首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have computed line profiles and curves of growth for both reflected and transmitted radiation for typical lines in CO2 bands (in the photographic infrared) which occur in the spectrum of Venus. In our model the pressure variation with altitude was considered and the base of the cloud deck was set at the 2 bar level. The temperature was held constant at 250K and a Voigt profile was used for the lineshape. We also assumed that the scale height of the cloud particles was equal to the scale height of the gas. The calculations were made for four values of the scattering optical thickness (τc = 0.1, 1.0, 10, and 100) using a continuum single scattering albedo ωc = 0.9975 (which gives a Bond albedo of 0.896 for τc = 100, the value observed for Venus at these wavelengths). Curves of growth are also presented for reflected radiation which has been averaged over the visible disk for three values of the Venus phase angle (0, 86, and 166°).  相似文献   

2.
D.Chris Benner  Uwe Fink 《Icarus》1980,42(3):343-353
Laboratory band-model absorption coefficients of CH4 are used to calculate the Uranus spectrum from 5400 to 10,400 Å. A good fit of both strong and weak bands for the Uranus spectrum over the entire wavelength interval is achieved for the first time. Three different atmospheric models are employed: a reflecting layer model, a homogeneous scattering layer model, and a clear atmosphere sandwiched between two scattering layers. The spectrum for the reflecting layer model exhibits serious discrepancies but shows that large amounts of CH4 (5–10 km-am) are necessary to reproduce the Uranus spectrum. Both scattering models give reasonably good fits. The homogeneous model requires a particle scattering albedo (g?wp) ? 0.998 and an abundance per scattering mean free path (a?) ofa?1 km-am. The parameters derived from the sandwich layer model are: forsb the upper scattering layer a continuum single scattering albedo (g?w0) of 0.995 and a scattering optical depth variable with wavelength consistent with Rayleigh scattering; for the clear layer they are a CH4 abundance (a) of 2.2 km-am and an effective pressure (p) ? 0.1 atm; for the lower cloud deck a Lambert reflectivity (L) of 0.9 resulted. A severe depletion of CH4 in the upper scattering layer is required. An enrichment of CH4/H2 over the solar ratio by a factor of 4–14 in the lower atmosphere is, however, indicated.  相似文献   

3.
Six times of maxima of the ultrashort-period cepheid variable EH Librae were measured in 1980 May to June and in 1981 January, with a three-channel photocounting high-speed photoelectric photometer. These, together with all the photoelectric times of maxima over the past 30 years, are used to re-examine the nature of the change of the period. We found that we can fix the times of maxima by the following formula
Tmax = T0+P0E+12βE2+AsinEP0E0
where T0 = HJD 2433438.6088 and P0 = 0.0884132445 d represent the initial maximum epoch and the pulsation period, β = ?2.8 × 10?8/yr; A = 0.0015 d, P0 = 6251 d = 17.1 yr are the semi-amplitude and the period of the sine curve, and E is the number of periods elapsed since T0, and (E0 = 70700).If we interpret this 17.1 year periodicity as a modulation of the phase of maximum by binary motion, then the semi-amplitude of the orbital radial velocity variation is K = 2πasini/E0 = 0.45 km/s and the mass function is
f(m)=m32sin3i(m1m2)2=(asini)3E20=6 x 10?5M
  相似文献   

4.
An analysis of Titan's solar phase variation as a function of wavelength together with the continuum geometric albedo makes it possible to set limits on the real part of the refractive index and on the average particle size of the aerosol component of Titan's atmosphere: 1.5 ?nr< 2.0 and 0.20 μm <r?0.35 μm. If nris known r can be determined to within a few percent, and varies inversely with nr. Using this information in a two-layer model of a methane-aerosol atmosphere and comparing the result with Titan's visible and near-infrared methane spectrum leads to the conclusion that the top layer of Titan's atmosphere contains 0.01 km atm of methane and 2.5 extinction optical depths of aerosol, while the data are consistent with a bottom layer containing 2.2 km atm of methane and about 7.5 aerosol optical depths for nr = 1.7, r = 0.25 μm.  相似文献   

