首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study is to estimate and compare suction stress between sand and silt sampled from the coast of Korea. The water content and matric suction of sand (Joomunjin) and silt (Saemangeum) were first examined using an automated soil–water characteristic curve (SWCC) apparatus based on the axis translation technique. SWCCs were then estimated from the test results using the van Genuchten (1980) model. At equal matric suction, the corresponding water content of silt was higher than that of sand. Moreover, the saturated water content and air-entry value (AEV) of silt were larger than those of sand. Using the fitting SWCC parameters, suction stress characteristic curves (SSCCs) were estimated according to the method proposed by Lu and Likos (2006). The SSCC behavior for sand and silt was different and significantly depended on the material properties, particularly pore size and pore size distribution. For sand, the suction stress exhibited rapid variation with changes in matric suction, but for silt, the suction stress approached a constant value as the matric suction increased. In addition, when the matric suction was smaller than the AEV of soil, the suction stress was equal to the magnitude of the matric suction. In contrast, when the matric suction exceeded the AEV of soil, suction stress had a nonlinear shape with respect to the matric suction.  相似文献   

2.
Soil–water characteristics are necessary for water quality monitoring, solute migration and plant growth. Soil–water characteristic curve (SWCC) is a relationship between suction and water content or degree of saturation. However, little information is available concerning the impacts of grazing exclusion management on soil–water characteristics. Here, the soil–water characteristics of grasslands, which were excluded grazing for 5 (GE5) and 15 years (GE15), were studied. The saturated hydraulic conductivity (K s), SWCC, particle composition, field capacity and some other indexes were determined. Results showed that the clay content and K s of grassland soil were higher for GE15 than GE5. For both treatments, in low suction condition (≤100 kPa), the water holding capacity of 0–10 cm soil was the best. Water holding capacity of topsoil decreased gradually with the increasing of suction, and it reached the strongest when the suction reached 600 kPa. In all soil water suction, the water holding capacity of subsoil was the weakest. The van Genuchten expression was applicable for most of the samples, except 20–30 cm of GE5 and 10–20 cm of GE15. Dual porosity equation was applicable for all the samples. The soil–water capability and soil structure of which was fenced for 15 years is superior to that of 5 years. This study suggests that the enclosure management improved the soil structure and soil–water capability.  相似文献   

3.
Soil water retention curve (SWRC) is an important parameter required for seepage modelling in unsaturated soil and is used for analysing rainfall-induced slope failures, design of waste contaminant liners and cover, etc. The influence of stress, which is one of constitutive variables that governs unsaturated soil behaviour on the SWRC, has been well recognised by researchers. Stress is essential for study as it drastically alters the soil fabric which includes macropores, minipores and micropores and thus affects the ability of soil to retain water. Various computational modelling techniques that formulate models based on existing databases such as UNSODA, ISRIC and HYPRES for the estimation of SWRC do not take into account the stress influence on soil behaviour. In the present work, three artificial intelligence (AI) methods of support vector regression, artificial neural network and multi-gene genetic programming (MGGP) have been applied to formulate the mathematical relationship between the water content and input variables such as stress and suction (i.e. stress-dependent soil water characteristic curves (SDSWRCs)). The results indicate that the MGGP model outperforms the other two models and is able to extrapolate the water content values satisfactorily along the stress value of 800 kPa. This MGGP model can then be deployed by experts for the estimation of SDSWRCs, thus eliminating the need for conducting costly and time-consuming experiments.  相似文献   

4.
土体渗透性参数的测定是解决与水有关的岩土工程问题的关键所在。为使现场原状土体饱和渗透系数的测定更为准确,通过一种易于安装和固定的防蒸发型双环入渗仪,研究黄土的入渗规律与特点,试验结果表明:黄土的入渗分区可分为饱和区、湿润区与干土区,其中饱和区的入渗深度约占总入渗深度的1/2,而湿润区土体的饱和度在70%以上,这一特征与Green-Ampt入渗模型的假设较为接近,但在应用基于Green-Ampt模型的规范法(SL237-042-1999)求取黄土的饱和渗透系数时,发现该法会高估黄土的饱和渗透系数。因此,结合Green-Ampt入渗模型与土水特征曲线主要增湿路径的特点,提出了能合理测定现场黄土饱和渗透系数的双环入渗法,对Green-Ampt入渗模型参数加以修正,即直接采用干土区的初始基质吸力水头值,且该值由张力计实测或由主要增湿曲线求得;需采用入渗试验前期的平均入渗率;所对应的湿润锋发展深度需经由水分传感器实测而得。研究结果表明该法能合理估算现场黄土的饱和渗透系数。  相似文献   

