首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
目前琼东南盆地北礁凹陷中中新统梅山组顶部丘形反射引起广泛关注,但对其成因有不同认识。本文通过高精度二维、三维地震、钻井资料,研究丘形反射的特征。研究表明北礁地区梅山组顶部发育近东西向展布的长条形丘体,丘间为水道,丘内为中-弱振幅的地震反射,与西南部强振幅水道砂岩形成鲜明的对比,波阻抗反演揭示丘内为低波阻抗,属泥岩范畴。梅山组塑性丘内地层发生重力扩展,在其上覆的脆性地层(强振幅砂岩和弱振幅泥岩)发育多边形断层,反推出梅山组形成于深水环境,丘为泥丘,沉积环境分析也认为北礁凹陷中中新世为半深海沉积,梅山组的丘-谷分别对应上覆地层的谷-丘,认为是底流剥蚀/沉积成因。本文的研究对南海北部丘形反射的认识有重要意义,并可降低油气探勘风险。  相似文献   

2.
等深流影响的水道沉积体系的沉积特征及其沉积过程是当前深水沉积学研究的热点、难点和前沿科学问题,但研究程度较为薄弱。该文以北礁凹陷上新统(地震反射T20?T30)为研究对象,利用覆盖北礁凹陷局部的三维地震资料,采用均方根属性、相干属性、时间域构造,再结合地震切片等方法,研究北礁凹陷深水区上新统斜交斜坡(走向)的特殊水道沉积体系特征及其沉积过程。研究发现,该水道沉积体系分为早、晚两期,早期发育水道和片状、扇状溢堤沉积,晚期仅发育水道和片状溢堤沉积,其中扇状溢堤沉积仅发育在水道右侧弯曲处,片状溢堤沉积仅分布在水道左侧,水道始终与区域斜坡斜交,水道对称分布且无明显迁移现象。结合该时期北礁凸起发育等深流相关的丘状漂积体和环槽,认为该水道沉积体系特殊的形态主要受控于等深流与浊流交互作用的沉积结果:浊流流经水道,其上覆浊流溢出水道,形成溢岸浊流,在水道左侧,该溢岸浊流与等深流发生相向运动,被等深流“吹拂”到单侧,大面积分布,延伸千米,形成片状溢堤沉积;而在水道弯曲处(右侧),溢岸浊流与等深流发生相对运动,抑制溢岸浊流进一步扩展,形成相对小范围扇状溢堤沉积,该沉积结果与前人水槽实验结果相一致。  相似文献   

3.
琼东南盆地北礁凹陷梅山组顶部丘形反射特征及成因分析   总被引:4,自引:3,他引:1  
南海琼东南盆地北礁凹陷中中新统梅山组顶部丘形反射目前引起广泛关注,前人推测为生物礁、重力蠕动与底流叠加成因、等深积丘等。本文通过钻井资料、二维、三维地震资料精细刻画丘形反射(残丘)和丘间水道特征及其成因。残丘及水道在北礁凸起不发育,在边缘斜坡中部和高地较发育,且有向高地两边规模减小趋势,不具对称性,残丘和水道呈平行-亚平行近E-W向展布,局部有合并分叉现象,与北礁凸起走向呈一小角度;丘宽562~1 223 m,丘高29~87 m,丘长10 km左右,存在丘翼削蚀,水道底蚀现象。地震属性分析表明三维工区西南部残丘间水道由砂泥岩互层充填,形成长条形强振幅,而残丘为中-低振幅;地震、钻井资料分析表明丘形反射(残丘)由钙质泥岩和泥岩组成,属于半深海沉积,且残丘内部波阻抗为5.0×106~6.5×106kg/m3·m/s,低于火山岩、灰岩波阻抗,属于砂泥岩地层范畴;根据梅山组下段水道由西向东强振幅变弱、分叉、前积反射和海山附近底流(等深流)沉积剥蚀特征综合判定底流古流向自西向东,根据海山两翼地震反射特征推测底流可追溯至晚中新世早期(11.6 Ma BP),综合分析认为,研究区中中新统梅山组丘形反射是晚中新世早期底流切割梅山组地层形成的残丘。  相似文献   

