首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
North China May precipitation (NCMP) accounts for a relatively small percentage of annual total precipitation in North China, but its climate variability is large and it has an important impact on the regional climate and agricultural production in North China. Based on observed and reanalysis data from 1979 to 2021, a significant relationship between NCMP and both the April Indian Ocean sea surface temperature (IOSST) and Northwest Pacific Dipole (NWPD) was found, indicating that there may be a link between them. This link, and the possible physical mechanisms by which the IOSST and NWPD in April affect NCMP anomalies, are discussed. Results show that positive (negative) IOSST and NWPD anomalies in April can enhance (weaken) the water vapor transport from the Indian Ocean and Northwest Pacific to North China by influencing the related atmospheric circulation, and thus enhance (weaken) the May precipitation in North China. Accordingly, an NCMP prediction model based on April IOSST and NWPD is established. The model can predict the annual NCMP anomalies effectively, indicating it has the potential to be applied in operational climate prediction.摘要尽管华北区域五月降水 (NCMP) 占华北区域年总降水量的比率较少, 但是其气候变率较大, 对华北区域气候和农业生产等具有重要影响. 基于观测和再分析资料, 发现NCMP与前期四月的印度洋海温 (IOSST) 和西北太平洋偶极子 (NWPD) 具有显著关系, NCMP可能受到IOSST和NWPD的协同影响. 进一步分析表明, 前期四月暖 (冷) 的IOSST和正 (负) 位相的NWPD能够分别通过调节印度洋和西北太平洋区域的局地环流增强 (减弱) 从印度洋和西北太平洋向华北区域输送的水汽, 进而增强 (减弱) NCMP. 最后基于四月IOSST和NWPD构建了NCMP异常的预测模型, 后报检验显示该模型对NCMP异常具有较好的预测能力.  相似文献   

2.
The evaluation of East Asian summer monsoon (EASM) simulations could improve our understanding of Asian monsoon dynamics and climate simulations. In this study, by using Phase 6 of the Coupled Model Intercomparison Project (CMIP6) experiments of the Atmospheric Model Intercomparison Project (AMIP) and historical runs of the Chinese Academy of Sciences (CAS) Flexible Global Ocean–Atmosphere–Land System (FGOALS-f3-L) model, the model simulation skill for the interannual variability in the EASM was determined. According to multivariate empirical orthogonal function (MV-EOF) analysis, the major mode of the EASM mainly emerged as a Pacific-Japan pattern in the western Pacific accompanied by a local anticyclonic anomaly with a total variance of 24.6%. The historical experiment could suitably reproduce this spatial pattern and attained a closer total variance than that attained by the AMIP experiment. The historical experiment could also better simulate the time frequency of the EASM variability than the AMIP experiment. However, the phase of principal component 1 (PC1) was not suitably reproduced in the historical experiment since no initialization procedure was applied at the beginning of the integration in the historical simulation process, whereas the sea surface temperature (SST) was preset in the AMIP experiment. Further analysis revealed that air–sea interactions in the Indian Ocean and tropical western Pacific were important for the model to provide satisfactory EASM simulations, while El Niño–Southern Oscillation (ENSO) simulation was possibly related to the climate variability in the EASM simulations, which should be further analyzed.摘要对东亚夏季季风(EASM)模拟的评估可以提高我们对亚洲季风动力和气候模拟的理解. 在这项研究中, 通过使用中国科学院(CAS)全球海洋-大气-陆地系统(FGOALS-f3-L)模式参加的第六次耦合模式相互比较计划(CMIP6)中的大气模式相互比较计划(AMIP)和历史(historical)试验, 明确了EASM的年际变率的模拟能力. 通过多变量经验正交函数(MV-EOF)分析发现, 观测的EASM的主导模态为西太平洋上的太平洋-日本模态, 并伴有局部反气旋异常. 主导模态的方差贡献率为24.6%. 历史(historical)试验可以基本再现这种空间模态, 其方差贡献率较AMIP试验更接近于观测. 与AMIP试验相比, 历史(historical)试验还能更好地模拟EASM变率的时间频率. 然而, 由于历史(historical)模拟没有在积分开始时应用初始化过程, 而AMIP试验受到海表面温度(SST)的约束, 因此主成分(PC1)的位相在历史(historical)试验中没有得到较好地再现. 进一步分析发现, 印度洋和西太平洋热带地区的海气相互作用对EASM的模拟非常重要, 而EASM气候变率的模拟可能与厄尔尼诺-南方涛动(ENSO)的模拟能力有关, 这值得进一步分析.  相似文献   

