首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reviews recent studies of Holocene coastal uplift in tectonically active areas near the plate boundaries of the western Pacific Rim. Emergent Holocene terraces exist along the coast of North Island of New Zealand, the Huon Peninsula of Papua New Guinea, the Japanese Islands, and Taiwan. These terraces have several features in common. All comprise series of subdivided terraces. The highest terrace is a constructional terrace, underlain by estuarine or marine deposits, and the lower terraces are erosional, cutting into transgressive deposits or bedrock. The highest terrace records the culmination of Holocene sea-level rise at ca. 6–6.5 ka BP. Lower terraces were coseismically uplifted. Repeated major earthquakes have usually occurred at ka intervals and meter-scale uplift. The maximum uplift rate and number of terraces are surprisingly similar, about 4 m/ka and seven to four major steps in North Island, Huon Peninsula, and Japan. Taiwan, especially along the east coast of the Coastal Range, is different, reaching a maximum uplift rate of 15 m/ka with 10 subdivided steps. They record a very rapid uplift. Comparison between short-term (Holocene) and long-term since the last interglacial maximum (sub-stage 5e) uplift rates demonstrates that a steady uplift rate (Huon Peninsula) or accelerated uplift toward the present (several areas of Japan and North Island) has continued at least since isotope sub-stage 5e. Rapid uplift in eastern Taiwan probably started only in the early Holocene, judging from the absence of any older marine terraces. Most of the causative faults for the coastal uplift may be offshore reverse faults, branched from the main plate boundary fault, but some of them are onshore faults, which deformed progressively with time.  相似文献   

2.
Glacio-isostatic adjustment(GIA)and tectonic activity are important factors in the formation of marine terraces.Late Holocene wave-cut benches in the eastern part of the West Sea of Korea,also called the Yellow Sea,can be divided into two steps:531 cm above sea level(ASL)for the upper bench(T2)and 464-481 cm ASL for the lower bench(T1).Sediments on the benches a re classified into four units,and are interpreted to be beach deposits acco rding to gravel shape,textu re,and seaward inclination.The ove rlying sediment indicates that T2 was formed at approximately 530 cm ASL before 2900 yr BP,and T1 at approximately 460-480 cm ASL before 1520 yr BP.Late Holocene(4000-2000 yr BP)relative sea level(RSL)curves based on GIA models are inconsistent with the wave-cut bench elevations.Comparing T1 and T2 benches to the RSL curves of the West Sea,the upper and the lower benches were uplifted by approximately 5-8 m and 4-7 m,respectively.Although the area is several hundred kilometers away from plate boundaries,the high frequency of earthquakes in the West Sea may have induced the uplift of wave-cut benches during the last 2000 years.These indicate that the west coast of the Korean Peninsula(KP)should no longer be considered an area of subsidence,but be assigned to a regime of uplift during the late Holocene.  相似文献   

3.
《Quaternary Science Reviews》2007,26(7-8):1106-1128
The coastal geomorphology of the northeastern Raukumara Peninsula, New Zealand, is examined with the aim of determining the mechanisms of Holocene coastal uplift. Elevation and coverbed stratigraphic data from previously interpreted coseismic marine terraces at Horoera and Waipapa indicate that, despite the surface morphology, there is no evidence that these terraces are of marine or coseismic origin. Early Holocene transgressive marine deposits at Hicks Bay indicate significant differences between the thickness of preserved intertidal infill sediments and the amount of space created by eustatic sea level rise, therefore uplift did occur during early Holocene evolution of the estuary. The palaeoecology and stratigraphy of the sequence shows no evidence of sudden land elevation changes. Beach ridge sequences at Te Araroa slope gradually toward the present day coast with no evidence of coseismic steps. The evolution of the beach ridges was probably controlled by sediment supply in the context of a background continuous uplift rate. No individual dataset uniquely resolves the uplift mechanism. However, from the integration of all evidence we conclude that Holocene coastal uplift of this region has been driven by a gradual, aseismic mechanism. An important implication of this is that tectonic uplift mechanisms do vary along the East Coast of the North Island. This contrasts with conclusions of previous studies, which have inferred Holocene coastal uplift along the length of the margin was achieved by coseismic events. This is the first global example of aseismic processes accommodating uplift at rates of >1 mm yr−1 adjacent to a subduction zone and it provides a valuable comparison to subduction zones dominated by great earthquakes.  相似文献   