4.
西洼沙河街组沉积位于渤海湾盆地沙南凹陷,从Es3m到Es1,沙南凹陷经历四期裂陷幕,其间发育的不整合面T5使区域古地貌隆升,形成四期的三级层序变化旋回,并在西洼东—西向中央断裂带的控制下形成南、北物源和北部断裂坡折。双向物源和断裂坡折控制沙河街组沉积,形成多类型沉积,其中Es3m以半深湖—深湖、富泥质的湖底扇为特征,形成弱水动力沉积环境;Es3u以半深湖—深湖、富砂质的湖底扇和火山岩为特征,形成局部动荡的水动力沉积环境;Es12沉积较薄,形成独具特色的多样式、多类型沉积,包括半深湖—深湖、扇三角洲前缘、前缘斜坡扇、滑塌体、湖底扇及火山岩沉积,以及牵引流与重力流并存,以重力流为沉积主导。层段内的沉积序列及演化特征决定该区域形成南、北物源控制的4种成因砂体,南物源的晚期成砂机制,包括扇三角洲前缘砂、前缘斜坡扇砂,北物源的中晚期成砂机制,包括滑塌体砂和湖底扇砂。因此,西洼区域勘探以寻找岩性圈闭、构造—岩性圈闭为主,断裂与砂体的空间匹配关系决定了圈闭的有效性。  相似文献   

5.
利用高分辨率地震资料,研究了南海北部白云凹陷中新世以来的陆坡峡谷沉积和迁移特征及其对动态似海底反射(BSR)的影响。白云凹陷陆坡区浊流和底流共同作用形成了大型单向迁移峡谷沉积体系。峡谷的沉积过程包括侵蚀为主阶段、侵蚀-沉积共同作用阶段及沉积为主阶段。峡谷沉积相主要包括峡谷侵蚀基底、谷底沉积、谷内滑塌块体搬运沉积及侧向倾斜沉积层等4个单元。峡谷的迁移造成含天然气水合物脊部两侧不同的侵蚀-沉积环境,因此,脊部两侧BSR反射特征也不同。随着峡谷迁移的进行,在峡谷侵蚀侧翼处,沉积物被侵蚀,天然气水合物稳定带底界将发生下移,BSR反射特征为多轴较连续反射;而峡谷沉积侧翼处,沉积物增厚,天然气水合物稳定带将发生上移,BSR反射特征为单轴连续反射。  相似文献   

6.
以频率、连续性、振幅、几何形态为划分依据,将海中凹陷流三段划分为6类地震相。通过区域沉积背景研究,分析其可能发育的沉积相类型,并根据其自身的地震反射特征和浅层有井层段沉积相分析,进行了地震相到沉积相的转化。海中凹陷流三段发育的沉积相类型主要有辫状河-冲积平原、滨浅湖、辫状河三角洲、近岸水下扇和半深湖。研究的意义在于证实了海中凹陷流三段储集层发育,同时推测凹陷深处发育的半深湖和大面积分布的浅湖可能发育大套湖相烃源岩。  相似文献   

7.
鄂尔多斯盆地西南缘奥陶系深水牵引流沉积   总被引:4,自引:0,他引:4  
深水牵引流沉积是沉积学中的一个重要研究领域,包括内潮汐、内波沉积和等深流沉积两大类,主要发育于海洋深水区。深水牵引流沉积的研究起步较晚,目前主要集中于现代深海沉积和野外露头研究,对深埋地下的古代深水牵引流沉积发现较少,其所具有的油气潜能还不被人们所认识。本文论述了鄂尔多斯盆地西南缘奥陶系内潮汐沉积、等深流沉积的特征和沉积类型。内潮汐沉积是在研究区首次发现,以灰色中一细砂岩为主,部分为粗粉砂岩,单层厚十余厘米至数十厘米,砂岩以普遍发育双向交错纹理为特征。等深岩丘主要由3种碳酸盐等深岩组成,即砂屑等深岩、粉屑等深岩和灰泥等深岩,共发育有4种层序样式。最后,阐明了其油气勘探意义,并分析了其潜在的油气勘探价值。  相似文献   