5.
VLF-emissions with subharmonic cyclotron frequency from magnetospheric electrons have been detected by the S3-A satellite (Explorer 45) whose orbit is close to the magnetic equatorial plane where the wave-particle interaction is most efficient. These emissions are observed during the main phase of a geomagnetic storm in the nightside of the magnetosphere outside of the plasmasphere around L = 3–5. The emissions consist essentially of two frequency regimes, one below the equatorial electron gyro-frequency, ?H0, and the other above ?H0. The emissions below ?H0 are whistler mode and there is a sharp band of “missing emissions” along ?= ?H02. The emissions above ?H0 are electrostatic mode and the frequency ranges up to 3?H02. It is concluded that these emissions are generated by the enhanced relativity low energy (1–5 keV) ring current electrons, penetrating into the nightside magnetosphere during the main phase of a magneto storm. Although the high energy (50–350 keV) electrons showed remarkable changes of pitch angle distribution, their associations with VLF-emissions are not so significant as those of low energy electrons.  相似文献   

6.
7.
W.W. Mullins 《Icarus》1976,29(1):113-123
The stochastic model of lunar type impact-crater formation which assumes (a) random impacts, (b) circular craters, each obliterating any portions of earlier craters lying within, and (c) a probability Pi(t) that a newly formed crater (primary or secondary) has an area ai is analyzed to develop a method of estimating Pi from the final overlapping pattern. It is found that if each crater is weighted by the fraction of the rim which is visible and which lies in an observation area A, then the expected value of the weighted sum Ωi of craters of area ai is simply proportional to Pi for any degree of coverage under several conditions, including (a) constant Pi for all i, and (b) Pi stepping from a constant early value to zero (for some i's) with otherwise arbitrary bombardment. Furthermore, in the general case, the expected value of the contribution ΔΩi(t0) to Ωi produced during t0 ± Δt/2 is found to be proportional to Pi(t0). Thus measurement of Ωi in the first two cases, or of ΔΩi if crater age data is available in the last case, provides an estimate of the desired Pi. Therefore the Ωi introduce the correct weighting factors that just compensate for the effect of overlap.Expressions for the variances of Ωiand Ω = ΣiΩi are derived from which it is shown that under the above conditions, Ωior ΔΩi/ΔΩ are consistent estimators of Pi. Formal evaluation of the variances is carried out in the special case of constant Pi and no secondary cratering. A criterion for the degree of coverage is given; in particular it is shown that the expectation of σ = Σi aiΩi at saturation is just A.  相似文献   

8.
The paper gives the results of detailed studies of the frequency spectra Ss(?) of the chain of the wave packets Fs(t) of geomagnetic pulsations PC-1 recorded at the Novolazarevskaya station. The bulk of the energy of Fs(t) is concentrated in the vicinity of the central frequencies ?s0 of spectra—the carrier frequencies of the signals. The velocity V0 ≌ 6.103km s?1 of the flux of protons generating these signals correspond to them. The spectra of the signals have oscillations—“satellites” irregularly distributed in frequency. These satellites, as the authors believe, testify to the presence of the individual groups of protons of low concentration whose velocities vary within 103–104 km s?1.Their energy is only of the order of 10?2–10?3 of the energy of the main proton flux. Clearly pronounced maxima on double and triple frequencies ? = 2?s0and 3?s0 are detected. They show that the generation of pulsations PC-1 is accompanied by the generation on the overtones of wave packets called in this paper “two-fold” and “three-fold” pulsations PC-1. Intensive symmetrical satellites of a modulation character have been discovered on frequencies ?±sK. Frequency differences Δ?sK± = ¦?s0 ? ?sK±¦ = (0.011,0.022 and 0.035) Hz correspond to them. The authors believe that the values of Δ?±sK are resonance frequencies of the magnetospheric cavity in which geomagnetic pulsations PC-1 are generated. It is established that the values of Δ?±sK coincide closely with the carrier frequencies of geomagnetic pulsations PC-3 and PC-4 generated in the magnetosphere. This leads to the conclusion that the resonance oscillations of the magnetospheric cavity are their source. Thus, the generation of geomagnetic pulsations of different types and resonance oscillations in the magnetosphere are integrated into a unified process. The importance of the results obtained and the necessity to check further their trustworthiness and universality, using experimental data gathered in different conditions, is stressed.  相似文献   