4.
Evaluating the hazard potential of the Makran subduction zone requires understanding the previous records of the large earthquakes and tsunamis. We address this problem by searching for earthquake and tectonic proxies along the Makran Coast and linking those observations with the available constraints on historical seismicity and the tell-tale characteristics of sea floor morphology. The earthquake of Mw 8.1 of 1945 and the consequent tsunami that originated on the eastern part of the Makran are the only historically known hazardous events in this region. The seismic status of the western part of the subduction zone outside the rupture area of the 1945 earthquake remains an enigma. The near-shore shallow stratigraphy of the central part of Makran near Chabahar shows evidence of seismically induced liquefaction that we attribute to the distant effects of the 1945 earthquake. The coastal sites further westward around Jask are remarkable for the absence of liquefaction features, at least at the shallow level. Although a negative evidence, this possibly implies that the western part of Makran Coast region may not have been impacted by near-field large earthquakes in the recent past??a fact also supported by the analysis of historical data. On the other hand, the elevated marine terraces on the western Makran and their uplift rates are indicative of comparable degree of long-term tectonic activity, at least around Chabahar. The offshore data suggest occurrences of recently active submarine slumps on the eastern part of the Makran, reflective of shaking events, owing to the great 1945 earthquake. The ocean floor morphologic features on the western segment, on the contrary, are much subdued and the prograding delta lobes on the shelf edge also remain intact. The coast on the western Makran, in general, shows indications of progradation and uplift. The various lines of evidence thus suggest that although the western segment is potentially seismogenic, large earthquakes have not occurred there in the recent past, at least during the last 600?years. The recurrence period of earthquakes may range up to 1,000?years or more, an assessment based on the age of the youngest dated coastal ridge. The long elapsed time points to the fact that the western segment may have accumulated sufficient slip to produce a major earthquake.  相似文献   

5.
The NW—SE trending segments of the California coastline from Point Arena to Point Conception (500 km) and from Los Angeles to San Diego (200 km) generally parallel major right-lateral strike-slip fault systems. Minor vertical crustal movements associated with the dominant horizontal displacements along these fault systems are recorded in local sedimentary basins and slightly deformed marine terraces. Typical maximum uplift rates during Late Quaternary time are about 0.3 m/ka, based on U-series ages of corals and amino-acid age estimates of fossil mollusks from the lowest emergent terraces.In contrast, the E–W-trending segments of the California coastline between Point Conception and Los Angeles (200 km) parallel predominantly northward-dipping thrust and high-angle reverse faults of the western Transverse Ranges. Along this coast, marine terraces display significantly greater vertical deformation. Amino-acid age estimates of mollusks from elevated marine terraces along the Ventura—Santa Barbara coast imply anomalously high uplift rates of between 1 and 6 m/ka over the past 40 to 100 ka. The deduced rate of terrace uplift decreases from Ventura to Los Angeles, conforming with a similar trend observed by others in contemporary geodetic data.The more rapid rates of terrace uplift in the western Transverse Ranges reflect N—S crustal shortening that is probably a local accommodation of the dominant right-lateral shear strain along coastal California.  相似文献   