5.
This study aims to determine and to model the relationship of matric suction versus water content, known as soil?Cwater characteristic curve (SWCC), for a tropical soil profile at the southeastern Brazil. This soil profile consists of a colluvial, lateritic silty clay, with thickness of about 6.5?m. The filter paper and pressure plate techniques were used to determine the SWCC. Specimens were trimmed from the undisturbed soil samples collected along soil profile depth and submitted to drying paths. Impregnated thin-layer plates and a petrographic microscope were used to examine the structure and mineralogical composition of the soil samples. Mercury intrusion porosimetry tests were performed on some soil samples to obtain the frequency histogram of the pores. SWCC with bimodal pore-size distribution were obtained by the filter paper technique and SWCC with unimodal pore-size distribution were obtained by the pressure plate technique. The SWCC showed values of air-entry ranging from 1 to 3?kPa, depending on the technique used, resembling soils with macroporosity, as the lateritic soils. Combining both techniques, the SWCC could be fitted by a model that takes into consideration soils with macro and microporosity.  相似文献   

6.
残余含水率在非饱和土渗流理论、强度理论等方面都是重要的参数,然而土-水特征曲线(SWCC)试验测量时一般难以达到残余阶段,常常通过经验法(包括模型拟合法)估算残余含水率,方法的适用性值得论证。以武汉黏性土为研究对象,制备不同初始孔隙比试样,利用压力板仪测量SWCC,通过模型拟合的方法计算残余含水率;进行自然状态下水分蒸发试验,根据失水速率定义了临残时间,依据临残时间确定残余含水率;利用核磁共振技术研究微观孔隙分布特性,解释控制残余含水率大小的微观规律。研究结果表明:模型拟合的方法可估算残余含水率,但准确性与模型选择及残余含水率初步范围的限定直接相关;水分蒸发试验是确定残余含水率有效可行的直接方法;武汉黏性土微观孔隙呈三峰分布,残余含水率与第1峰之前的微观孔隙水分紧密相关,依据弛豫时间小于0.267 38 ms的T2谱面积可较为准确地预测残余含水率,对于其他土体该方法需要进一步论证与完善。  相似文献   

7.
An analytical solution to 1D coupled water infiltration and deformation in layered soils is derived using a Laplace transformation. Coupling between seepage and deformation, and initial conditions defined by arbitrary continuous pore‐water pressure distributions are considered. The analytical solutions describe the transient pore‐water pressure distributions during 1D, vertical infiltration toward the water table through two‐layer unsaturated soils. The nonlinear coupled formulations are first linearized and transformed into a form that is solvable using a Laplace transformation. The solutions provide a reliable means of comparing the accuracy of various numerical methods. Parameters considered in the coupled analysis include the saturated permeability (ks), desaturation coefficient (α), and saturated volumetric water content (θs) of each soil layer, and antecedent and subsequent rainfall infiltration rates. The analytical solution demonstrates that the coupling of seepage and deformation plays an important role in water infiltration in layered unsaturated soils. A smaller value of α or a smaller absolute value of the elastic modulus of the soil with respect to a change in soil suction (H) for layered unsaturated soils means more marked coupling effect. A smaller absolute value of H of the upper layer soil also tends to cause more marked coupling effect. A large difference between the saturated coefficients of permeability for the top and bottom soil layers leads to reduced rainfall infiltration into the deep soil layer. The initial conditions also play a significant role in the pore‐water pressure redistribution and coupling effect. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
利用压力板仪装置开展不同竖向应力、不同干湿循环次数和不同类型原状土(残积黏性土和残积砂质黏性土)的SWCC曲线试验研究, 比较和分析未考虑体积变化和考虑体积变化的土体SWCC滞回圈面积以及进气值和出气值的变化规律。研究结果表明传统方法获取的SWCC曲线会高估土体抵御变形的能力, 试验条件变化引起土体内部结构调整是SWCC曲线发生变化的内在原因; 高应力水平条件下, 土体孔隙变化显著, 导致吸湿过程SWCC变化明显, 吸湿和脱湿路径时SWCC形状的不平等变化促使彼此间更为接近, 这种变化会减小SWCC滞后性随有效应力水平的变化。最后, 根据试验数据对3类SWCC修正公式进行拟合优度分析, 结合模型参数的简洁性, 得出修正VG模型最符合闽东南地区原状残积土的SWCC建模。研究成果可为残积土边坡的工程特性及治理提供有意义的参考。  相似文献   