9.
Previous work has parameterized the pitch angle dependence of the charge-exchange lifetime τ of ring current ions in terms of γ, the power of the cosine of the mirror latitude λm of the particles, such that τ(λm)τ(0) ≌cosγ λm at given L. Using the atomic hydrogen density model of Johnson and Fish, previous authors have suggested values of γ = 5 or 6. We here evaluate γ as a function of λm and L using the more recent Chamberlain density models, and show that γ = 3?4 is more appropriate over most of the pitch angle and L range. Consequently, ion distributions in the ring current decay phase are expected to become rather less anisotropic in pitch angle due to chargeexchange than previously believed. We have also investigated the use of several other simple approximate analytic forms for τ(λm)τ(0), one of which gives far better agreement with the numerical results than the cosγ λm, variation, and should hence be used in future studies.  相似文献   

10.
New photographic photometry at small tilt angles during the 1979 and 1981 apparitions is combined with earlier data to yield several physical parameters for Saturn's B ring in red and blue colors. Phase curves are obtained for a mean tilt angle B ? 6°. The value of the volume density D is 0.020±0.004 with no indication of dependence on either the color or the tilt angle for 6°<B<26°. This conclusion is not altered significantly if the individual ring particles have a phase function similar to the phase curves of bright solar system objects. For the geometric albedo of a single particle we derive 0.61±0.04 (red) and 0.41±0.03 (blue), which are superior to earlier estimates because of the additional data now available. These values and the derived amount of multiple scattering as a function of tilt angle constrain the particle phase function in the red to be moderately backscattering. Inferred values of the particle single-scattering albedo are 0.7≤ω0 (red) ≤0.92 and 0.5≤ω0 (blue) ≤0.7, depending on the choice of phase function. No indication was found that the particle photometric properties might depend on the vertical distance from the central plane. Our results show that the ground-based photometry is entirely consistent with the classical, many-particle-thick ring model.  相似文献   

11.
Daytime Pc 3–4 pulsation activities observed at globally coordinated low-latitude stations [SGC (L = 1.8,λ = 118.0°W), EWA(1.15,158.1°W), ONW(1.3,141.5°E)] are evidently controlled by the cone angle θXB of the IMF observed at ISEE 3. Moreover, the Pc 3–4 frequencies (?) at the low latitudes and high latitude (COL; L = 5.6 and λ = 147.9°W) on the ground and that of compressional waves at geosynchronous orbit (GOES 2; L = 6.67 and λ = 106.7°W) are also correlated with the IMFmagnitude(BIMF).The correlation of ? of the compressional Pc 3–4 waves at GOES 2 against BIMF is higher than those of the Pc 3–4 pulsations at the globally coordinated ground stations, i.e., γ = 0.70 at GOES 2, and (0.36,0.60,0.66,0.54) at (COL, SGC, EWA, ONW), respectively. The standard deviation (σn = ± Δ? mHz) of the observed frequencies from the form ? (mHz) = 6.0 × BIMF (nT) is larger at the ground stations than at GOES 2, i.e., Δ? = ± 6.6 mHz atGOES 2, and ±(13.9, 9.1, 10.7, 12.1) mHz at (COL, SGC, EWA, ONW), respectively. The correlations between the IMF magnitude BIMF and Pc 3–4 frequencies at the low latitudes are higher than that at the high latitude on the ground, which can be interpreted by a “filtering action” of the magnetosphere for daytime Pc 3–4 magnetic pulsations. The scatter plots of pulsation frequency ? against the IMF magnitude BIMF for the compressional Pc 3–4 waves at GOES 2 are restricted within the forms ? = 4.5 × BIMFand ? = 7.5 × BIMF. The frequency distribution is in excellent agreement with the speculation (scΩi = 0.3 ~ 0.5) of the spacecraft frame frequency of the magnetosonic right-hand waves excited by the anomalous ion cyclotron resonance with reflected ion beams with V6 = 650 ~ 1150 km s?1 in the solar wind frame observed by the ISEE satellite in the Earth's foreshock. These observational results suggest that the magnetosonic right-handed waves excited by the reflected ion beams in the Earth's foreshock are convected through the magnetosheath to the magnetopause, transmitted into the magnetosphere without significant changes in spectra, and then couple with various HM waves in the Pc 3–4 frequency range at various locations in the magnetosphere.  相似文献   