3.
北美偶极子(NAD)是热带北大西洋西部和北美东北部的南北向海平面气压异常偶极型模态.以往的观测研究表明,NAD可以有效地影响ENSO事件的爆发.本文利用全球耦合模式FGOALS-g2,评估了NAD与ENSO的关系.结果表明,该模式能较好地重现NAD模态.进一步的分析验证了冬季NAD可以通过强迫冬末春初副热带东北太平洋上空的反气旋和暖海温的出现,在随后的冬季触发El Ni?o事件.此外,在同化NAD实验中,发生El Ni?o事件的概率增加了将近一倍.相比之下,NAO未能在副热带东北太平洋上空引起表面风和海温的异常,因而不能有效地激发次年冬季ENSO事件.  相似文献   

4.
This study investigated the distinct responses of western North Pacific (WNP) tropical cyclone (TC) activity during different decaying El Niño summers. The El Niño events were classified into two types according to the periodicity of the ENSO cycle, with positive SST anomalies in the equatorial central-eastern Pacific maintaining positive values into the following summer as the slow decaying (SD) cases, but transforming to negative values in the following summer as the rapid decaying (RD) cases. Compared with that in SD El Niño summers, the TC occurrence frequency over the WNP is significantly lower in RD El Niño summers, led by a much weaker WNP monsoon trough with more unfavorable environmental factors for TC genesis and development. Further examination showed that the apparent warming over the tropical Indian Ocean basin and cooling over the equatorial central-eastern Pacific contribute together to an enhanced lower-tropospheric anticyclone through modulation of the descending branch of the large-scale Walker circulation over the WNP, which may play a crucial role in suppressing the TC activity during the decaying summer of RD El Niño cases. In contrast, the warming equatorial central-eastern Pacific and remote western Indian Ocean induce a weakening WNP anticyclone and less suppressed deep convection during the decaying summer of SD El Niño cases. Thus, the different evolution of SST anomalies associated with different paces of El Niño decay results in the linkage between the preceding winter El Niño and the decreased WNP TC frequency in summer being more (less) robust for RD (SD) El Niño cases.摘要本文分析了El Niño事件衰减速度的差异对衰退年夏季西北太平洋热带气旋 (tropical cyclone, TC) 频数的不同影响. 按照El Niño事件衰减速度不同, 将其划分为迅速衰减 (rapid decaying, RD) 和缓慢衰减 (slow decaying, SD) 的El Niño事件. SD (RD) El Niño事件的衰退年夏季, 赤道中东太平洋海温仍维持正异常 (衰减为负异常) . 与SD El Niño事件相比, RD El Niño事件衰退年夏季西北太平洋TC频数显著减少. 进一步的分析揭示了导致TC频数差异的大尺度环境要素, 指出热带印度洋-太平洋海温异常密切相关的西北太平洋低层反气旋异常在其中起到了关键作用.  相似文献   

5.
SST–precipitation feedback plays an important role in ENSO evolution over the tropical Pacific and thus it is critically important to realistically represent precipitation-induced feedback for accurate simulations and predictions of ENSO. Typically, in hybrid coupled modeling for ENSO predictions, statistical atmospheric models are adopted to determine linear precipitation responses to interannual SST anomalies. However, in current coupled climate models, the observed precipitation–SST relationship is not well represented. In this study, a data-driven deep learning-based U-Net model was used to construct a nonlinear response model of interannual precipitation variability to SST anomalies. It was found that the U-Net model outperformed the traditional EOF-based method in calculating the precipitation variability. Particularly over the western-central tropical Pacific, the mean-square error (MSE) of the precipitation estimates in the U-Net model was smaller than that in the EOF model. The performance of the U-Net model was further improved when additional tendency information on SST and precipitation variability was also introduced as input variables, leading to a pronounced MSE reduction over the ITCZ.摘要SST–降水反馈过程在热带太平洋ENSO演变过程中起着重要作用, 能否真实地在数值模式中表征SST–降水年际异常之间的关系及相关反馈过程, 对于准确模拟和预测ENSO至关重要. 例如, 在一些模拟ENSO的混合型耦合模式中, 通常采用大气统计模型 (如经验正交函数; EOF) 来表征降水 (海气界面淡水通量的一个重要分量) 对SST年际异常的线性响应. 然而在当前的耦合模式中, 真实观测到的降水–SST统计关系还不能被很好地再现出来, 从而引起 ENSO模拟误差和不确定性. 在本研究中, 使用基于深度学习的U-Net模型来构建热带太平洋降水异常场对SST年际异常的非线性响应模型. 研究发现: U-Net模型的性能优于传统的基于EOF方法的模型. 特别是在热带西太平洋海区, U-Net模型估算的降水误差远小于EOF模型的模拟. 此外, 当SST和降水异常的趋势信息作为输入变量也被同时引入以进一步约束模式训练时, U-Net模型的性能可以进一步提高, 如能使热带辐合带区域的误差显著降低.  相似文献   