6.
The evidence of coseismic uplift on the dynamic, wave-dominated Hua-tung coast fringing the active Coastal Range (eastern Taiwan) has been equivocal, due to complex controls by wave and terrestrial sediment over morphological and ecological systems of the coast. This study, by applying radiocarbon dating methods, demonstrates coseismic-uplift nature of the coast by finding synchronously killed intertidal organisms (mostly boring shell Jouannetia sp.) stranded at different sites of the coast with distinct physiographic characters. Based on these data, together with evidence from wave-cut notch sequences, two coseismic-uplift systems are recognized. One centers around the northern-middle part of the coast and yields events with uplift amounts of maximal 3–6 m and an average recurrence interval of at least several hundred years. The most recent activity of this system, influencing at least 70 km of coast, occurred at ~ 0.9 ka. The earthquake generating this event also triggered extensive landslides/debris flows in the region. Another system, exemplified by the uplift associated with the 2003 Cheng-kung earthquake, centers on the southern part of the coast and yields uplift of likely < 1 m every < 0.2 ky. Two pre-historic events of this system are identified as occurring at ~ 0.7 ka and ~ 1.1 ka. These two coseismic-uplift systems are consistent in position with two anticlinal structures defined by long-term uplift of the coast. However, the areas subjected to maximal coseismic uplift are located off where the climaxes of long-term uplift occur, implying that the latter areas have been uplifted mainly by aseismic and/or relatively frequent/small-magnitude coseismic motion.  相似文献   

7.
The NW—SE trending southern California coastline between the Palos Verdes Peninsula and San Diego roughly parallels the southern part and off-shore extension of the dominantly right-lateral, strike-slip, Newport—Inglewood fault zone. Emergent marine terraces between Newport Bay and San Diego record general uplift and gentle warping on the northeast side of the fault zone throughout Pleistocene time. Marine terraces on Soledad Mt. and Point Loma record local differential uplift (maximum 0.17 m/ka) during middle to late Pleistocene time on the southwest side of the fault (Rose Canyon fault) near San Diego.The broad Linda Vista Mesa (elev. 70–120 m) in the central part of coastal San Diego County, previously thought to be a single, relatively undeformed marine terrace of Plio—Pleistocene age, is a series of marine terraces and associated beach ridges most likely formed during sea-level highstands throughout Pleistocene time. The elevations of the terraces in this sequence gradually increase northwestward to the vicinity of San Onofre, indicating minor differential uplift along the central and northern San Diego coast during Pleistocene time. The highest, oldest terraces in the sequence are obliterated by erosional dissection to the northwest where uplift is greatest.Broad, closely spaced (vertically) terraces with extensive beach ridges were the dominant Pleistocene coastal landforms in central San Diego County where the coastal slope is less than 1% and uplift is lowest. The beach ridges die out to the northwest as the broad low terraces grade laterally into narrower, higher, and more widely spaced (vertically) terraces on the high bluffs above San Onofre where the coastal slope is 20–30% and uplift is greatest. At San Onofre the terraces slope progressively more steeply toward the ocean with increasing elevation, indicating continuous southwest tilt accompanying uplift from middle to late Pleistocene time. This southwest tilt is also recorded in the asymmetrical valleys of major local streams where strath terraces occur only on the northeast side of NW—SE-trending valley segments.The deformational pattern (progressively greater uplift to the northwest with slight southwest tilt) recorded in the marine and strath terraces of central and northern coastal San Diego County conforms well with the historic pattern derived by others from geodetic data. It is not known how much of the Santa Ana structural block (between the Newport—Inglewood and the Elsinore fault zones) is affected by this deformational pattern.  相似文献   

8.
Precise measurements of submerged archaeological markers in the Siracusa coast (Southeastern Sicily, Italy) provide new data on relative sea-level change during the late Holocene. Four submerged archaeological sites have been studied and investigated through direct observations. Two of them are Greek archaic in age (2.5–2.7 ka) and are now 0.98–1.48 m below sea level; the other two developed during the Bronze age (3.2–3.8 ka) and are now 1.03–1.97 m below sea level. These archaeological data have been integrated with information derived from a submerged speleothem collected in a cave located along the Siracusa coast at − 20 m depth. The positions of the archaeological markers have been measured with respect to present sea level, corrected for tide and pressure at the time of surveys. These data were compared with predicted sea-level rise curves for the Holocene using a glacio-hydro-isostatic model. The comparison with the curve for the southeastern Sicily coast yields a tectonic component of relative sea-level change related to regional uplift. Uplift rates between 0.3 and 0.8 mm/yr have been estimated.  相似文献   

