首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N. Noy  A. Bar-Nun  M. Podolak 《Icarus》1979,40(2):199-204
Laboratory data on the rate of photolytic polymerization of acetylene, highly diluted with hydrogen, at the pressure range of the Jovian stratosphere is presented. It is shown that this rate is sufficient to maintain the stratospheric aerosol haze which was observed on Jupiter by Smith et al. (1977, Icarus30).  相似文献   

2.
A. Bar-nun  N. Noy  M. Podolak 《Icarus》1984,59(2):162-168
The effect of excess hydrogen on the synthesis of amino acids, by high-temperature shock waves in a hydrogen/methane/ammonia/water vapor mixture, was studied experimentally. The energy efficiency results, together with the best estimate of the lightning energy dissipation rate on Jupiter, from the Voyager data, were used to calculate an upper limit to the rate of amino acid production by lightning in the Jovian water clouds. Using reasonable values for the eddy diffusion coefficients within and below the water clouds, the column abundance of lightning-produced amino acids in the clouds was estimated to be 6.2 × 10?6 cm-am. Hence, concentration of amino acids in water droplets would be 8 × 10?8 mole liter?1.  相似文献   

3.
A.J. Dessler 《Icarus》1980,44(2):291-295
Theoretical arguments have been presented to the effect that both plasma and energy are supplied to the Jovian magnetosphere primarily from internal sources. If we assume that Io is the source of plasma for the Jovian magnetosphere and that outward flow of plasma from the torus is the means of drawing from the kinetic energy of rotation of Jupiter to drive magnetospheric phenomena, we can obtain a new, independent estimate of the rate of mass injection from Io into the Io plasma torus. We explicitly assume the solar wind supplies neither plasma nor energy to the Jovian magnetosphere in significant amounts. The power expended by the Jovian magnetosphere is supplied by torus plasma falling outward through the corotational-centrifugal-potential field. A lower limit to the rate of mass injection into the torus, which on the average must equal the rate of mass loss from the torus, is therefore derivable if we adopt a value for the power expended to drive the various magnetospheric phenomena. This method yields an injection rate of at least 103 kg/sec, a value in agreement with the results obtained by two other independent methods of estimating mass injection rate. If this injection rate from Io and extraction of energy from Jupiter's kinetic energy of rotation has been maintained over geologic time, then approximately 0.1% of Io's mass (principally in the form of sulfur and oxygen) has been lost to the Jovian magnetosphere, and Jupiter's spin rate has been reduced by less than 0.1%.  相似文献   

4.
David Goorvitch 《Icarus》1978,36(1):127-132
Model calculations show that the far-infrared bands of ammonia are very sensitive to the ammonia distribution above the Jovian atmospheric inversion layer. Observation of the J = 5 and J = 6 ammonia bands at moderate resolution (R ~ 700) can differentiate between a cold trap model or the irreversible uv photodestruction model for the ammonia distribution. The amount of core emission is very sensitive to the distribution of ammonia above the Jovian inversion layer.  相似文献   

5.
L.A. Capone  S.S. Prasad 《Icarus》1973,20(2):200-212
This paper reports results obtained on ionosphere formation in the Jovian upper atmosphere with special reference to some of the recently available reaction rates, and to recent models of the Jovian neutral atmosphere based on the possibility of a warmer mesopause. We find that the role of the hypothetical radiative association of H+ to H2 to form H3+, as brought to light in our earlier study, is still important, even with a reaction rate as low as 10?15 cm3sec?1. In the lower regions of the ionosphere three-body processes leading to the formation of H3+ and H5+ ions, which have very fast dissociative recombination rates, produce a dramatic reduction in the electron density. When no radiative association takes place, and the H+ ions are lost by radiative recombination alone, we confirm that the photochemical equilibrium profile is also the diffusive equilibrium profile. However, with collisional-radiative recombination, whose rate becomes altitude-dependent, diffusion tends to bring about some redistribution of the ionization. Inclusion of radiative association enhances the role of diffusion. In this case, diffusion brings about all the expected changes. In particular, the differences in the electron density profile, originated in the lower-middle ionosphere by radiative association, are propagated up to all higher altitudes by diffusion. The rate constant of radiative association is, however, unknown. It is hoped that the critical importance of this reaction for the Jovian ionosphere will be an incentive towards a careful laboratory determination of its rate coefficient. In the older models of the Jovian ionosphere the major ions were H+ which were lost only by pure radiative recombination. This led to high electron densities and practically no diurnal change. In contrast, our new models have relatively much smaller electron densities, especially in lower regions, and may be susceptible to significant diurnal variation.  相似文献   