6.
胡桂芳  高理 《气象科技》2010,38(Z1):24-28
利用1951—2009年北半球500hPa高度、北太平洋海温、环流特征量、降水等资料,采用相关分析、合成分析、经验函数正交分解(EOF)、子波分析等多种统计技术,对影响山东2009年10月降水趋势的各种因素进行分析和研究。结果表明:山东10月降水大致存在3种降水分布型;在不同时间尺度的气候背景上,2009年10月山东基本处于一个少雨或由少雨向多雨转换的气候阶段;2009年春季加利福尼亚冷流的减弱,2009年6月开始的厄尔尼诺事件及6月起西太平洋副高持续的偏强、偏西、正常或偏南状态,各种指标均指示山东10月降水偏少的可能性大,预测与实况基本吻合。  相似文献   

7.
Previous studies have demonstrated that the western Pacific subtropical high (WPSH) has experienced an eastward retreat since the late 1970s. In this study, the authors propose that this eastward retreat of the WPSH can be partly attributed to atmospheric responses to the positive phase of the Pacific decadal oscillation (PDO), based on idealized SST forcing experiments using the Community Atmosphere Model, version 4. Associated with the positive phase of the PDO, convective heating from the Indian Peninsula to the western Pacific and over the eastern tropical Pacific has increased, which has subsequently forced a Gill-type response to modulate the WPSH. The resulting cyclonic gyre over the Asian continent and the western Pacific in the lower troposphere is favorable for the eastward retreat of the WPSH. Additionally, the resulting anticyclonic gyre in the upper troposphere is favorable for the strengthening and southward expansion of the East Asian westerly jet, which can modulate the jet-related secondary meridional–vertical circulation over the western Pacific and promote the eastward retreat of the WPSH.摘要以往的研究已证实, 西太平洋副热带高压 (副高) 在1970s后期减弱东退.基于大气模式 (CAM4) 的理想型海温强迫试验, 结果表明:副高的东退可能是大气对于正位相太平洋年代际振荡 (PDO) 的相应.伴随着PDO转变为正位相, 西太平洋至印度半岛以及热带东太平洋的对流加热增强, 大气表现为Gill型响应, 在亚洲大陆至西太平洋上空低层产生气旋性异常, 有利于副高东退.同时, 高层产生反气旋异常, 使得东亚西风急流加强和向南扩展, 进而调节西太平洋上空的次级环流, 进一步有利于副高东退.  相似文献   

8.
Many coupled models are unable to accurately depict the multi-year La Niña conditions in the tropical Pacific during 2020–22, which poses a new challenge for real-time El Niño–Southern Oscillation (ENSO) predictions. Yet, the corresponding processes responsible for the multi-year coolings are still not understood well. In this paper, reanalysis products are analyzed to examine the ocean–atmosphere interactions in the tropical Pacific that have led to the evolution of sea surface temperature (SST) in the central-eastern equatorial Pacific, including the strong anomalous southeasterly winds over the southeastern tropical Pacific and the related subsurface thermal anomalies. Meanwhile, a divided temporal and spatial (TS) 3D convolution neural network (CNN) model, named TS-3DCNN, was developed to make predictions of the 2020/21 La Niña conditions; results from this novel data-driven model are compared with those from a physics-based intermediate coupled model (ICM). The prediction results made using the TS-3DCNN model for the 2020–22 La Niña indicate that this deep learning–based model can capture the two-year La Niña event to some extent, and is comparable to the IOCAS ICM; the latter dynamical model yields a successful real-time prediction of the Niño3.4 SST anomaly in late 2021 when it is initiated from early 2021. For physical interpretability, sensitivity experiments were designed and carried out to confirm the dominant roles played by the anomalous southeasterly wind and subsurface temperature fields in sustaining the second-year cooling in late 2021. As a potential approach to improving predictions for diversities of ENSO events, additional studies on effectively combining neural networks with dynamical processes and mechanisms are expected to significantly enhance the ENSO prediction capability.摘要2020–22年间热带太平洋经历了持续性多年的拉尼娜事件, 多数耦合模式都难以准确预测其演变过程, 这为厄尔尼诺-南方涛动(ENSO)的实时预测带来了很大的挑战. 同时, 目前学术界对此次持续性双拉尼娜事件的发展仍缺乏合理的物理解释, 其所涉及的物理过程和机制有待于进一步分析. 本研究利用再分析数据产品分析了热带东南太平洋东南风异常及其引起的次表层海温异常在此次热带太平洋海表温度(SST)异常演变中的作用, 并构建了一个时空分离(Time-Space)的三维(3D)卷积神经网络模型(TS-3DCNN)对此次双拉尼娜事件进行实时预测和过程分析. 通过将TS-3DCNN与中国科学院海洋研究所(IOCAS)中等复杂程度海气耦合模式(IOCAS ICM)的预测结果对比, 表明TS-3DCNN模型对2020–22年双重拉尼娜现象的预测能力与IOCAS ICM相当, 二者均能够从2021年初的初始场开始较好地预测2021年末 El Niño3.4区SST的演变. 此外, 基于TS-3DCNN和IOCAS ICM的敏感性试验也验证了赤道外风场异常和次表层海温异常在2021年末赤道中东太平洋海表二次变冷过程中的关键作用. 未来将神经网络与动力 模式模式间的有效结合, 进一步发展神经网络与物理过程相结合的混合建模是进一步提高ENSO事件预测能力的有效途径.  相似文献   