9.
A combination of published and new radiometric dates on uplifted Holocene fossil beaches from northeastern Sicily and southern Calabria (southern Italy) is compared with the altitude of the inner margin of the Last Interglacial (LIg) (Late Pleistocene, 124 ka) and older marine terraces in order to gain a regional-scale outline of uplift rates and their temporal changes in a region which is one of the fastest uplifting sectors of the Central Mediterranean Sea. Late Holocene radiocarbon dates from Ioppolo (southern Calabria) and Ganzirri (northeast Sicily), two newly discovered sites are here presented for the first time. The Holocene uplift rates are highest at St. Alessio and Taormina in eastern Sicily (2.4 mm/y) and at Scilla in southwestern Calabria (2.1 mm/y), two sites located across the Messina Straits and which separate the island of Sicily from mainland Italy. Uplift rates decrease towards the south and north from this centre of uplift. Late Holocene uplift rates show an apparent increase of between 64 and 124% when compared with the longer-term uplift rates calculated from the LIg highstand terraces. Furthermore, we discovered that the locations of fastest Late Pleistocene and Late Holocene uplift rates spatially coincide. To what extent the Holocene increase in uplift rates results from incomplete elastic strain release along the major extensional faults which frame the seismotectonic of the area, or indicate a true change in regional tectonic processes, is not resolved. Nonetheless, the heterogeneity of uplift, with a well-defined centre that crosses the Messina Straits, and its persistence at different time-scales indicates a tight connection between wider regional processes and fault-related displacement in controlling crustal instability in this area.  相似文献   

10.
Coral terrace surveys and U-series ages of coral yield a surface uplift rate of ∼0.5 m/ka for Kisar Island, which is an emergent island in the hinterland of the active Banda arc–continent collision. Based on this rate, Kisar first emerged from the ocean as recently as ∼450 ka. These uplifted terraces are gently warped in a pattern of east–west striking folds. These folds are strike parallel to more developed thrust-related folds of similar wavelength imaged by a seismic reflection profile just offshore. This deformation shows that the emergence of Kisar is influenced by forearc closure along the south-dipping Kisar Thrust. However, the pinnacle shape of Kisar and the protrusion of its metamorphic rocks through the forearc basin sediments also suggest a component of extrusion along shear zones or active doming.Coral encrusts the island coast in many locations over 100 m above sea level. Terrace morphology and coral ages are best explained by recognizing major surfaces as mostly growth terraces and minor terraces as mostly erosional into older terraces. All reliable and referable coral U-series ages determined by MC-ICP-MS correlate with marine isotope stage (MIS) 5e (118–128 ka). The only unaltered coral samples are found below 6 m elevation; however an unaltered Tridacna (giant clam) shell in growth position at 95 m elevation yields a U-series age of 195 ± 31 ka, which corresponds to MIS 7. This age agrees with the best-fit uplift model for the island. Loose deposits of unaltered coral fragments found at elevations between 8 and 20 m yield U-series ages of <100 years and may represent paleotsunami deposits from previously undocumented tectonic activity in the region.  相似文献   

11.
This paper presents a case study that assessed spatial variations in the tectonic uplift rates of beach deposits in the relict Kujukuri strand plain, situated on the northeastern coast of the Boso Peninsula, eastern Japan. The southern Boso Peninsula is tilted downward to the northeast due to plate subduction along the Sagami Trough. However, the cause of the northeastern coast uplift creating the relict strand plain is unclear, due to the absence of a Holocene raised marine terrace sequence. Elevations and ages of beach deposits were collected from drilled cores and ground-penetrating radar profiles along three shore-normal sections in the southern Kujukuri strand plain. From this, alongshore variations in the relative sea level since the mid-Holocene could be seen. These corresponded to north-to-northeast downward tilting at a rate of 0.4 m/ka for an interval 10 km and are concordant with the longer term tilting of the last interglacial marine terrace surrounding the plain. Although it is difficult to assess shore-normal variations of uplift based on the present dataset, the recognized tilting apparently continues to the tilting of the southern Boso Peninsula, implying the Sagami Trough probably affects the uplift of the Kujukuri coast.  相似文献   