6.
William M. Sinton 《Icarus》1973,20(3):284-296
An atmosphere containing 0.5 cm atm of ammonia is assumed on Io. Such an atmosphere will be frozen at the unilluminated pole during the solstices, but will evaporate at the equinoctial seasons. The ammonia atmosphere will explain: (1) the posteclipse brightenings and their observed times of occurrence and nonocurrence; (2) the observed departure from a two-layer model beating curve upon emergence from eclipse; (3) the discordant temperatures obtained at 10 and 20 μm; and (4) discordant temperatures obtained at 10 and 20 μm during the total phase of an eclipse by Jupiter.In order to explain items 3 and 4 above, a proton flux in Jupiter's magnetosphere of 1.1 × 109 cm?2s? at an energy of 0.5MeV at io's distance from Jupiter is assumed. This flux is 40 times the flux in Divine's (1972) “upper-limit” model of the Jovian radiation belts, while the proton energy is eight times less. The proton flux, plus the solar ultraviolet and infrared flux absorbed by the ammonia, will heat the atmosphere to 245 ± 10°K. At this temperature the occultation atmospheric upper limit allows the addition of 4 cmatm of nitrogen.  相似文献   

7.
Energy conversion rates from the extraordinary mode to the ordinary mode ofthe electromagnetic waves in the Jovian plasmasphere has been calculated for a model of the sharp boundary that is given in the vicinity of the position where ω = ωp, for an angular frequency ω and the angular plasma frequency ωp. The extraordinary mode electromagnetic wave that is obtained as a result of the transformation of a longitudinal propa- gating through an inhomogenous plasma is here considered. The results give conversion rates of 1–50 per cent, at the most, when a wave normal direction of an is nearly parallel to the boundary normal direction and when the Jovian magnetic field vector is close to the boundary normal direction within an angle range from 10° to 15°. The electric field intensity, in range from 7 to 70 mV/m, of the original electrostatic electron cyclotron plasma waves can give the power flux in a range from 10-22 to 10-20W/m2 Hz for the Jovian decameter waves observed at the Earth's surface. Efficient energy conversion is possible only when the ray direction of the emitted wave is in nearly perpendicular direction with respect to the magnetic field; this is the origin of the sharp beam emission of the Jovian decameter wave burst.  相似文献   

8.
High spatial resolution infrared and visible data obtained by the Voyager 1 spacecraft have been analyzed simultaneously to infer properties of the deep cloud structure of the Jovian troposphere in the 1- to 4-bar pressure range. Influence of the ammonia upper cloud layer, in the 5μm Jovian window, has been investigated through a cloud model derived from far ir Voyager IRIS measurements. The attenuation, computed with an anisotropic scattering formulation, is too weak to explain 5-μm measurements and provides evidence for existence of a cloud structure at deeper levels. The main conclusions derived from the present analysis are summarized below: (1) the deep cloud structure appears to be vertically associated with the NH3 upper layer; (2) the ammonia cloud is mainly responsible for the visible appearance of the Jovian equatorial region; (3) the deep cloud structure exhibits a grey opacity in the 5-μm window; (4) coldest 5-μm spectra can be interpreted by the existence of a thick cloud layer located at levels in the 180–195°K temperature range. Implications of these results are discussed in conjunction with predictions of dynamical and thermochemical models. NH4SH is shown to be a likely candidate for the main deep cloud constituent. An even deeper thick H2O cloud may be present too, but should not be responsible for the observed spread in 5-μm brightness temperatures.  相似文献   

9.
Cyril Ponnamperuma 《Icarus》1976,29(2):321-328
In order to understand the chemical processes which may be taking place in the Jovian atmosphere, we have conducted a number of simulation experiments in the laboratory. These reactions appear to be significant for our understanding of chemical evolution and the nature and origin of organic matter in the universe. Mixtures of methane and ammonia in varying proportions have been exposed to electric discharges and the products analyzed. We have found that, as the methane and ammonia disappear, hydrogen cyanide and acetylene are to be built up. The analysis of the volatiles has also provided us with a wide range of aminonitriles. It is conceivable that some of these nitriles, on hydrolysis, will give rise to amino acids. On cyclization, some of them would provide the pathways for the origin of pyrimidines. A characteristic result of these reactions has also been the appearance of a red polymer which may have a bearing on the color in the red spots of Jupiter. Spectral analysis in the laboratory may provide some clues in our search for organic material in the Jovian atmosphere by orbiting spacecraft, or ground-based observations.  相似文献   