9.
The mei-yu season (June–July) rainfall over the mei-yu monitoring domain (MMD) in the Yangtze–Huaihe Basin has shown an increasing trend in recent decades. This study examines the dominant factors responsible for this increasing trend for the period 1979–2020 based on station-observed rainfall and ERA5 reanalysis datasets from the perspective of changes in atmospheric circulation. Although significantly increasing trends exist in the mei-yu season rainfall over the entire MMD, the magnitude of the trends is slightly larger over the eastern MMD (EMMD) than over the western MMD (WMMD). Quantitative diagnoses demonstrate that the relative contributions of anomalous evaporation and moisture advection to the increasing rainfall trend are different between the EMMD and WMMD. The increasing rainfall trend over the WMMD (EMMD) is attributable to increased evaporation (enhanced vertical moisture advection), which is dependent on an anomalous cyclonic circulation in the middle-lower troposphere over the MMD. Such an anomalous cyclone on the northwestern side of the climatological western North Pacific subtropical high facilitates an increase in moisture divergence above 600 hPa over the EMMD, leading to enhanced vertical moisture advection in conjunction with strengthened moisture convergence at 850 hPa. By contrast, the anomalous cyclone favors increasing local evaporation over the WMMD.摘要近几十年来, 江淮流域梅雨监测区 (MMD) 的梅雨期 (6–7月) 降水呈增加趋势. 本文基于1979–2020年台站观测降水资料和ERA5再分析数据, 从大气环流变异的角度揭示了这种长期增加趋势的主要影响因素. 发现在MMD范围内, 梅雨期降水趋势的增幅东部大于西部. 水汽收支定量诊断表明, 异常的蒸发和水汽平流对MMD西部和东部降水增加趋势的相对贡献是不同的. MMD西部 (东部) 的降水趋势主要归咎于增强的局地蒸发 (增强的垂直水汽平流) , 后者又取决于MMD对流层中, 低层的异常气旋环流. 这种位于气候平均的西太平洋副热带高压西北侧的异常气旋有助于MMD东部600 hPa以上的水汽辐散增加, 伴随加强的850 hPa水汽辐合, 从而导致垂直水汽平流的增强. 相反, 该异常气旋则有利于增强MMD西部的局地蒸发.  相似文献   