12.
Results are given of the calculations of the group delay time propagating τ(ω, φ0) of hydromagnetic whistlers, using outer ionospheric models closely resembling actual conditions. The τ(ω, φ0) dependencies were compared with the experimental data of τexp(ω, φ0) obtained from sonagrams. The sonagrams were recorded in the frequency range ? ? (0.5?2.5) Hz at observation points located at geomagnetic latitudes φ0 = (53?66)° and in the vicinity of the geomagnetic poles. This investigation has led us to new and important conclusions.The wave packets (W.P.) forming hydromagnetic whistlers (H.W.) are mainly generated in the plasma regions at L = 3.5?4.0. This is not consistent with ideas already expressed in the literature that their generation region is L ? 3?10. The overwhelming majority of the τexp values differ considerably from the times at which wave packets would, in theory, propagate along the magnetic field lines corresponding to those of the geomagnetic latitudes φ0 of the observation points. The second important fact is that the W.P. frequency ω is less than ΩH everywhere along its propagation trajectory, including the apogee of the magnetic force line (ΩH is the proton gyrofrequency). Proton flux spectra E ? (30?120) keV, responsible for H.W. generation, were determined. Comparison of the Explorer-45 and OGO-3 measurements published in the literature, with our data, showed that the proton flux density energy responsible for the H.W. excitation Np(MV622) ? (5 × 10?3?10?1) Ha2 where Ha is the magnetic field force in the generation region of these W.P. The electron concentration is Na ? (102?103) cm?3. The values given in the literature are Na ? (10?10?103) cm?3. The e data considered also leads to the conclusion that the generating mechanism of the W.P. studied probably always co-exists with the mechanism of their amplification.  相似文献   

13.
Spherical harmonics are the natural parameters for the Earth's gravity field as sensed by orbiting satellites, but problems of resolution arise because the spectrum of effects is narrow and unique to each orbit. Comprehensive gravity models now contain many hundreds of thousands of observations from more than thirty different near-Earth artificial satellites. With refinements in tracking systems, newer data is capable of sensing the spherical harmonics of the field experienced by these satellites to very high degree and order. For example, altimeter, laser and satellite-tracking-satellite systems contain gravitational information well above present levels of satellite gravity field recovery (l = 20), but significant aliasing results because the orbital parameters are too restricted compared to the large number of spherical harmonics.It is shown however that the unique spectrum of information for each satellite contained within a comprehensive spherical harmonic model can be represented by simple gravitational constraint equations (lumped harmonics). All such constraints are harmonic in the argument of perigee (ω) with constants determinable directly from tracking data or reconstituted from the comprehensive solution:
(C1, S1) = (Co, So) + Σi = 1 (CCi, SCi) cos i ω + (CSi, SSi) sin i ω
. The constants are simple linear combinations of the geopotential harmonics. Through these lumped harmonics any satellite gravity field can be decomposed and then uniformly extended to any degree or tailored to a given orbit without reintegration of the trajectory and variational equations. They also make possible the inclusion of information into the field from special deep resonance passages, long arc zonal analyses, and satellites unique to other models. Numerous examples of the derivation, combination, extension and tailoring of the harmonics are presented. The importance of using data spanning an apsidal period is emphasized.  相似文献   