10.
Modeling of the Jovian atmosphere shows that cosmic ray induced albedo neutron decay is inadequate to account for Pioneer 10 and 11 projected electron levels on Jupiter. High energy solar protons must also be excluded as an important neutron decay source. Analysis of neutron flux data near the top of the Jovian atmosphere can lead to the determination of He/H2 and3He/4He ratios for the Jovian atmosphere.  相似文献   

11.
K.A. Young  J.S. Margolis 《Icarus》1977,30(1):129-137
The 6450 Å ammonia absorption band in the atmosphere of Jupiter was observed during the summers of 1973 and 1974. High-dispersion spectra of this band were obtained and analyzed on a line-by-line basis to derive ammonia abundances in the Jovian atmosphere. The abundances determined this way show strikingly large fluctuations.  相似文献   

12.
This paper presents the first detailed analysis of acetylene absorption features observed longward of 190.0 nm in a jovian spectrum by the Faint Object Spectrograph on board the Hubble Space Telescope. The presence of two features located near 207.0 nm can only be explained by a substantial abundance of acetylene in the upper troposphere. Using a Rayleigh-Raman radiative transfer model, it was determined that the acetylene vertical profile is characterized by a decrease in the mole fraction with increasing pressure in the upper stratosphere, a minimum around 14 to 29 mbar, followed by an increase to about 1.5 × 10−7 in the upper troposphere. Longward of 220 nm, the relatively high contrast of Raman features to the continuum precludes the existence of an optically significant amount of clouds from 150 to 500 mbar unless they are highly reflective. Instead, the reflectivity at these long wavelengths is determined by stratospheric, not tropospheric, scatterers and absorbers. Analysis of the data also suggests that ammonia is extremely undersaturated at pressures below 700 mbar. However, no firm conclusions can be reached because of the uncertainties surrounding its cross section longward of 217.0 nm, which are due to vibrationally excited states.  相似文献   

13.
A. Bar-nun 《Icarus》1980,42(3):338-342
The effects of the newly discovered thunderstorms on Venus upon the nitrogen and carbon species in its atmosphere were calculated. An Earth-like lightning frequency of 100 sec?1 was used for Venus, in accord with recent optical measurements by Pioneer-Venus (W. J. Borucki, J. W. Dyer, G. Z. Thomas, J. C. Jordon, and D. A. Comstock, submitted for publication). The rate of NO production by thunder shock waves, 2.5 × 1011 g year?1, is about an order of magnitude smaller than on the Earth. But on Venus, in the absence of precipitation, which is the major removal mechanism of odd nitrogen from the Earth's atmosphere, the mixing ratios of odd nitrogen species might be considerably higher. The global CO production is governed by CO2 photolysis rather than by CO2 pyrolysis by lightning. However, thunderstorms produce about 2.5 × 1011 g year?1 of CO in the cloud layer, far from the high altitude CO2 photolysis region.  相似文献   

14.
The problem of the ionospheric formation in the Jovian upper atmosphere is examined. By adopting two plausible atmospheric models, we solve coupled time-dependent continuity equations for ions H2+, H5+, H+, H3+ and HeH+ simultaneously. It is shown that both radiative and three body association of H+ to H2 are important for the determination of the structure of the Jovian ionosphere. The maximum electron density in the daytime is found to be about 105 cm?3. It is also shown that diurnal variation with large-amplitude can exist in the Jovian ionosphere.  相似文献   

15.
The interferometer visibility of Jupiter, observed at a wavelength of 3.4 mm, is used to determine the global limb darkening of the planet's brightness. From a single-parameter fit to the visibility curve, we find an ammonia-to-molecular hydrogen mixing ratio of 6.4[+5.1, ?1.9] × 10?5, which corresponds to 35[+28, ?10]% of the solar nitrogen abundance if all of the nitrogen is in the form of ammonia. The fitting procedure uses a simple model atmosphere for the Jovian atmosphere which is based on other observations of the planet. The dependence of the result on the various model parameters is studied.  相似文献   

16.
Dale W. Smith 《Icarus》1975,25(3):447-451
Brinkmann (1973) has suggested that the Galilean satellites might briefly manifest a brightening at mid-eclipse due to a concentration of light refracted into the geometric umbra of Jupiter by the atmosphere around the terminator. Results obtained using two different models of the Jovian atmosphere indicate that such a brightening is unlikely even for Callisto due to the probable aerosol concentration in the Jovian atmosphere at the relevant altitudes.  相似文献   

