首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We describe an imaging telescope for observations of celestial sources in the energy range between 30 keV and 1.8 MeV onboard stratospheric balloons. The detector is a 41 cm diameter, 5 cm thick NaI(Tl) crystal coupled to 19 photomultipliers in an Anger camera configuration. It is surrounded by a plastic scintillator 15 cm thick on the sides, 0.2 cm thick at the top and 20 cm thick at the bottom. The imaging device is based upon a 19 × 19 element square MURA (Modified Uniformly Redundant Array) coded mask mounted in an one-piece mask-antimask configuration. The detector's spatial resolution is about 10 mm at 100 keV. This is the first experiment to use such a mask pattern and configuration for astrophysical purposes. The expected 3 sensitivity for an on-axis source observed for 104 s at a residual atmosphere of 3.5 g cm–2 is 1.44 × 10–5 photons cm–2 s–1 keV–1 at 100 keV and 1.00 × 10–6 photons cm–2 s–1 keV–1 at 1 MeV. The angular resolution is approximately 14 arcminutes over a 13°field of view. The instrument is mounted in an automatic platform with a capability for pointing and stabilization in both azimuth and elevation axis with 2 arcmin accuracy.Presented at the 2nd UN/ESA Workshop, held in Bogotá, Colombia, 9-13 November, 1992.  相似文献   

2.
Soft X-rays (0.2–1.0 keV) have been detected from the high galactic latitude source MX 2140-60 in a rocket experiment. The measured flux of 10–10 erg cm–2 s–1 combined with OSO-7 measurements in 2–40 keV X-rays, are best fit by a power law photon spectrum with spectral index 2.3 and a neutral hydrogen column densityN H=(3–7) 1020 atoms cm–2. The observations support the source identification with the cluster of galaxies SC 2146-594, as suggested by Lugger.  相似文献   

3.
Cosmic X-rays in the energy range between 0.210 keV were observed with polypropylene window proportional counters on board a sounding rocket. The field of view crossed the galactic plane in the Sgr region and reached galactic latitudes of 50° and –90°. A new soft X-ray source was found in the Aries-Taurus region. The soft X-ray flux from the direction of NGC 1275 was conspicuous, whereas that of Sgr region source were very weak. The distribution of the intensity of diffuse soft X-rays over the scanned region indicates the galactic emission of soft X-rays.  相似文献   

4.
Cosmic soft X-rays in the energy range between 0.14 and 7 keV were observed with thin polypropylene window proportional counters on board a sounding rocket. The field of view crossed the galactic plane in the Cygnus-Cassiopeia region at a large angle and reached the galactic latitudes of –55° and +30°. Referring also to the result with Be window counters, we obtained the energy spectrum of Cyg XR-2, the flux from the Cas A region and the distribution of the intensity of diffuse X-rays over the scanned region. The turn-over of the Cyg XR-2 spectrum at about 1 keV indicates that the distance of the Cyg XR-2 source lies between 600 and 800 pc, if the turn-over is due entirely to interstellar absorption. The flux from the Cas A region is obtained as 0.23±0.05 photons cm–2 sec–1 in the energy range between 1.1 and 4.1 keV. The intensity of diffuse soft X-rays depends on the galactic latitude more weakly than expected from the interstellar absorption of extragalactic X-rays and shows asymmetry with respect to the galactic equator, thus suggesting a contribution of galactic X-rays. The spectrum of extragalactic X-rays is approximately represented by a power lawE –1.8.  相似文献   