8.
利用地震资料及地质、钻井资料,对沧东凹陷沙河街组地震反射剖面进行了地震界面及地震层序划分,对其反射特征进行了较详细的描述。在进行地震相及沉积相划分和分析的基础上,对各层序的沉积特征进行了分析,这为该地区沉积盆地的油气生储盖特征提供了基础资料[1]。  相似文献   

9.
北礁凹陷作为琼东南盆地南部深水区的一个典型半地堑凹陷,层序地层具有明显的膝折变形特征,几何学分析显示出伸展断层转折褶皱模型特点。经过对凹陷内部构造变形的测量和推算,本文确定了北礁凹陷断层转折褶皱的构造几何学特征及其运动学过程,揭示了凹陷主要裂谷阶段的水平伸展量,其总的伸展量可达到12 km,平均伸展速率约为0.44 km/Ma。通过构造几何学方法推测始新世末期该区域海平面上升了约200 m。并运用伸展断层转折褶皱理论,按照平衡剖面原理,正演了北礁凹陷及北礁低隆起的伸展构造发育过程。  相似文献   

10.
琼东南盆地北礁凹陷梅山组单向迁移水道特征及成因探讨   总被引:2,自引:1,他引:1  
李俞锋 《海洋学报》2019,41(1):72-86
深水区重力流与底流交互作用的过程、响应及动力学机制是海洋沉积学研究的前沿和薄弱环节。本文通过三维地震资料,在深水区北礁凹陷南西部梅山组发现多条相间分布的长条形顺直强振幅水道,垂直于西沙隆起(南部隆起)北斜坡走向,向南西方向单向迁移,水道具有南西陡(凹岸或陡岸)北东缓(凸岸或缓岸)的特征,该类水道分为侵蚀界面和水道砂-堤岸泥过渡复合体系两个单元,侵蚀界面在凹岸的削截反射明显多于凸岸,水道砂-堤岸泥过渡复合体振幅强度由凹岸强振幅逐渐过渡为凸岸弱振幅。分析认为,该类水道发育于中中新世半深海环境,不同于向底流下游方向单向迁移的峡谷,它们向底流上游方向发生单向迁移,并提出其成因模式:前期来自南部的浊流下切形成负向地貌单元(水道),底流对这一地貌单元进行改造,形成迎流面缓(凸岸)背流面陡(凹岸)的地貌,同时驱使浊流上部顺底流方向偏移,形成溢岸浊流沉积,致凹岸沉积速率低,凸岸沉积速率高,这样就迫使水道逆底流方向偏移。沉积物源、中层水相关底流、古气候和海平面的变化、北礁凸起古地形控制是该区单向迁移强振幅水道发育的因素。本研究在南海首次发现这种向底流上游方向单向迁移的水道,是底流与重力流交互作用的新型类型,对古海洋、古气候研究,深水油气勘探有着重要的意义,希望引起地质学家的重视。  相似文献   

