and H4Si2O6(surf) at diopside and enstatite surfaces. The olivine and pyroxene surface complexes H2Mg(M1)SiO4(surf) and H2Mg(M1)Si2O6(surf) have been proposed previously, but the second pyroxene surface complex H4Si2O6(surf) has not. Two electrophilic reactions occur in both olivine and pyroxene. For olivine, the more rapid attacks the M2-O-Si moiety producing H2Mg(M1)SiO4(surf); while the second attacks the M1-O-Si moiety ultimately producing H4SiO4 which is released to solution. For pyroxenes, the first electrophilic reaction produces H2Mg(M1)Si2O6(surf), while the second produces.H4Si2O6(surf). These two reactions are followed by a nucleophilic attack of H2O (or H3O+) on Si of H4Si2O6(surf). This reaction is responsible for rupture of the brigding oxygen bond of the Si-O-Si moiety and release of H4SiO4 to solution. The intensity of the OH peak for the leached pyroxenes is about double the OH intensity for the leached olivine, consistent with the equivalent of about a monolayer of the above surface complexes being formed in all three minerals.Valence band XPS spectra and density functional calculations demonstrate the remarkable insensitivity of the valence band to leaching of Ca2+ and Mg2+ from the surface layers. This insensitivity is due to a dearth of Ca and Mg valence electron density in the valence band: the Ca-O and Mg-O bonds are highly ionic, with metal-derived s orbital electrons taking on strong O 2p character. The valence band spectrum of leached olivine shows an additional very weak peak at about 13.5 eV, which is assigned to Si 3s valence orbitals in the surface complex H2Mg(M1)SiO4, as indicated by high quality density functional calculations on an olivine where Mg2+ in M2 is replaced by 2H+. The intensity of this new peak is consistent with formation of the equivalent of a monolayer of the surface complex.  相似文献   

15.
Unusual Ti–Cr–Zr-rich garnet crystals from high-temperature melilitic skarn of the Maronia area, western Thrace, Greece, were investigated by electron-microprobe analysis, powder and single-crystal X-ray diffraction, IR, Raman and Mössbauer spectroscopy. Chemical data showed that the garnets contain up to 8 wt.% TiO2, 8 wt.% Cr2O3 and 4 wt.% ZrO2, representing a solid solution of andradite (Ca3Fe3+ 2Si3O12 ≈46 mol%), uvarovite (Ca3Cr2Si3O12 ≈23 mol%), grossular (Ca3Al2Si3O12 ≈10 mol%), schorlomite (Ca3Ti2[Si,(Fe3+,Al3+)2]O12 ≈15 mol%), and kimzeyite (Ca3Zr2[Si,Al2]3O12 ≈6 mol%). The Mössbauer analysis showed that the total Fe is ferric, preferentially located at the octahedral site and to a smaller extent at the tetrahedral site. Single-crystal XRD analysis, Raman and IR spectroscopy verified substitution of Si mainly by Al3+, Fe3+ and Ti4+. Cr3+ and Zr4+ are found at the octahedral site along with Fe3+, Al3+ and Ti4+. The measured H2O content is 0.20 wt.%. The analytical data suggest that the structural formula of the Maronia garnet can be given as: (Ca2.99Mg0.03)Σ=3.02(Fe3+ 0.67Cr0.54Al0.33Ti0.29Zr0.15)Σ=1.98(Si2.42Ti0.24Fe0.18Al0.14)Σ=2.98O12OH0.11. Ti-rich garnets are not common and their crystal chemistry is still under investigation. The present work presents new evidence that will enable the elucidation of the structural chemistry of Ti- and Cr-rich garnets.  相似文献   

16.
Enthalpies of solution in 2PbO · B2O3 at 974 K have been measured for glasses along the joins Ca2Si2O6 (Wo)-Mg2Si2O6 (En) and Mg2Si2O6-MgAl2SiO6 (MgTs). Heats of mixing are symmetric and negative for Wo-En with WH = ?31.0 ± 3.6 kJ mol?. Negative heats of mixing were also found for the En-MgTs glasses (WH = ?33.4 ± 3.7 kJ mol?).Enthalpies of vitrification of pyroxenes and pyroxenoids generally increase with decreasing alumina content and with decreasing basicity of the divalent cation.Heats of mixing along several glassy joins show systematic trends. When only non-tetrahedral cations mix (outside the aluminosilicate framework), small exothermic heats of mixing are seen. When both nontetrahedral and framework cations mix (on separate sublattices, presumably), the enthalpies of mixing are substantially more negative. Maximum enthalpy stabilization near compositions with Al/Si ≈ 1 is suggested.  相似文献   