17.
A model is presented for the formation of HCN in the upper troposphere and lower stratosphere of Jupiter by ultraviolet photolysis of the C2H5N isomer aziridine, a product of the recombination of NH2 and C2H3 radicals, which originate, respectively, from ammonia photolysis and addition of H atoms to acetylene. An HCN column density of ~ 2 × 1017 cm?2 in the tropopause region, which is comparable to that observed by A. T. Tokunaga, S. C. Beck, T. R. Geballe, J. H. Lacy, and E. Serabyn (Icarus48, 283–289, 1981), is predicted when vertical mixing is slow above the ammonia cloudtops. Sensitivity of the HCN column density to the individual rate constants and the eddy diffusion coefficient profile is discussed, as is the possibility of the existence of additional HCN-yielding pathways. Ammonia, which is saturated in the upper troposphere, is strongly depleted by photolysis in the lower stratosphere. Phosphine is also strongly depleted by photolysis and its abundance in the upper troposphere is shown to depend strongly on vertical mixing in the tropopause region. The possibility of the formation of phosphirane, the P-containing analog of aziridine, is considered but found to be substantially less probable than aziridine.  相似文献   

18.
We present the results of our study of Jupiter and its radiation belts with a resolution of 6 arcsec at a frequency of 30 GHz using the RATAN-600 radio telescope and a MARS matrix radiometer with a sensitivity of about 6 mK ?1/2. We monitored the integrated emission from the Jovian disk with a signal-to-noise ratio of more than 1000 for 30 days and showed its radio emission to be highly stable (≈1%). Based on daily data for the one-dimensional radio brightness distribution over the disk, we mapped the longitudinal radio brightness distribution over 100 rotation periods of Jupiter around its axis. Neither hot nor cold spots with a temperature contrast of more than 1 K were detected; their contribution to the total radio flux from the Jovian disk was no more than 0.2%. The one-dimensional latitudinal (longitude-averaged) distribution obtained on VLA with a similar resolution is shown to be an order of magnitude less uniform than the one-dimensional longitudinal (latitude-averaged) distribution obtained on RATAN-600. We have studied the radiation belts at such high frequencies for the first time and estimated their intensities and variability levels under the effect of external factors. The variable component of the radiation belts was shown to have not exceeded 0.5% of the integrated spectrum of Jupiter over the entire period of its observations. We estimated the contribution of the Galilean satellites (“Galilean noise”) in low-resolution observations; the accuracy of allowing for this noise is determined by the accuracy of estimating the temperatures of the satellites at the observing frequency. The uncertainty in the total flux does not exceed 0.1%.  相似文献   

19.
Allen M  Yung YL  Gladstone GR 《Icarus》1992,100(2):527-533
The observed ratio of C2H6 to C2H2 in the Jovian stratosphere increases from approximately 55 at 2 mbar to approximately 277 at 12 mbar. In current photochemical models this ratio typically increases between 2 and 12 mbar by a factor of < or = 3. Recent laboratory kinetics studies on the reaction between C2H3 and H2 to form C2H4 suggest an efficient chemical mechanism for hydrogenation of C2H2 to C2H6. Inclusion of this scheme as part of a comprehensive updated model for hydrocarbon photochemistry in the atmosphere of Jupiter provides an explanation of the altitude variation of the C2H6/C2H2 ratio. The sensitivity of these results to uncertainties in the key rate constants at low temperatures is illustrated, identifying needs for additional laboratory measurements. Since the key reaction rate constants decrease with decreasing temperature, the hydrogenation of C2H2 as proposed predicts a qualitatively decreasing trend in the C2H6/C2H2 value with decreasing distance from the Sun. The observed variation between Jupiter and Saturn is consistent with this prediction.  相似文献   

20.
Using the 20-m Onsala Observatory telescope (Sweden), we performed observations of the CH3C2H(6-5) line toward several regions of massive star formation to estimate the kinetic temperature of the gas and study its variations over the sources. Intense lines were detected in five objects. For these, we estimated the kinetic temperature of the gas near the CS and N2H+ molecular emission peaks by the method of population diagrams. A significant temperature difference between these peaks is noticeable only in W3 and, to a lesser degree, in DR 21. In the remaining cases, it is insignificant. This indicates that the chemical differentiation of the molecules in these regions cannot be associated with temperature variations. The kinetic temperature determined from methyl acetylene observations is usually slightly higher than the temperature estimated from ammonia observations. This is probably because the methyl acetylene emission originates in denser, i.e., deeper and hotter layers of the cloud.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号