5.
It is shown that compact designs of multifocus, conical approximations to highly nested Wolter I telescopes, as well as single reflection concentrators, employing realistic graded period W/Si or Ni/C multilayer coatings, allow one to obtain more than 1000 cm2 of on-axis effective area at 40 keV and up to 200 cm2 at 100 keV. The degree of concentration is defined by a focusing factor i.e., the effective area divided by the half power focal area. For the cases studied, this is 400 at 40 keV and 200 at 100 keV for a 2 arcmin imaging resolution. This result is quite insensitive to the specifics of the telescope configuration provided that mirrors can be coated to an inner radius of 3 cm. Specifically we find that a change of focal length from 5 to 12 m affects the effective area by less than 10%. In addition the result is insensitive to the thickness of the individual mirror shell provided that it is smaller than roughly 1 mm. The design can be realized with foils as thin (0.4 mm) as used for ASCA and SODART or with closed, slightly thicker (1.0 mm) mirror shells as used for JET-X and XMM. The effect of an increase of the inner radius is quantified on the effective area for multilayered mirrors up to 9 cm. The calculated Field of View (full width at half maximum), ranges from 9 arcmin at 1 keV to 5 arcmin at 60 keV. Finally, the continuum sensitivity of the design assuming a signal to noise ratio of 5 and a 10% energy bandwidth has been calculated. For a balloon flight observation of 104 sec. with a telescope having 2 arcmin imaging resolution the point source sensitivity is 3 · 10–6 photons/cm2/s/keV up to 70 keV for a W/Si coated telescope and up to 100 keV for a Ni/C coated telescope. For a satellite observation time of 105 sec and an imaging resolution of 1 arcmin the sensitivity is 10–7 photons/cm2/s/keV which demonstrates the great potential of this hard X-ray imaging telescope in the energy range up to 100 keV.  相似文献   

6.
Simultaneous X-ray images in hard (20–40 keV) and softer (6.5–15 keV) energy ranges were obtained with the hard X-ray telescope aboard the Hinotori spacecraft of an impulsive solar X-ray burst associated with a flare near the solar west limb.The burst was composed of an impulsive component with a hard spectrum and a thermal component with a peak temperature of 2.8 × 107 K. For about one minute, the impulsive component was predominant even in the softer energy range.The hard X-ray image for the impulsive component is an extended single source elongated along the solar limb, rather steady and extends from the two-ribbon H flare up to 104 km above the limb. The centroid of this source image is located about 10 (7 × 103 km) ± 5 above the neutral line. The corresponding image observed at the softer X-rays is compact and located near the centroid of the hard X-ray image.The source for the thermal component observed in the later phase at the softer X-rays is a compact single source, and it shows a gradual rising motion towards the later phase.  相似文献   

7.
InFOCμS is a new generation balloon-borne hard X-ray telescope with focusing optics and spectroscopy. We had a successful 22.5-hour flight from Fort Sumner, NM on September 16,17, 2004. In this paper, we present the performance of the hard X-ray telescope, which consists of a depth-graded platinum/carbon multilayer mirror and a CdZnTe detector. The telescope has an effective area of 49 cm2 at 30 keV, an angular resolution of 2.4 arcmin (HPD), and a field of view of 11 arcmin (FWHM) depending on energies. The CdZnTe detector is configured with a 12 × 12 segmented array of detector pixels. The pixels are 2 mm square, and are placed on 2.1 mm centers. An averaged energy resolution is 4.4 keV at 60 keV and its standard deviation is 0.36 keV over 128 pixels. The detector is surrounded by a 3-cm thick CsI anti coincidence shield to reduce background from particles and photons not incident along the mirror focal direction. The inflight background is 2.9 × 10−4 cts cm−2 sec−1 keV−1 in the 20–50 keV band.  相似文献   

8.
The results of observations of 49 objects from the second Byurakan spectroscopic sky survey are given; they complete the recent spectroscopy of galactic samples in the fields centered on the coordinates = 09h47m, = +51° and = 09h50m, = +55°. The spectra were obtained on the 2.6-m telescope of the Byurakan Astrophysical Observatory, National Academy of Sciences of the Republic of Armenia, and the 6-m telescope of the Special Astrophysical Observatory, Russian Academy of Sciences, during 1998-2000. Redshifts and absolute stellar magnitudes were determined for all the galaxies.  相似文献   