12.
《Quaternary Science Reviews》2007,26(7-8):876-893
The Quaternary sedimentary record of Sal Island includes marine and related aeolian and alluvial fan deposits. The substratum of the island is volcanic, with ages between 25 and 0.6 Ma. Quaternary marine units generally occur as raised marine terraces forming a broad staircase between elevations of 55–60 m and present sea level. Terraces include a basal conglomerate overlaid by calcarenite; both host corals, algae and molluscs.A chronostratigraphic framework for the Middle Pleistocene to Holocene units has been generated based on a geomorphologic map of the Quaternary landforms and associated deposits and morphosedimentary analysis, with support of laboratory dating: U-series by TIMS in corals, 14C analyses, palaeomagnetic measurements, and K/Ar ages from other literature. U-series dating of corals from marine terraces provides benchmarks for the Last Interglacial (Oxygen Isotope Substage 5e) and Holocene deposits. The present elevation of the marine terraces and their staircase arrangement suggest a change in vertical movement trend around 330 ka from an uplift to either subsidence or stabilization.  相似文献   

13.
The popular concept of a Late Weichselian ice sheet covering the Barents Shelf and confluent with the Scandinavian and Russian ice sheets is based primarily on the 6500 B.P. isobase which rises to the east over Spitsbergen, and to the west over Franz Joseph Land. Analysis of uplift curves from the Spitsbergen archipelago shows, however, that the strongest early Holocene uplift occurs over northeastern Spitsbergen and eastern Nordaustlandet, falling both to east and west, and that the centre of uplift migrates to the southeast during the Holocene. Direct evidence of glacier fluctuation indicates an important Billefjorden Stage of glaciation at about 11,000 to 10,000 B.P., part of whose extent can be defined by moraines and by abrupt changes in the marine limit. The dominant ice masses of the Billefjorden Stage seem to have formed over eastern Spitsbergen, Edgeøya, Barentsøya and southern Hinlopenstretet, and it is the decay of this ice mass which is primarily responsible for the pattern of early Holocene uplift. Stratigraphic evidence suggests the absence of an important glacial event at 18,000–20,000 B.P., but an important phase of Spitsbergen-centred glaciation at about 40,000 B.P., and a glacial phase at 80,000–120,000 B.P. It is suggested that many raised beach sequences outside the Billefjorden readvance show an upper sequence related to deglaciation at about 40,000 B.P., and a lower, Holocene sequence related to decay of the Billefjorden ice. The anomalous pattern of late Holocene uplift may be related to restrained rebound produced by regeneration of ice on the main islands of the archipelago and unrestrained rebound on Hopen and Kong Karls Land, which were incapable of sustaining large ice masses of their own. A pattern of LateGlacial climatic circulation which may have produced ice masses on the east coast of Spitsbergen, west coast of Novaya Zemlya and north coast of Russia is suggested. It is also suggested that this pattern of glaciation produced features which have been wrongly interpreted as evidence of a Barents ice sheet.  相似文献   

14.
The Ipswichian high‐tide coast in the Bristol Channel and Severn Estuary at the time of the highest sea‐levels (5–10 m OD) was wave‐dominated almost everywhere. It is defined by raised beaches and inshore sand shoals, and only in comparatively long but narrow inlets (Somerset Levels) are estuarine conditions evident. The modern Holocene seaway is wave‐dominated at high tide only up to and including the inner Bristol Channel. A muddy upper shore typifies the large, tide‐dominated Severn Estuary to the east and northeast. The larger depth and width of the Ipswichian seaway may explain its greater wave‐dominance, but it is also possible that differences in the sediment regime also contribute to the contrast observed. With water levels continuing to rise, the Holocene seaway could reach Ipswichian depths within a few thousand years and evolve toward greater wave‐dominance. A secondary effect may be the transgression and substantial removal of the Holocene estuarine sequence associated with the Severn Estuary Levels. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
A survey of raised coral reef terraces in locations along the southern coast of Iran was carried out with the aim of assessing regional Late Quaternary tectonic uplift rates influenced by salt doming. Two islands were studied: Kish, where no previous data were available, and Qeshm, where a previous survey had already attributed the lowest step in two sequences of raised marine terraces to the Last Interglacial.Twenty-five ESR and seven Th/U ages were obtained from Kish Island. The results show that this flat, about 32 m high, gently domed island was totally submerged during the last two interglacial periods. Corals ascribed to MIS 5 and MIS 7 have been dated at the same elevations, near the present sea level, and in the uppermost, inner part of the island, giving evidence of a polycyclic origin for the island surface deposits. Following a discussion on the possible position of eustatic peaks during MIS 7, a maximal average uplift rate of 0.20±0.02 mm/yr has been deduced from the above data.Furthermore, the survey obtained some new results from Qeshm, where seven ESR ages confirmed the MIS 5 age of the lowest raised marine terrace (that also corresponds to an uplift rate of about 0.2 mm/yr), failing, however, to date older steps, due to significant coral-sample re-crystallisation. In the western part of Qeshm, five new radiocarbon ages of elevated beach material demonstrated the variability of uplift rates even along short distances around an active salt dome.  相似文献   