9.
基于土水特征曲线对工程性质的重要性,利用SDSWCC压力板仪和GDS饱和-非饱和应力路径三轴试验系统,详细研究了不同干密度、干湿循环次数和净平均应力对辽西风积土土水特征曲线的影响,并采用常用的3种模型,使用数学方法对所测数据进行拟合。试验结果表明,低基质吸力阶段,干密度、干湿循环和应力作用对风积土土水特征曲线影响显著:干密度更大时,土体内部孔隙率降低,饱和含水率降低,进气值升高,持水性能更好;干湿循环作用下,随着循环次数的增加,饱和含水率增高,失水速率变大,进气值降低,持水性能减弱,但3次干湿循环后趋于稳定;应力作用下土体发生收缩变形,密度变大,其产生的影响规律与干密度相似。高基质吸力阶段,三者的影响均很小。曲线拟合分析表明,Van Genuchten模型的拟合精度最高,能够更好地描述和预测辽西风积土的土水特征曲线。研究结果揭示了辽西风积土力学、工程性质与其它地域土体的一致规律,以及风积土自身独有的特性,为广泛开展的风积土路基、桥基等工程提供了判定风积土性质的参考和依据。  相似文献   

10.
The leachate levels in the landfills in southern China are generally high. Field monitoring was carried out in the Suzhou landfill to investigate the leachate mound. The saturated hydraulic conductivity and soil–water characteristic curve (SWCC) of municipal solid waste were measured using samples taken from different depths of the landfill. Field monitoring reveals that a perched leachate mound and a substantial main leachate mound existed in the landfill. The saturated hydraulic conductivities of wastes in shallow, middle and deep depth were measured to be 4.81 × 10?2, 3.50 × 10?3 and 3.56 × 10?4 cm/s, respectively. The results of SWCC tests show that the SWCC curve was steep when matric suction was low, and the shallower the waste the steeper would be the curve. In addition to the field and laboratory tests, an unsaturated–saturated seepage analysis was conducted to simulate the development of the high leachate mound and to calculate the annual leachate production. The simulated volumetric water content in the unsaturated zone was about 40 %, which agreed well with the test result. The calculated leachate mound was consistent with the field measurement. The calculated annual and daily leachate productions were all more reasonable than the results of the HELP model.  相似文献   

11.
利用介质粒度分布间接获取水土特征曲线(SWCC)是一种快速、经济的方法。由于该方法的传统模型(HP模型和MV模型)忽略了薄膜水,获得的SWCC在低含水率段存在显著误差。提出了一种考虑介质表面薄膜水的含水率估算方法,与HP模型和MV模型的吸力计算方法结合预测SWCC,选用土壤水力性质数据库UNSODA的17种土壤样品对两种修正模型的预测效果进行了验证。结果表明,采用薄膜水修正后的HP模型和MV模型可以显著改善传统模型中SWCC低含水率段含水率的低估,并能有效地预测砂土等粗粒介质的SWCC。另外,含水率估算中引入参数β后,修正的MV模型也可用于壤土和黏土等细粒介质的SWCC的预测。  相似文献   

12.
碎块石土由于块石含量较高,块石粒径较大,其水力学参数的确定具有一定困难。首先,采用双套环法对三峡库区泄滩滑坡的滑体碎块石土饱和渗透系数进行了原位试验,并根据土层孔隙率、颗粒级配等因素采用相关经验公式对试验结果进行了分析。其次,结合使用张力计和体积含水率仪对其土水特征曲线进行了现场模拟试验,并采用Fredlund模型对试验结果进行了拟合分析。最后,根据土水特征曲线和饱和渗透系数,采用经验公式估算了其非饱和渗透系数。试验及分析表明,该滑坡的碎块石土层的饱和渗透系数为(1.78~3.2)×10-2 cm/s,为强渗透性;材料的细颗粒含量越少,有效粒径及控制粒径越大,不均匀系数越小,相应的渗透系数越大。相关研究成果可以为泄滩滑坡非饱和非稳定渗透计算提供参数依据,并对同类型土体非饱和水力学参数的确定具有一定的借鉴意义。  相似文献   