10.
China has implemented a series of emission reduction policies since 2013, and the concentration of air pollutants has consequently decreased significantly. However, PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 µm) pollution still occurs in China in relation to the interannual variations in meteorological conditions. Considering that El Niño–Southern Oscillation (ENSO) is the strongest signal modulating the interannual variation in the atmosphere–ocean system, in this study the authors investigate the variations in PM2.5 concentrations in four megacity clusters of China during the winter season associated with four individual ENSO events from 2014 to 2021. Results show that the wintertime PM2.5 concentrations in the Beijing–Tianjin–Hebei and Fenwei Plain regions during El Niño years are higher than those during La Niña years, which can be explained by the anomalous southerly (northerly) winds during El Niño (La Niña) favoring PM2.5 accumulation (diffusion). In the Pearl River Delta region, PM2.5 concentrations decrease in El Niño relative to La Niña years owing to the enhanced water vapor flux and precipitation, removing more PM2.5 from the atmosphere. The comprehensive effects of wind and precipitation anomalies lead to the unpredictability of the impacts of ENSO on PM2.5 over the Yangtze River Delta region, which should be analyzed case by case.摘要2013年以来中国实施了一系列减排政策, 大气污染物浓度明显下降, 但由于气象条件的年际变化, 中国PM2.5 (空气动力学直径小于2.5 µm的颗粒物) 污染仍然存在. 厄尔尼诺–南方涛动 (ENSO) 是调节大气–海洋系统年际变化的最强信号. 本文研究了2014–2021年四次ENSO事件期间, 中国四个特大城市群冬季PM2.5浓度的变化. 结果表明, 在京津冀和汾渭平原地区, 由于厄尔尼诺 (拉尼娜) 期间的偏南风 (偏北风) 异常有利于 PM2.5 的积累 (扩散), 冬季PM2.5浓度在厄尔尼诺年高于拉尼娜年. 在珠三角地区, 由于厄尔尼诺冬季水汽通量和降水的增加有利于大气中PM2.5的湿清除, 冬季PM2.5浓度在厄尔尼诺年低于拉尼娜年. 在环流和降水异常的综合作用下, ENSO对长三角地区PM2.5浓度的影响难以预测, 应逐案分析.  相似文献   

11.
本文通过对1979-2017年夏季925 hPa经向风异常进行经验正交函数(EOF)分解,研究了亚澳季风区内越赤道气流的年际变化特征.结果表明,越赤道气流的第一模态表现为亚澳季风区内不同通道间的同相变化,即一致加强或减弱;第二模态表现为孟加拉湾和澳大利亚越赤道气流的反相变化,其中新几内亚和孟加拉湾越赤道气流的反相变化最...  相似文献   

12.
The relationship between North Atlantic tropical cyclone (TC) peak intensity and subsurface ocean temperature is investigated in this study using atmospheric and ocean reanalysis data. It is found that the peak intensity of basin-wide strong TCs (Categories 4 and 5) is positively correlated with subsurface ocean temperature in the extratropical North Atlantic. A possible physical mechanism is that subsurface ocean temperature in the extratropical North Atlantic can affect local sea surface temperature (SST); on the other hand, the moisture generated by the warming SST in the extratropical North Atlantic is transported to the main region of TC development in the tropics by a near-surface anticyclonic atmospheric circulation over the tropical North Atlantic, affecting TC peak intensity. Moreover, coastal upwelling off Northwest Africa and southern Europe can affect subsurface ocean temperature in the extratropical North Atlantic. Therefore, the peak intensity of strong TCs is also found to be directly correlated with the water temperature in these two upwelling regions on an interdecadal timescale.摘要利用大气与海洋再分析数据等相关资料, 本项研究发现, 北大西洋强台风 (Saffir–Simpson分类中的第4和第5类) 的最大强度与亚热带北大西洋的次表层海温呈正相关. 由于亚热带北大西洋的次表层海温会影响当地的海表温度, 该地区海面产生的水汽通过近地面的反气旋大气环流可被输送到位于热带的台风主要发展区域, 进而影响台风的最大强度. 与此同时, 位于西非北部和南欧的近岸涌升流会影响亚热带北大西洋的次表层海温. 因此, 强台风的最大强度也被发现与上述两个涌升流区域的海温具有相关性, 但是这种相关性主要体现在年代际时间尺度上.  相似文献   

13.
This paper assesses the interannual variabilities of simulated sea surface salinity (SSS) and freshwater flux (FWF) in the tropical Pacific from phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6). The authors focus on comparing the simulated SSS and FWF responses to El Niño–Southern Oscillation (ENSO) from two generations of models developed by the same group. The results show that CMIP5 and CMIP6 models can perform well in simulating the spatial distributions of the SSS and FWF responses associated with ENSO, as well as their relationship. It is found that most CMIP6 models have improved in simulating the geographical distribution of the SSS and FWF interannual variability in the tropical Pacific compared to CMIP5 models. In particular, CMIP6 models have corrected the underestimation of the spatial relationship of the FWF and SSS variability with ENSO in the central-western Pacific. In addition, CMIP6 models outperform CMIP5 models in simulating the FWF interannual variability (spatial distribution and intensity) in the tropical Pacific. However, as a whole, CMIP6 models do not show improved skill scores for SSS interannual variability, which is due to their overestimation of the intensity in some models. Large uncertainties exist in simulating the interannual variability of SSS among CMIP5 and CMIP6 models and some improvements with respect to physical processes are needed.摘要通过比较CMIP5和CMIP6来自同一个单位两代模式模拟, 表明CMIP5和CMIP6均能较好地模拟出热带太平洋的海表盐度 (SSS) 和淡水通量 (FWF) 对ENSO响应的分布及其响应间的关系. 与CMIP5模式相比, 大部份CMIP6模式模拟的SSS和FWF年际变化分布均呈现改进, 特别是纠正了较低的中西太平洋SSS和FWF变化的空间关系. 但是, 整体上, CMIP6模式模拟的SSS年际变化技巧没有提高, 与SSS年际变率的强度被高估有关. CMIP5和CMIP6模式模拟SSS的年际变化还存在较大的不确定性, 在物理方面需要改进.  相似文献   