9.
10.
The spectral and temporal measurements in the hard X-ray region between 20-200 keV not only determines the extended behaviour of thermal X-ray spectrum below 10 keV but also provide a unique insight into the non-thermal processes in relativistic astrophysical plasma. From our present understanding of the X-ray sources, a significant fluxin the 20-200 keV band is expected from a variety of astrophysical phenomena, however, the available spectral data on the galactic and extragalactic X-ray source is very limited. This is mainly due to the fact that sensitivity of the detector systems used for earlier measurements was relatively poor. Since 1997, we have been carrying out a programme of hard X-ray observations galactic and extragalactic sources, in the 20-200 keV energy band using a highly sensitive balloon borne experiment. The X-ray telescope consists of three modules of large area scintillation counters specially configured in the back-to-back geometry and have a combined sensitivity of ∼ 10-6 ph cm-2 s-1 keV-1 for an on-source observations of 3 hrs. A total of 30 hours of ceiling data above an altitude of 3 mbar has been collected in 4 successful balloon flights from Hyderabad, India. Almost a dozen galactic and extragalactic X-ray sources were targeted and tracked during these observations. A positive detection was made in each case and in some cases the observed spectra extended right up to 150 keV. A brief account of the observed spectral and temporal features on some of the sources along with accurate measurement of diffuse background spectrum and a weak gamma ray burst will be presented in the paper. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Two flights from Alice Springs, Australia, were achieved in November 1977 and November 1978 with a plastic scintillator -burst detector, effective area 6.3 m2, thickness 5 cm, energy response in the range 50 keV to 2 MeV. In 33 hr of good, high altitude data, two bursts were detected, yielding a rate corrected to an isotropic flux of at a size of 8.5×10–9 erg cm–2. One event, seen at 22.14 on 15 Nov 1978, was confirmed by spacecraft measurements. The second, too small to be detected by spacecraft, arrived from 0 hr RA, –13.2° Decl. ±12° and possibly comes from a confirmed -burst source location. A galactic origin with a source distribution originating from a relatively thick disk, is favoured by these results.  相似文献   

12.
The 25-meter radio telescope of the Netherlands Foundation for Research in Astronomy in Dwingeloo has been engaged full-time during the past 5 years in a survey of galactic 21-cm emission from the entire sky accessible from the Netherlands. The new material provides coverage of the sky at -30° on a 0°.5 grid sampled with a 35 main beam, over a velocity range of 1000 km s–1 at 1 km s–1 resolution, to a limiting brightness-temperature sensitivity typically better than 0.07 K. The data have been corrected for stray radiation entering both the near and far sidelobes of the antenna.  相似文献   

13.
An impulsive burst of 100–400 keV solar X-rays associated with a small solar flare was observed on October 10, 1970 with a large area scintillator aboard a balloon floating at an altitude of 4.2 g cm-2 above the Earth's surface. The X-ray burst was also observed simultaneously in 10–80 keV range by the OGO-5 satellite and in 8–20 Å range by the SOLRAD-9 satellite. The impulsive X-ray emission reached its maximum at 1643 UT at which time the differential photon spectrum in 20–80 keV range was of the form 2.3 × 104 E -3.2 photons cm-2 s-1 keV-1 at 1 AU. The event is attributed to a H-subflare located approximately at S13, E88 on the solar disc. The spectral characteristics of this event are examined in the light of the earlier X-ray observations of small solar flares.  相似文献   

14.
The 805 sec pulsing X-ray source H2252-035 has been observed for 7 h on September 14/15 and on September 17, 1983 in X-rays with the low energy telescope and the medium energy detectors of EXOSAT. While below 2 keV the semiamplitude of the 805 s pulses is 100% in the 2.3–7.9 keV band it is only 40%. X-ray dips that are more pronounced in low energies occur simultaneously with the orbital minimum of the optical light curve. The medium energy spectra during dips with respect to the non dip spectrum can be explained by just enhanced cold gas absorption of an additional absorbing column of 2 1022 cm–2. Model spectra for the 805 s minimum have to include a strong iron emission line at 6.55 keV with an equivalent width of 3 keV in addition to a reduced continuum intensity (radiating area) and enhanced low energy absorption.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986.  相似文献   

15.
We present calibration results and laboratory images produced by the balloon-borne hard X-ray imaging telescope TIMAX. The images were produced with an241Am radioactive source placed 45 m away from the detector plane, in the center of the field of view. It is shown that the mask 3-antimask imaging reconstruction process, when combined with flat-fielding techniques, is very effective at recovering signal-to-noise ratio lost due to systematic non-uniformity in the background measured by the 35 detectors. The experiment was launched in June 8th, 1993 from Birigüi, SP, Brazil, onboard a 186,000 m3 stratospheric balloon, and remained at an atmospheric depth of 2 g cm–2su for 8 hours. Even though no scientific data were gathered in this first flight, we obtained valuable engineering data and could also calculate the sensitivity of the experiment based on the instrumental background spectrum at balloon altitudes. In the 60–70 keV energy band, the experiment can detect 3 sources at a level of 1.2 x 10–4 photons cm–2 s–1 keV–1 for an integration of 6 hours at 2.1 g cm–2.  相似文献   