13.
垃圾土渗透性和持水性的试验研究   总被引:5,自引:2,他引:3  
张文杰  陈云敏  邱战洪 《岩土力学》2009,30(11):3313-3317
通过室内常水头试验测定了垃圾土的饱和渗透系数,通过室内压力板仪试验测得垃圾土的土-水特征曲线。基于土-水特征曲线预测了垃圾土的非饱和渗透系数,并通过室内入渗试验进行了初步验证。常水头试验得到深层、中层和浅层垃圾土的饱和渗透系数分别为3.56×10-4、3.50×10-3、4.81×10-2 cm/s。土-水特征曲线试验表明,垃圾土饱和含水率和残余含水率较高,进气值很小,土-水特征曲线在低基质吸力时存在陡降段,其中浅层垃圾土的陡于深层垃圾。验证试验表明,预测得到的非饱和渗透系数与实测结果接近,基于土-水特征曲线预测垃圾土非饱和渗透系数的方法基本可行。  相似文献   

14.
重塑非饱和黏土的土-水特征曲线及其影响因素研究   总被引:8,自引:1,他引:7  
汪东林  栾茂田  杨庆 《岩土力学》2009,30(3):751-756
采用常规压力板仪和GDS非饱和土三轴仪,详细研究了击实功、击实含水率、干密度、应力历史和试样应力状态5种因素对非饱和重塑黏土土-水特征曲线的影响。并采用Van Genuchten模型、Fredlund 3参数模型和Fredlund 4参数模型,通过最小二乘法对所测土-水特征曲线进行拟合。结果表明,这3种模型均可对土-水特征曲线进行较好的拟合。通过对这个5种不同影响因素的分析,发现不仅试样本身物理状态而且试样外部应力状态都对土-水特征曲线有重要的影响,即击实功越大、击实含水率越高、干密度越大、试样的应力历史越大、所受净平均应力越高,则试样的进气值越高,水越难从试样中排出。在较高的基质吸力范围内,各种因素对土-水特征曲线的影响作用有减小的趋势。通过Fredlund 3参数模型和Fredlund 4参数模型的残余含水率对比分析可知,残余含水率对模型的参数值影响不大,即假定残余含水率 为0是合理的。  相似文献   

15.
This research was conducted to investigate the effect of matric suction on resilient modulus of unbound aggregate base courses. The study characterized the water characteristic curves and resilient modulus versus matric suction relationships of aggregate base courses that were compacted at different water contents and between 98 and 103 % of the modified Proctor density. The soil–water characteristic curve (SWCC) and the relationship between resilient modulus (M r ) and matric suction (ψ) were established for different unbound granular and recycled asphalt pavement materials. This relationship is important for predicting changes in modulus due to changes in moisture of unbound pavement materials. Resilient modulus tests were conducted according to the National Cooperative Highway Research Program (NCHRP) 1-28A procedure at varying water contents, and the measured SWCC was used to determine the corresponding matric suction. Three reference summary resilient moduli (SRM) were considered: at optimum water content, optimum water content +2 % and optimum water content ?2 %. The Bandia and Bargny limestones are characterized by a higher water-holding capacity which explains why the modulus of limestone was more sensitive to water content than for basalt or quartzite. Limestones tend to be more sensitive to changes in water content and thus to matric suction. The shape of the SWCC depends on the particle size distribution and the cementation properties from dehydration of the aggregates. Material properties required as input to the Mechanistic-Empirical Pavement Design Guide (M-EPDG) to predict changes in resilient modulus in response to changes in moisture contents in the field were determined for implementation in the M-EPDG process. Results show that the SRM was more correlated with matric suction than with compaction water content (for resilient modulus testing). The empirical models commonly used to predict the SWCC such as the Perera et al. (Prediction of the SWCC based on grain-size-distribution and index properties. GSP 130 Advances in Pavement Engineering, ASCE, 2005) and the M-EPDG (NCHRP in Guide for mechanistic-empirical design of pavement structures. National cooperative highway research program. ARA, Inc., ERES Consultants Division, Champaign, IL, 2004) models tend to underestimate the SWCC and cannot provide reasonable estimation. SRM normalized with respect to the SRM at the optimum water content varied linearly with the logarithm of matric suction. Empirical relationships between SRM and matric suction on semi-logarithmic scale were established and are reported.  相似文献   