14.
A theory is presented for charged-particle collection by a cylindrical conducting object, such as a spacecraft or an electrostatic probe, which is moving transversely through a collisionless plasma, such as those in the upper atmosphere and space. The calculation is approximate, using symmetric potential profiles which are exact for the infinite-cylinder stationary case. Theoretical current predictions are presented for ratios of collector potential to electron thermal energy c/kTe from 0 to ?25, for ion-to-electron temperature ratios Ti/Tc = 1 and 0.5, ratio of collector radius to electron Debye length rc/λD from 0 to 100, and ratio of flow speed to ion thermal speed Si = U/(2kTi/mi12) from 0 to 10. Comparisons with existing exact calculations by other authors show that none of these fulfil all of the requirements for nontrivial comparison. Appropriate parameter ranges for future exact calculations are thereby suggested. These are as follows: (a) rc/λD should be large enough that the collector not be in or near orbit-limited conditions; (b) the ratio Si2/¦χc, i¦ of ion directed energy to potential energy change in the sheath, should be close to unity or if
Si2/¦χc,i¦? 1, then Si ? 1
.  相似文献   

15.
We have collected data on 241 galaxies from 13 sources and made a statistical analysis after reduction to a uniform system. We found that the Hubble sequence is one of increasing MHMT and MHLB, these mean values increasing monotonically from .0016 and .024 at E to .084 and .83 at Im, but the dispersion is large.The HI content in barred spiral is greater than that in ordinary spirals, and this is consistent with their statistics of angular momentum and colour.The HI content is related to colour; it is greater in bluer systems. The large dispersion suggests that it also depends on some other factors, but these are smoothed out when averaged over each type, resulting in a linear relation between 〈log(MMMT and 〈(B ? VOT)〉. Unlike the colour-colour diagram, the large dispersion on the log (MHLB) ? (B ? V0T) is not related to peculiar galaxies.  相似文献   

16.
Numerical solutions of the Fokker-Planck equation governing the transport of solar protons are obtained using the Crank-Nicholson technique with the diffusion coefficient represented by Kr=K0rb where r is radial distance from the Sun and b can take on positive or negative values. As b ranges from +1 to ?3, the time to the observation of peak flux decreases by a factor of 5 for 1 MeV protons when VK0 = 3 AUb?1 where V is the solar wind speed. The time to peak flux is found to be very insensitive to assumptions concerning the solar and outer scattering boundary conditions and the presence of exponential time decay in the flux does not depend on the existence of an outer boundary. At VK0? 15 AUb?1, 1 MeV particles come from the Sun by an almost entirely convective process and suffer large adiabatic deceleration at b?0 but for b=+1, large Fermi acceleration is possible at all reasonable VK0 values. Implications of this result for the calculation and measurement of particle diffusion coefficients is discussed. At b?0, the pure diffusion approximation to transport overestimates by a factor 2 or more the time to peak flux but as b becomes more negative, the additional effects of convection and energy loss become less important.  相似文献   

17.
Previous studies based on radio scintillation measurements of the atmosphere of Venus have identified two regions of small-scale temperature fluctuations located in the vicinity of 45 and 60 km. A global study of the fluctuations near 60 km, which are consistent with wind-shear-generated turbulence, was conducted using the Pioneer Venus measurements. The structure constants of refractive index fluctuations cn2 and temperature fluctuations cT2 increase poleward, peak near 70° latitude, and decrease over the pole; cn2 varies from 2 × 10?15 to 1.5 × 10?14m23 and cT2 from 4 × 10?3 to 7 × 10?2°K2m?23. These results indicate greater turbulent activity at the higher latitudes. In the region near 45 km the refractive index fluctuations and the corresponding temperature fluctuations are substantially lower. Based on the analysis of one representative occultation measurement, cn2 = 2 × 10?16m?23and cT2 = 7.3 × 10?4°K2m?23 in the 45-km region. The fluctuations in this region also appear to be consistent with wind-shear-generated turbulence. The turbulence level is considerably weaker than that at 60 km; the energy dissipation rate ε is 4.9 × 10?5m2sec?3 and the small-scale eddy diffusion coefficient K is 2 × 103 cm2 sec?1.  相似文献   