14.
Southeast China has comparable stratus cloud to that over the oceans, especially in the cold seasons (winter and spring), and this cloud has a substantial impact on energy and hydrological cycles. However, uncertainties remain across datasets and simulation results about the long-term trend in low-cloud cover in Southeast China, making it difficult to understand climate change and related physical processes. In this study, multiple datasets and numerical simulations were applied to show that low-cloud cover in Southeast China has gone through two stages since 1980—specifically, a decline and then a rise, with the turning point around 2008. The regional moisture transport plays a crucial role in low-cloud cover changes in the cold seasons and is mainly affected by the Hadley Cell in winter and the Walker Circulation in spring, respectively. The moisture transport was not well simulated in CMIP6 climate models, leading to poor simulation of the low-cloud cover trend in these models. This study provides insights into further understanding the regional climate changes in Southeast China.摘要中国东南地区在冬春冷季节盛行低云, 对局地能量平衡和水文循环有重要的作用. 本研究使用多套数据和数值模拟结果, 分析这一地区冷季节内低云云量在1980年至2017年的长期变化. 结果表明, 低云云量经历了先下降后上升的趋势变化, 转折点出现在2008年左右. 局地水汽通量输送在影响低云云量的变化中起着至关重要的作用, 其在冬季和春季分别受到哈德莱环流和沃克环流的影响. CMIP6中的气候模式对水汽通量输送的模拟能力欠佳, 影响了对低云云量的模拟结果.  相似文献   

15.
With its rapid rise in temperatures and accelerated urbanization in recent decades, eastern China may be affected by both global warming and the urban heat island effect. To investigate the influence of anthropogenic forcing and urbanization on extreme temperature, the authors conducted detection and attribution analyses on 16 extreme indices using extended observational data during 1958–2020 and the models that participated in CMIP5 and CMIP6. The extended observational data till 2020 show continued warming in extreme temperatures in recent years. Most of the indices display an increase in warm extremes and decrease in cold extremes. Both CMIP5 and CMIP6 models are able to reflect these warming features, albeit the models can over- or underestimate some extreme indices. The two-signal detection with anthropogenic and urbanization effects jointly considered showed that the anthropogenic and urban signals can be simultaneously detected and separated only in two frequency indices, i.e., the frequency of warm and cold nights. The anthropogenic forcing explains about two-thirds of the warming, while URB contributes about one-third for these two indices. For most of the other indices, only the anthropogenic signal can be detected. This indicates that the urban signal is distinct from the natural variability mainly for the nighttime frequency indices but not for the other extreme temperature indies. Given the important influence of nighttime extremes on human health, this suggests an urgent need for cities to adapt to both global warming and urbanization.摘要作为中国经济最发达的地区, 中国东部受到城市热岛效应和温室气体排放等人类活动的明显影响. 本文利用最新的观测和全球气候模式资料, 对极端温度强度, 频率和持续时间等16个极端温度指数进行了检测归因分析, 研究了人为强迫和城市化效应对中国东部极端温度变化的影响. 结果表明, 近年来极端温度持续增暖, 极端暖事件增加, 极端冷事件减少. 新一代全球气候模式能够合理地反映这些变暖特征, 但是部分模式可能高估或低估了观测到的变化. 基于最优指纹方法的双信号检测表明, 人为信号和城市化效应只能在暖夜和冷夜两个频率指标上同时被检测并分离, 其变化约三分之二可归因于人类活动, 剩余的三分之一可归因于城市化效应. 而在极端温度其他指数的变化中, 只有人类活动的影响能够被检测到.  相似文献   