16.
Facies analyses of Pleistocene deposits from southern coastal Tanzania (Lindi District) document that sediments formed in a wetland evolving on a coastal terrace in the Lindi Fracture Zone foreland. The exposed succession shows a marked sedimentary change from tidal to terrestrial facies. 14C analyses on gastropod shells indicate the emergence of the Lindi coast at ∼ 44 14C ka BP. Emergence and subsequent elevation of terraces to 21 m above present-day sea level was linked to the falling eustatic sea level prior to the last glacial maximum, and to a periodic elevation due to extensional tectonic episodes in the eastern branch of the East African Rift System (EARS). Since ∼ 44 14C ka BP tectonic uplift at the coast was 80-110 m, comparable to that in the extreme uplift areas of the EARS.  相似文献   

17.
Although Quaternary marine terraces have been reported from eastern Saudi Arabia at heights of up to 150 m, unambiguous shoreline deposits could be identified only within 3 m of present-day High Water and close to the modern shoreline. Unaltered aragonitic mollusc shells from five such deposits yielded 14C ages of 3700–6000 yr B.P. Comparison of their elevations with those of coeval deposits on the Zagros coast of Iran demonstrates the relative stability of the Saudi shore of the Gulf during the late Holocene.  相似文献   

18.
The tectonic position of the Kamchatka Cape Peninsula at the junction of the active Kuril–Kamchatka and Aleutian arcs exposes the coastline of the peninsula to strong neotectonic activities. Fracture zones have variable influence on uplift of the Kamchatka Cape Peninsula. Relevant morphologic indicators of neotectonic activity are multilevel, highly uplifted marine terraces and terraces displaced along active faults. Recent uplift rates of coastal sediments are determined by remote sensing via ASTER and SRTM DEM combined with optically stimulated luminescence dating (OSL). On the Kamchatka Cape Peninsula, terraces from the same generation are mapped at different elevations by remote sensing methods. After defining different areas of uplifted terraces, four neotectonic blocks are identified. According to apatite fission track data, the mean differential exhumation rates range from 0.2 to 1.2 mm year?1 across the blocks since Late Miocene. The OSL data presented point to significant higher uplift rates of up to 3 ± 0.5 and 4.3 ± 1 mm year?1, which indicates an acceleration of the vertical movement along the coast of Kamchatka Cape Peninsula in Upper Pleistocene and Holocene times.  相似文献   