18.
This paper presents the results of a laboratory study of the limb darkening, near opposition, of the carbonaceous chondrites Orgueil (C1), Murchison (C2), and Allende (C3), the ordinary chondrite Bruderheim (L6), and a stainless-steel powder. These materials represent possible analogs for the surface materials of C, S, and M asteroids respectively. At low phase angles, the limb-darkening behavior of all materials studied is well represented by Minnaert's law. For carbonaceous chondrites, the Minnaert limb-darkening parameter k is nearly independent of wavelength for wavelengths between 0.4 and 0.9 μm, with a typical value of k = 0.55. The reflectance parameter, B0, varies from 0.045 to 0.065 over the same range of wavelengths. Both k and B0 are larger for the stainless-steel powder and the ordinary chondrite, due to the increased importance of multiple scattering in the surface layer. If no limb darkening were present, k would equal 12 and the geometric albedo (p) of an asteroid would equal the normal reflectance (rn ? B0) of its surface material. For bodies whose surface material is appreciably limb darkened, the geometric albedo measured at the telescope will be lower than the true normal reflectance of surface material; we estimate that for S and M objects rn ? 1.05 p. In the case of nonspherical asteroids, because the distribution of incidence and emission angles varies as the asteroid rotates, the geometric albedo must change with aspect. If limb darkening is not considered when interpreting asteroid light curves, the values of b/a derived will be too extreme. This effect is probably too small to be observed for C asteroids, because of their intrinsically low reflectances, but could be appreciable for S and M objects.  相似文献   

19.
The potential ? of the electric field at high latitudes has been obtained by solving numerically the second order differential equation in spherical coordinates:
?12(rσH?θ)θ+1rH?λ)λ+1rP?λ)θ?(σP?θ)λ=1r(rψθ)θ+1r2ψλλ
, where θ is colatitude, λ is longitude, σH and σP are the height-integrated Hall and Perdersen ionospheric conductivities, r = sinθ, and ψ is the current function. The boundary condition is ? = 0 on the geomagnetic parallel θ = 34°. Values of ψ are determined from geomagnetic field variations at the Earth's surface from geomagnetic field variations at the Earth's surface for various conditions in interplanetary space. σP and σH are taken to vary with season, local time, tilt of the geomagnetic dipole axis (UT), and intensity of corpuscular precipitation (the model proposed by Wallis and Budzinski, 1981). The model distributions of ?M and EM = -▽?m so obtained are compared with observational results. The feasibility has been demonstrated of interpreting the statistical results and individual measurement data in terms of a unified dynamic model of ionospheric electric fields. The model makes allowance for the changes of electromagnetic “weather” in interplanetary space.  相似文献   

20.
R.D. Cess  S.C. Chen 《Icarus》1975,26(4):444-450
Ethane and acetylene, both of which possess more efficient emission bands than methane, have been incorporated into a thermal structure model for the atmosphere of Jupiter. Choosing for illustrative purposes the mixing ratios [C2H6][H2] = 10?5 and [C2H2][H2] = 5 × 10?7, it is found that these hydrocarbon gases lower the atmospheric temperature within the thermal inversion region by as much as 20 K, subsequently reducing the emission intensity of the 7.7 μm CH4 band below the observed result. It is qualitatively shown, however, that this cooling by C2H6 and C2H2 could be compensated by aerosol heating resulting from a uniformily mixed aerosol which absorbs 15% of the incident solar radiation. Such aerosol heating has been suggested by uv albedo observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号