11.
Numerous elongated mounds and channels were found at the top of the middle Miocene strata using 2D/3D seismic data in the Liwan Sag of Zhujiang River Mouth Basin(ZRMB) and the Beijiao Sag of Qiongdongnan Basin(QDNB). They occur at intervals and are rarely revealed by drilling wells in the deepwater areas. Origins of the mounds and channels are controversial and poorly understood. Based on an integrated analysis of the seismic attribute, palaeotectonics and palaeogeography, and drilling well encountering a mound, research results show that these mounds are dominantly distributed on the depression centres and/or slopes of the Liwan and Beijiao sags and developed in a bathyal sedimentary environment. In the Liwan and Beijiao sags, the mounds between channels(sub) parallel to one another are 1.0–1.5 km and 1.5–2.0 km wide, 150–300 m and 150–200 m high, and extend straightly from west to east for 5–15 km and 8–20 km, respectively. Mounds and channels in the Liwan Sag are parallel with the regional slope. Mounds and channels in the Beijiao Sag, however, are at a small angle to the regional slope. According to internal geometry, texture and external morphology of mounds, the mounds in Beijiao Sag are divided into weak amplitude parallel reflections(mound type I), blank or chaotic reflections(mound type II), and internal mounded reflections(mound type Ⅲ). The mounds in Liwan Sag, however, have the sole type, i.e., mound type I. Mound type I originates from the incision of bottom currents and/or gravity flows. Mound type II results from gravity-driven sediments such as turbidite. Mound type Ⅲ is a result of deposition and incision of bottom currents simultaneously. The channels with high amplitude between mounds in the Beijiao and Liwan sags are a result of gravity-flow sediments and it is suggested they are filled by sandstone.Whereas channels with low-mediate amplitudes are filled by bottom-current sediments only in the Beijiao Sag,where they are dominantly composed of mudstone. This study provides new insights into the origins of the mounds and channels worldwide.  相似文献   

12.
The westernmost Algerian margin (south Algero-Provençal basin) depicts a few offshore active faults, moderate to rare seismicity, and generally very steep slopes (>16°). We classified and mapped 12 echo types according to their sub-bottom acoustic facies observed on this margin on 2–5.2 kHz Chirp echo-sounder data (MARADJA 2003 cruise). The echo-character maps are interpreted in terms of sedimentary processes: the B1 echo type (parallel to subparallel high- to low-amplitude sub-bottom reflections), mainly in the deep basin, corresponds to hemipelagic sedimentation; R1 (prolonged single echo with no sub-bottoms) and R2 (small irregular overlapping hyperbolae) echo types, generally near or in canyon systems, are associated with turbidity currents or more rarely to contour currents or mass-transport deposits such as slumps, slides and debris flows; the transparent echo types (T1–T5) and R3 (chaotic lens of low-amplitude reflections on top of higher amplitude), often located at the foot of the slope or canyons walls, typically indicate mass-transport deposits (like slides) or turbidites. Large zones that display a large variety of echo types are evidenced in the study area and are generally associated with turbidity currents, but could also be associated with bottom currents. It appears that active tectonics plays a significant role in this part of the margin which presents a few active faults offshore but also a strong and relatively frequent seismicity onland. The general pattern of the distribution of mass-transport deposits is particular – i.e. many but small slides all along the margin – and suggests a probable triggering by recurrent earthquake shakings. However, active tectonics is not the only factor influencing the deposition pattern, as some zones seem characterized by predominant strong turbidity currents transporting sediments far away from the foot of the margin, whereas others depict retrogressive erosion features on the slope, i.e. small slides scarps in gullies rather than transport by turbidity currents. In particular, the rivers sediment discharge fluxes and the geomorphologic characteristics of the margin seem to be very important factors too.  相似文献   

13.
Longshore Currents over Barred Beach with Mild Slope   总被引:1,自引:0,他引:1  
王彦  邹志利 《海洋工程》2016,(2):193-204
The laboratory experiment and numerical simulations of wave-driven longshore currents by random waves on barred beaches with slopes of 1:100 and 1:40 were conducted to investigate the bimodal feature of mean longshore currents, with emphasis on the location and ratio of two peaks of longshore currents. The location and ratio of two peaks are controlled by the sand bar. The influences of wave heights and beach slopes on the longshore currents are discussed. Numerical simulations were also performed to compute the measured velocity profile, with the emphasis on the effect of lateral mixing, bottom friction and surface rollers on numerical results.  相似文献   