16.
This study investigates the variability of annual tropical cyclone (TC) frequency and intensity over six major ocean basins from 1980 to 2021. Statistical change-point and trend analyses were performed on the TC time series to detect significant decadal variation in TC activities. In the middle of the last decade of the 20th century, the frequency of TC genesis in the North Atlantic basin (NA) and North Indian Ocean (NIO) increased dramatically. In contrast, the frequency in the western North Pacific (WNP) decreased significantly at the end of the century. The other three basins—the East Pacific, southern Indian, and South Pacific—all experienced a declining trend in annual TC frequency. Over recent decades, the average TC intensity has decreased in the East Pacific and the NA, whereas it has risen in the other ocean basins. Specifically, from 2013 to 2021, the average peak TC intensity in the NIO has enhanced significantly. The magnitude of the Genesis Potential Index exhibits fluctuation that is consistent with large-scale parameters in the NIO, NA, and WNP, emphasizing the enhancing and declining trends in TCs. In addition, a trend and correlation analysis of the averaged large-scale characteristics with TCs revealed significant associations between the vertical wind shear and TC frequency over the NIO, NA, and WNP. Therefore, global TC trends and decadal variations associated with environmental parameters deserve further investigation in the future, mainly linked to the significant climate modes.摘要研究发现在1980–2021期间全球6个海域每年热带气旋的发生频次和强度具有显著年代际变化规律, 最近几十年, 北大西洋和北印度洋的热带气旋发生频次明显增加, 但西北太平洋的热带气旋却显著下降. 另外三个海域, 东太平洋, 南印度洋和南太平洋发现所生成的热带气旋有减少趋势. 但在过去十几年, 平均热带气旋的强度除了在东太平洋和北大西洋有所减弱但在其他几个海域有所加强, 特别是在 2013–2021期间, 北印度洋的平均热带气旋的强度增强明显. 热带气旋的潜在生成指数 (GPI) 增加或减少趋势变化与北印度洋, 北大西洋和西太平洋热带气旋变化相关的大尺度环流一致. 另外, 北印度洋, 北大西洋和西太平洋上空的垂直风切变是影响其区域热带气旋发生频次变化的主要因子, 不同的气候模态也可能对全球热带气旋的趋势变化和年代际变化有影响, 值得进一步研究.  相似文献   

17.
Based on reanalysis data from 1979 to 2016, this study focuses on the sea surface temperature (SST) anomaly of the tropical North Atlantic (TNA) in El Niño decaying years. The TNA SST exhibits a clear warm trend during this period. The composite result for 10 El Niño events shows that the TNA SST anomaly reaches its maximum in spring after the peak of an El Niño event and persists until summer. In general, the anomaly is associated with three factors—namely, El Niño, the North Atlantic Oscillation (NAO), and a long-term trend, leading to an increase in local SST up to 0.4°C, 0.3°C, and 0.35°C, respectively. A comparison between 1983 and 2005 indicates that the TNA SST in spring is affected by El Niño, as well as the local SST in the preceding winter, which may involve a long-term trend signal. In addition, the lead–lag correlation shows that the NAO leads the TNA SST by 2–3 months. By comparing two years with an opposite phase of the NAO in winter (i.e., 1992 and 2010), the authors further demonstrate that the NAO is another important factor in regulating the TNA SST anomaly. A negative phase of the NAO in winter will reinforce the El Niño forcing substantially, and vise versa. In other words, the TNA SST anomaly in the decaying years is more evident if the NAO is negative with El Niño. Therefore, the combined effects of El Niño and the NAO must be considered in order to fully understand the TNA SST variability along with a long-term trend.摘要基于1979年到2016年多种再分析资料, 本文分析了El Niño衰减年热带北大西洋的海温异常. 结果表明, 热带北大西洋海温在此期间呈显著变暖趋势. 10次El Niño事件的合成结果表明热带北大西洋海温异常在El Niño事件峰值之后的春季达到最大值, 并持续到夏季. 一般而言, 这种异常与三个因子有关, 即El Niño, 北大西洋涛动和长期趋势, 能分别导致局地海温上升0.4°C, 0.3°C和0.35°C. 1983年和2005年的对比分析表明, 尽管El Niño强度对春季北大西洋海温起到决定性作用, 与长期趋势密切相关的前冬海温也很重要. 此外, 超前-滞后相关结果表明北大西洋涛动超前海温约2–3个月. 比较两个冬季相反位相北大西洋涛动的年份 (即1992年和2010年) , 表明北大西洋涛动也能调制北大西洋海温异常. 冬季负位相北大西洋涛动能显著增强El Niño的强迫影响, 反之亦然. 换言之, 如果北大西洋涛动与El Niño位相相合, 衰减年北大西洋海温异常才更为显著. 因此, 为全面理解热带北大西洋海温变化, 除长期趋势外, 还必须考虑El Niño和北大西洋涛动的综合影响.  相似文献   