16.
We have evaluated several solid state detectors which offer excellent energy resolution at room temperature for soft X-rays. For soft X-rays (< 1 keV to 20 keV), silicon P-intrinsic-N (PIN) and avalanche-mode photodiodes (APD's) have been studied. Using commercially available charge sensitive pre-amplifiers, these photodiodes provide 1 keV resolution without cooling. Their detection efficiencies are limited to about 20 keV and 15 keV, respectively. To overcome this constraint, we have studied thick (1.5 mm) PIN detectors made by Micron Semiconductor Ltd., U.K., as well as compound semiconducting materials with high Z constituents such as CZT and PbI2. PbI2 allows high detection efficiencies of photons up to 100 keV with detectors 100–300 microns thick. These new detectors offer the capability to study the low-energy spectral evolution of Gamma ray bursts (GRBs). A matrix of these detectors could be used as an image plane detector with moderate spatial resolution for imaging.  相似文献   

17.
Soft X-rays (0.1–0.8 keV) from the region including the Oph dark cloud were observed with the SAS-3 low-energy X-ray telescope. No X-ray absorption by the cloud was observed. This indicates that the diffuse component of soft X-rays in this region is mostly from the foreground of the Oph cloud which is located at a distance of 160–200 pc.  相似文献   

18.
The X-Ray Spectroscopic Explorer (XRASE) has a unique combination of features that will make it possible to address many of NASA's scientific goals. These include how galaxy clusters form, the physics and chemistry of the ISM, the heating of stellar coronae, the amount and content of intergalactic baryonic matter, the mass of black holes and the formation of disks and jets in AGN and galactic binaries. XRASE has a thin foil, multilayered telescope with a large collecting area up to 10 keV, especially in the Fe K region (1100 cm2). Its microcalorimeter array combines high energy resolution (7 eV at 6 keV) and efficiency with a field-of-view of 26 arcmin2 . A deep orbit allows for long, continuous observations. Monitoring instruments in the optical (WOM-X), UV (TAUVEX) and hard X-RAY (GRAM) bands will offer exceptional opportunities to make simultaneous multi-wavelength observations.  相似文献   

19.
SIXE (Spanish Italian X-ray Experiment) is an X-ray detector withgeometric area of 2300 cm2, formed by four identical gas-filledMulticell Proportional Counters, and devoted to study the long termspectroscopy of selected X-ray sources in the energy range 3–50 keV. Themain characteristics of SIXE are: time accuracy of 1 microsecond,spectral resolution of 5% for E > 35 keV and 46/E% for E <35 keV, continuum sensitivity (3 in 105 s) of 2 ×10-6 ph cm-2 s-1 keV-1, and line sensitivity (3in 105 s) of 8 × 10-6 ph cm-2 s-1. The size of theinstruments and the requirements of the payload (weight 103 kg, fulldimensions 660 × 660 × 450 mm3, power budget < 60 W,on-board memory 2 Gbits, telemetry rate < 100 kbps) make this experimentfully compatible with the MINISAT platform.The main scientific goal of SIXE is the study of short and long termvariability of some of the most important X-ray sources. To do that a fewselected extragalactic and galactic X-ray sources will be selected toperform a dedicated and extensive monitoring program. The mission willprovide in this way the unique opportunity for the study of X-ray sourceswith a temporal accuracy of 1 microsecond all through the time range10-5 :107 s.  相似文献   

20.
We present the spectral analysis system for the second-generation energetic X-ray imaging telescope experiment (EXITE2) balloon payload. EXITE2 is an imaging hard X-ray telescope using a coded-aperture mask and a NaI/CsI phoswich detector operating in the energy range 20–600 keV. The instrument was flown on a high-altitude scientific balloon from Ft. Sumner, NM on 7–8 May, 1997. We describe the details of the EXITE2 spectral analysis system, with emphasis on those aspects peculiar to coded-aperture instruments. In particular, we have made our analysis compatible with the standard X-ray spectral fitting package by generating a response matrix in the appropriate format including all the effects of a coded-aperture system. The use of , which may be a first for coded-aperture data, permits great flexibility in the fitting of spectral models. The additional effects of our phoswich system, or any other detector-specific considerations, may be easily included as well. We test our spectral analysis using observations of the Crab Nebula, and find that the EXITE2 Crab spectrum is consistent with those recorded by previous instruments operating in this energy range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号