19.
Deformed marine terraces and alluvial deposits record Quaternary crustal deformation along segments of a major, seismically active branch of the San Andreas fault which extends 190 km SSE roughly parallel to the California coastline from Bolinas Lagoon to the Point Sur area. Most of this complex fault zone lies offshore (mapped by others using acoustical techniques), but a 4-km segment (Seal Cove fault) near Half Moon Bay and a 26-km segment (San Gregorio fault) between San Gregorio and Point Ano Nuevo lie onshore.At Half Moon Bay, right-lateral slip and N—S horizontal compression are expressed by a broad, synclinal warp in the first (lowest: 125 ka?) and second marine terraces on the NE side of the Seal Cove fault. This structure plunges to the west at an oblique angle into the fault plane. Linear, joint0controlled stream courses draining the coastal uplands are deflected toward the topographic depression along the synclinal axis where they emerge from the hills to cross the lowest terrace. Streams crossing the downwarped part of this terrace adjacent to Half Moon Bay are depositing alluvial fans, whereas streams crossing the uplifted southern limb of the syncline southwest of the bay are deeply incised. Minimum crustal shortening across this syncline parallel to the fault is 0.7% over the past 125 ka, based on deformation of the shoreline angle of the first terrace.Between San Gregorio and Point Ano Nuevo the entire fault zone is 2.5–3.0 km wide and has three primary traces or zones of faulting consisting of numerous en-echelon and anastomozing secondary fault traces. Lateral discontinuities and variable deformation of well-preserved marine terrace sequences help define major structural blocks and document differential motions in this area and south to Santa Cruz. Vertical displacement occurs on all of the fault traces, but is small compared to horizontal displacement. Some blocks within the fault zone are intensely faulted and steeply tilted. One major block 0.8 km wide east of Point Ano Nuevo is downdropped as much as 20 m between two primary traces to form a graben presently filling with Holocene deposits. Where exposed in the sea cliff, these deposits are folded into a vertical attitude adjacent to the fault plane forming the south-west margin of the graben. Near Point Ano Nuevo sedimentary deposits and fault rubble beneath a secondary high-angle reverse fault record three and possibly six distinct offset events in the past 125 ka.The three primary fault traces offset in a right-lateral sense the shoreline angles of the two lowest terraces east of Point Ano Nuevo. The rates of displacement on the three traces are similar. The average rate of horizontal offset across the entire zone is between 0.63 and 1.30 cm/yr, based on an amino-acid age estimate of 125 ka for the first terrace, and a reasonable guess of 200–400 ka for the second terrace. Rates of this magnitude make up a significant part of the deficit between long-term relative plate motions (estimated by others to be about 6 cm/yr) and present displacement rates along other parts of the San Andreas fault system (about 3.2 cm/yr).Northwestward tilt and convergence of six marine terraces northeast of Ano Nuevo (southwest side of the fault zone) indicate continuous gentle warping associated with right-lateral displacement since early or middle Pleistocene time. Minimum local crustal shortening of this block parallel to the fault is 0.2% based on tilt of the highest terrace. Five major, evenly spaced terraces southeast of Ano Nuevo on the southwest flank of Mt. Ben Lomond (northeast side of the fault zone) rise to an elevation of 240 m, indicating relatively constant uplift (about 0.19 m/ka and southwestward tilt since Early or Middle Pleistocene time (Bradley and Griggs, 1976).  相似文献   

20.
The Nanga Parbat–Haramosh Massif has some of the greatest relief on Earth and highest measured rates of uplift, denudation, and river incision in bedrock. Many studies have sought to understand how its morphology relates to geotectonic evolution and glaciations. However, few catastrophic rock slope failures had been recognised and many of their impacts had been attributed to other processes. Recently more than 150 of these landslides have been found within a 100-km radius of Nanga Parbat (8125 m). New discoveries are reported east, north and west of Nanga Parbat along the Indus streams. Most generated long-run-out rock avalanches that dammed the Indus or its tributaries, some impounding large lakes. They initiated episodes of intermontane sedimentation followed by trenching and removal of sediment. Valley-floor features record a complex interplay of impoundment and sedimentation episodes, superimposition of streams in pre-landslide valley floors, and exhumation of buried features. These findings depart from existing reconstructions of Quaternary events. A number of the rock-avalanche deposits were previously misinterpreted as tills or moraine and their associated lacustrine deposits attributed to glacial lakes. Features up to 1000 m above the Indus, formerly seen as tectonically raised terraces, are depositional features emplaced by landslides, or erosion terraces recording the trenching of valley fill in landslide-interrupted river reaches. Unquestionably, tectonics and glaciation have been important but decisive and misread formative events of the Holocene involve a post-glacial, landslide-fragmented fluvial system. The latter has kept valley developments in a chronic state of disequilibrium with respect to climatic and geotectonic controls. Accepted glacial chronologies are put in doubt, particularly the extent and timing of the last major glaciation. The pace and role processes in the Holocene have been seriously underestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号