18.
Land–atmosphere interaction, as one of the key processes affecting the atmosphere and climate over East Asia, has drawn increasing attention during the past few decades. However, the current level of understanding regarding the mechanisms through which land surface processes impact the East Asian climate needs to be improved. Based on existing studies, six key regions where land surface processes affect the East Asian climate are proposed in this study, which can provide a valuable reference for future research into land–atmosphere interaction in East Asia.摘要陆气相互作用是影响东亚大气环流和气候的一个关键过程, 受到了越来越多的关注. 然而, 关于陆面过程影响东亚气候的相关机理的理解还有待提升. 在已有研究基础上, 提出了陆面过程影响东亚气候研究值得关注的青藏高原, 欧亚中高纬地区, 中国东部季风区, 中南半岛, 中亚中纬度区域, 西亚等6个关键区, 期待为加强陆面过程与东亚气候研究提供一定参考.  相似文献   

19.
China has been frequently affected by severe snowstorms in recent years that have particularly large economic and human impacts. It is thus of great importance to increase our understanding of the underlying mechanisms of and future changes in snowfall occurrences over China. In this study, the effects of anthropogenic influences on snowfall and the associated future changes are explored using new simulations from CMIP6 (phase 6 of the Coupled Model Intercomparison Project) models. Observational evidence reveals a decrease in the annual total snowfall days and an increase in intense snowfall days over the snowfall-dominated regions in China during recent decades. Fingerprints of anthropogenic influences on these changes are detectable, especially the impacts of increased greenhouse gas emissions. During the winter seasons, low temperatures still cover the regions of northern China, and the associated precipitation days show an increase due to anthropogenic warming, which substantially benefits the occurrence of snowfall over these regions, particularly for intense snowfall events. This is also true in the future, despite rapid warming being projected. By the end of this century, approximately 23% of grids centered over northern China are projected to still experience an increase in daily intense snowfall events in winters. Additionally, the length of the snowfall season is projected to narrow by nearly 41 days compared to the current climate. Thus, in the future, regions of China, especially northern China, are likely to experience more intense snowfall days over a more concentrated period of time during the winter seasons.摘要近年来, 中国部分地区频繁遭遇极端降雪事件袭击, 造成巨大经济损失和人员伤亡. 因此, 亟需深入理解中国地区极端降雪变化的物理机制及其未来演变趋势, 为国家防灾减灾及气候变化应对措施制定提供科学依据. 本文基于CMIP6模式结果, 深入开展人类活动对中国地区降雪变化的影响及其未来演变趋势预估研究. 观测显示, 过去几十年在中国降雪频发区, 其年降雪日数呈现减少趋势但强降雪日数增加; 在这些变化中能够检测到人类活动的痕迹, 尤其是温室气体排放的影响. 对于冬季, 全球变暖背景下中国北方地区降水日数明显增加, 但北方地区仍为低温控制, 这有利于降雪尤其是强降雪事件的发生; 到了本世纪末, 中国仍有约23%的区域 (主要集中在北方地区) 其冬季强降雪日数呈现增加趋势. 此外, 中国地区降雪季长度相比当前气候减少了约41天. 因此, 在未来持续变暖背景下, 中国北方部分地区冬季将经历更多更为集中的强降雪事件.  相似文献   

20.
To better understand the relationship between anticyclones in Siberia and cold-air activities and temperature changes in East Asia, this study proposes a 2D anticyclone identification method based on a deep-learning model, Mask R-CNN, which can reliably detect the changes in the morphological characteristics of anticyclones. Using the new method, the authors identified the southeastward-extending Siberian cold high (SEESCH), which greatly affects wintertime temperatures in China. This type of cold high is one of the main synoptic systems (45.7%) emerging from Siberia in winter. Cold air carried by SEESCH has a significant negative correlation with the temperature changes in the downstream area, and 52% of SEESCHs are accompanied by cold-air accumulation in North and East China, which has a significant impact on regional cooling. These results provide clues for studying the interconnection between SEESCHs and extreme cold events.摘要为了更好地研究西伯利亚地区反气旋与冷空气活动,东亚地区气温变化之间的关联, 本文提出一种基于Mask R-CNN的反气旋识别方法, 能够较为准确地刻画反气旋形态特征变化. 使用该方法能够识别对中国冬季气温具有较大影响的东南延伸型西伯利亚冷高压(SEESCH), 这种冷高压是冬季出现在西伯利亚地区的主要天气系统之一(45.7%). SEESCH携带的冷空气与下游地区温度变化呈显著负相关, 52%的SEESCH伴随着华北华东地区冷空气聚集, 对区域降温有显著影响. 这些结果为研究 SEESCH 与极端寒冷事件之间的联系提供线索.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号