17.
The distribution of Fe3+ and Ga3+ between the two tetrahedral sites in three synthetic melilites has been studied by using 57Fe Mössbauer spectroscopy. In the melilite, (Ca2Ga2SiO7)50 (Ca2Fe3+GaSiO7)50 (mol %), the distribution of Fe3+ and Ga3+ in T1 and T2 sites is apparently random, which can be explained in terms of the electrostatic valence rule. However in the melilites, (Ca2MgSi2O7)52 (Ca2Fe3+GaSiO7)42 (Ca2Ga2SiO7)6 and (Ca2MgSi2O7)62 (Ca2Fe3+GaSiO7)36 (Ca2Ga2SiO7)2 (mol %), Fe3+ shows preference for the more ionic T1 site and Ga3+ for the more covalent T2 site. If the electronegativity of Ga3+ is assumed to be larger than that of Fe3+, the mode of distribution of Fe3+ and Ga3+ can be explained in terms of our previous hypothesis that a large electronegativity induces a stronger preference for the more covalent T2 site.  相似文献   

18.
 The spinel solid solution was found to exist in the whole range between Fe3O4 and γ-Fe2SiO4 at over 10 GPa. The resistivity of Fe3− x Si x O4 (0.0<x<0.288) was measured in the temperature range of 80∼300 K by the AC impedance method. Electron hopping between Fe3+ and Fe2+ in the octahedral site of iron-rich phases gives a large electric conductivity at room temperature. The activation energy of the electron hopping becomes larger with increasing γ-Fe2SiO4 component. A nonlinear change in electric conductivity is not simply caused by the statistical probability of Fe3+–Fe2+ electron hopping with increasing the total Si content. This is probably because a large number of Si4+ ions occupies the octahedral site and the adjacent Fe2+ keeping the local electric neutrality around Si4+ makes a cluster, which generates a local deformation by Si substitution. The temperature dependence of the conductivity of solid solutions indicates the Verwey transition temperature, which decreases from 124(±2) K at x=0 (Fe3O4) to 102(±5) K at x=0.288, and the electric conductivity gap at the transition temperature decreases with Si4+ substitution. Received: 15 March 2000 / Accepted: 4 September 2000  相似文献   

19.
Abstract Chemical analysis (including H2, F2, FeO, Fe2O3) of a Mg-vesuvianite from Georgetown, Calif., USA, yields a formula, Ca18.92Mg1.88Fe3+0.40Al10.97Si17.81- O69.0.1(OH)8.84F0.14, in good agreement on a cation basis with the analysis reported by Pabst (1936). X-ray and electron diffraction reveal sharp reflections violating the space group P4/nnc as consistent with domains having space groups P4/n and P4nc. Refinement of the average crystal structure in space group P4/nnc is consistent with occupancy of the A site with Al, of the half-occupied B site by 0.8 Mg and 0.2 Fe, of the half-occupied C site by Ca, of the Ca (1,2,3) sites by Ca, and the OH and O(10) sites by OH and O. We infer an idealized formula for Mg-vesuvianite to be Ca19Mg(MgAl7)Al4Si18O69(OH)9, which is related to Fe3+-vesuvianite by the substitutions Mg + OH = Fe3++ O in the B and O(10) sites and Fe3+= Al in the AlFe site. Thermodynamic calculations using this formula for Mg-vesuvianite are consistent with the phase equilibria of Hochella, Liou, Keskinen & Kim (1982) but inconsistent with those of Olesch (1978). Further work is needed in determining the composition and entropy of synthetic vs natural vesuvianite before quantitative phase equilibria can be dependably generated. A qualitative analysis of reactions in the system CaO-MgO-Al2O3-SiO2-H2O-CO2 shows that assemblages with Mg-vesuvianite are stable to high T in the absence of quartz and require water-rich conditions (XH2O > 0.8). In the presence of wollastonite, Mg-vesuvianite requires very water-rich conditions (XH2O > 0.97).  相似文献   

20.
Enthalpies of solution in 2PbO · B2O3 at 981 K have been measured for glasses in the system albite-orthoclase-silica and along the join Na1.6Al1.6Si2.4O8-K1.6Al1.6Si2.4O8. The join KAlSi3O8-Si4O8 shows zero heat of mixing similar to that found previously for NaAlSi3O8-Si4O8 glasses. Albite-orthoclase glasses show negative heats of mixing symmetric about Ab50Or50 (Wn = ? 2.4 ± 0.8 kcal). Negative heats of (Na, K) mixing are also found at Si(Si + Al) = 0.6. Ternary excess enthalpies of mixing in the glassy system Ab-Or-4Q are positive but rarely exceed 1 kcal mol?1.Using earlier studies of the thermodynamic properties of the crystals, the present calorimetric data and the “two-lattice” entropy model, the albite-orthoclase phase diagram is calculated in good agreement with experimental data. Attempts to calculate albite-silica and orthoclase-silica phase diagrams reveal complexities probably related to significant (but unknown) mutual solid solubility between cristobalite and alkali feldspar and to the very small heat and entropy of fusion of SiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号