14.
The numerical analysis of the stationary field of current velocity on the upper boundary of the bottom boundary layer in the Barents Sea is performed on the basis of a simplified model taking into account the fields of wind velocity and density of water for the principal periods of the seasonal cycle and the bottom topography. The analysis is based on the climatic BarKode database and the data on the wind velocity over the Barents Sea for the last 50 yr. The numerical results demonstrate that the field of bottom currents is fairly nonuniform and the current velocities vary from several fractions of 1 cm/sec to 5 cm/sec in the zones with noticeable slopes of the bottom. The estimates of the thickness of the bottom boundary layer are obtained for the constant coefficient of bottom friction C f = 0.04. In the major part of the water area of the Barents Sea, the thickness of the bottom boundary layer is close to 1 m. In the regions with significant slopes of the bottom, it increases to 2–2.5 m and, in the two zones of intensification of the bottom currents, becomes as large as 5 m. The maximum estimate of the coefficient of turbulent viscosity is close to 5 cm2/sec. The mean value of the coefficient of vertical density diffusion K S is equal to 2.34 cm2/sec and its standard deviation is equal to 1.52 cm2/sec. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 4, pp. 31–49, September–October, 2007.  相似文献   

15.
《Journal of Sea Research》1999,41(1-2):19-33
Electron microprobe analysis of suspended-matter samples collected at different water depths at ten stations in the Angola Basin indicated that at each station, from top to bottom, the elementary composition of the suspended matter was very similar and differed from the composition of the suspended matter at the adjacent stations. This indicates that the downward settling of the suspended matter is much faster than the horizontal transport and mixing by the currents. Assuming that the suspended matter settles in the form of flocs, or is scavenged by settling flocs, the suspended matter can indeed reach the bottom in a shorter period than needed for the currents to cover the distance between adjacent stations. Comparison with sediment trap data from the literature shows that also lateral transports and/or deep water gyres have to be invoked to further increase residence times of suspended matter in the water column.  相似文献   

16.
The Upper Cretaceous Chalk Group of the Anglo-Paris Basin is known to show wedging beds and channel-like features which disrupt the quietly deposited pelagic chalk that covered most of NW Europe in the Late Cretaceous. Two-D reflection seismic data from the Brie region, SE of Paris, show the presence of at least two distinct intra-chalk discordant reflections: a Top Santonian and a Mid-Campanian reflection. These reflections are in places associated with up to 120-m-deep channel-like structures trending preferentially N–S and NW–SE. The Mid-Campanian reflection is also sporadically associated with a massive secondary dolomite layer, the thicknesses of which may reach 110 m. Diagenesis does not seem to account for the formation of the discordant reflections, as there is neither a one-to-one relationship between the dolomite and discordant reflections, nor are there signs of systematic collapse of the Cenozoic succession over the channel-like features as a result of intra-chalk dissolution. Both reflections correlate with indurated chalk layers and hardgrounds, and represent real unconformities. The Mid-Campanian reflection is furthermore associated with a stratigraphic hiatus. A submarine origin is suggested due to the uninterrupted deep-marine chalk facies below and above both unconformities, and the unrealistically large sea-level drop of more than 200 m, which would be necessary for subaerial exposure of the central Paris Basin during the Campanian. The channels are oriented parallel to the margins of the basin, and important bathymetric elements which could induce erosion by slope failure are not observed. The channels are thus interpreted as having formed by strong, mainly slope-parallel bottom currents. Major channeling events are common in the Chalk Group throughout NW Europe and represent palaeoceanographic re-organization of bottom currents, probably driven by changes in sea level and water temperature.  相似文献   

17.
Extended Boussinesq equations for rapidly varying topography   总被引:1,自引:0,他引:1  
We developed a new Boussinesq-type model which extends the equations of Madsen and Sørensen [1992. A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly varying bathymetry. Coastal Engineering 18, 183-204.] by including both bottom curvature and squared bottom slope terms. Numerical experiments were conducted for wave reflection from the Booij's [1983. A note on the accuracy of the mild-slope equation. Coastal Engineering 7, 191-203] planar slope with different wave frequencies using several types of Boussinesq equations. Madsen and Sørensen's model results are accurate in the whole slopes in shallow waters, but inaccurate in intermediate water depths. Nwogu's [1993. Alternative form of Boussinesq equation for nearshore wave propagation. Journal of Waterway, Port, Coastal and Ocean Engineering 119, 618-638] model results are accurate up to 1:1 (V:H) slope, but significantly inaccurate for steep slopes. The present model results are accurate up to the slope of 1:1, but somewhat inaccurate for very steep slopes. Further, numerical experiments were conducted for wave reflections from a ripple patch and also a Gaussian-shaped trench. For the two cases, the results of Nwogu's model and the present model are accurate, because these models include the bottom curvature term which is important for the cases. However, Madsen and Sørensen's model results are inaccurate, because this model neglects the bottom curvature term.  相似文献   