16.
Soil saturated hydraulic conductivity (Ks) is considered as soil basic hydraulic property, and its precision estimation is a key element in modeling water flow and solute transport processes both in the saturated and vadose zones. Although some predictive methods (e.g., pedotransfer functions, PTFs) have been proposed to indirectly predict Ks, the accuracy of these methods still needs to be improved. In this study, some easily available soil properties (e.g., particle size distribution, organic carbon, calcium carbonate content, electrical conductivity, and soil bulk density) are employed as input variables to predict Ks using a fuzzy inference system (FIS) trained by two different optimization techniques: particle swarm optimization (PSO) and genetic algorithm (GA). To verify the derived FIS, 113 soil samples were taken, and their required physical properties were measured (113 sample points?×?7 factors?=?791 input data). The initial FIS is compared with two methods: FIS trained by PSO (PSO-FIS) and FIS trained by GA (GA-FIS). Based on experimental results, all three methods are compared according to some evaluation criteria including correlation coefficient (r), modeling efficiency (EF), coefficient of determination (CD), root mean square error (RMSE), and maximum error (ME) statistics. The results showed that the PSO-FIS model achieved a higher level of modeling efficiency and coefficient of determination (R2) in comparison with the initial FIS and the GA-FIS model. EF and R2 values obtained by the developed PSO-FIS model were 0.69 and 0.72, whereas they were 0.63 and 0.54 for the GA-FIS model. Moreover, the results of ME and RMSE indices showed that the PSO-FIS model can estimate soil saturated hydraulic conductivity more accurate than the GA-FIS model with ME?=?10.4 versus 11.5 and RMSE?=?5.2 versus 5.5 for PSO-FIS and GA-FIS, respectively.  相似文献   

17.
李顺群  贾红晶  王杏杏  桂超 《岩土力学》2016,37(11):3089-3095
为了揭示非饱和土在自然环境和轴平移环境两种条件下,基质吸力测试数据存在差异的原因,分别研究了表面张力系数和难充水微孔隙在相同吸力作用下对含水率的影响。一方面,表面张力系数随压力的增大而小幅减小,同一基质吸力条件下采用轴平移技术时对应的含水率较自然状态有偏小的趋势;另一方面,由于一端封闭微孔隙的存在,较高的孔隙气压力必然促使土中水进入部分难充水微孔隙,从而同一基质吸力条件下轴平移技术对应的含水率较自然状态又有升高的趋势。因此,在特定基质吸力条件下,轴平移方法得到的含水率较自然状态偏大还是偏小取决于上述两方面的综合效应。毛细上升试验和针对一端封闭微孔隙模型的研究表明,一端封闭微孔隙的存在对土-水特征曲线的影响远远大于表面张力系数变化的影响。针对石英砂、砂土和黏土的两种SWCC测试结果表明,随土颗粒逐渐变细,轴平移技术对SWCC的影响越来越大。从而进一步印证,张力计法和轴平移方法在测试黏土土-水特征曲线方面存在差异的原因在于一端封闭微孔隙的存在。  相似文献   

18.
The soil water characteristic curve (SWCC), also known as soil water retention curve (SWRC), describes the relationship between water content and soil suction in unsaturated soils. Water content and suction affect the permeability, shear strength, volume change and deformability of unsaturated soils. This paper presents results of the laboratory determination of the SWCC for soil samples obtained from the riverbank of the Lower Roanoke River in North Carolina. Six different testing methods were used to establish the SWCC including the filter paper, dewpoint potentiameter, vapor equilibrium, pressure plate, Tempe cell and osmotic methods. It is concluded that each suction measurement technique provides different measurable ranges of suction values, and the combined results from the different tests provide continuous SWCCs. Three widely available models were also shown to adequately fit the experimental SWCC data, particularly for matric suction values under 1500 kPa. These results will be valuable to practitioners in deciding which methods to use to establish the SWCC, and which empirical relationship to use for modeling the SWCC of riverbank soils.  相似文献   

19.
土-水特征曲线及其相关性研究   总被引:5,自引:3,他引:2  
土-水特征曲线(SWCC)描述了土体吸力与含水率之间的关系,是非饱和土力学研究的重要内容。从理论和试验两个方面研究了土-水特征曲线和渗透曲线的相互关系。在理论上,应用自然比例法则研究了土-水特征曲线和渗透曲线的特征,从物理和力学意义两个方面探讨了土-水特征曲线及其导数、渗透曲线、颗粒分布曲线之间的特征,给出了土-水特征曲线和渗透曲线两指数函数表达式幂的取值范围和相互关系。试验研究结果表明:土体的土-水特征曲线受到土体的物质成分、塑性指数、孔隙结构、应力状态等多种因素影响,土体持水特性研究对工程建设具有重要的指导意义。  相似文献   

20.
土水特征曲线定义了非饱和土的基质吸力和含水量之间的关系,与非饱和土的渗流和强度等特征有密切关系.本文通过对100组砂土的粒径分布曲线和土水特征曲线进行分析,结合常用的VG模型提出了基于粒径分布曲线的非饱和砂土土水特征曲线概率预测方法,并基于另外30组数据对提出的模型进行了验证.研究表明,基于粒径分布曲线无法唯一确定土体...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号