18.
McIntosh  K.  Akbar  F.  Calderon  C.  Stoffa  P.  Operto  S.  Christeson  G.  Nakamura  Y.  Shipley  T.  Flueh  E.  Stavenhagen  A.  Leandro  G. 《Marine Geophysical Researches》2000,21(5):451-474
In March and April 1995 a cooperative German, Costa Rican, and United States research team recorded onshore-offshore seismic data sets along the Pacific margin of Costa Rica using the R/V Ewing. Off the Nicoya Peninsula we used a linear array of ocean bottom seismometers and hydrophones (OBS/H) with onshore seismometers extending across much of the isthmus. In the central area we deployed an OBS/H areal array consisting of 30 instruments over a 9 km by 35-km area and had land stations on the Nicoya Peninsula adjacent to this marine array and also extending northeast on the main Costa Rican landmass. Our goal in these experiments was to determine the crustal velocity structure along different portions of this convergent margin and to use the dense instrument deployments to create migrated reflection images of the plate boundary zone and the subducting Cocos Plate. Our specific goal in the central area was to determine whether a subducted seamount is present at the location of the 1990, M 7 earthquake off the Nicoya Peninsula and can thus be linked to its nucleation. Subsequently we have processed the data to improve reflection signals, used the data to calculate crustal velocity models, and developed several wide-aperture migration techniques, based on a Kirchhoff algorithm, to produce reflection images. Along the northern transect we used the ocean bottom data to construct a detailed crustal velocity model, but reflections from the plate boundary and top and bottom of the subducting Cocos plate are difficult to identify and have so far produced poor images. In contrast, the land stations along this same transect recorded clear reflections from the top of the subducting plate or plate boundary, within the seismogenic zone, and we have constructed a clear image from this reflector beneath the Nicoya shelf. Data from the 3-D seismic experiment suffer from high-amplitude, coherent noise (arrivals other than reflections), and we have tried many techniques to enhance the signal to noise ratio of reflected arrivals. Due to the noise, an apparent lack of strong reflections from the plate boundary zone, and probable structural complexity, the resulting 3-D images only poorly resolve the top of the subducting Cocos Plate. The images are not able to provide compelling evidence of whether there is a subducting seamount at the 1990 earthquake hypocenter. Our results do show that OBS surveys are capable of creating images of the plate boundary zone and the subducting plate well into the seismogenic zone if coherent reflections are recorded at 1.8 km instrument spacing (2-D) and 5 km inline by 1 km crossline spacing for 3-D acquisition. However, due to typical high amplitude coherent noise, imaging results may be poorer than expected, especially in unfavorable geologic settings such as our 3-D survey area. More effective noise reduction in acquisition, possibly with the use of vertical hydrophone arrays, and in processing, with advanced multiple removal and possibly depth filtering, is required to achieve the desired detailed images of the seismogenic plate boundary zone.  相似文献   

19.
基于天津港主航道连续观测点31 d的实测海流资料,利用调和分析对主航道潮流和余流特征进行研究,同时结合同步风速资料研究风对表层余流的影响。结果表明:(1)航道附近属于弱流海区,表层平均流速为31.4 cm/s,流速总体上由表至底逐渐减小,流速方向大致集中在NW—SE向。(2)观测海域潮流以正规半日往复潮占主导,优势分潮为M2,浅水分潮较为显著,涨潮流流速大于落潮流流速。(3)观测期间表层平均余流流速为2.8~13.8 cm/s,随着深度增加余流流速逐渐减小,方向大多为NW向。该站表层余流受风的影响显著,东南风将使余流方向偏向西北。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号