首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The common depth point method of shooting in oil exploration provides a series of seismic traces which yield information about the substrata layers at one location. After normal moveout and static corrections have been applied, the traces are combined by horizontal stacking, or linear multichannel filtering, into a single record in which the primary reflections have been enhanced relative to the multiple reflections and random noise. The criterion used in optimum horizontal stacking is to maximize the signal to noise power ratio, where signal refers to the primary reflection sequence and noise includes the multiple reflections. It is shown when this criterion is equivalent to minimizing the mean square difference between the desired signal (primary reflection sequence) and the weighted horizontally stacked traces. If the seismic traces are combined by multichannel linear filtering, the primary reflection sequence will have undergone some phase and frequency distortion on the resulting record. The signal to noise power ratio then becomes less meaningful a criterion for designing the optimum linear multichannel filter, and the mean square criterion is adopted. In general, however, since more a priori information about the seismic traces is required to design the optimum linear multichannel filter than required for the optimum set of weights of the horizontal stacking process, the former will be an improvement over the latter. It becomes evident that optimum horizontal stacking is a restricted form of linear multichannel filtering.  相似文献   

2.
Multichannel filters are used to eliminate coherent noise from surface seismic data, for wavefield separation from VSP stacks, and for signal enhancement. Their success generally depends on the choice of the filter parameters and the domain of application. Multichannel filters can be applied to shots (monitors), common-receiver traces, CDP traces and stacked sections. Cascaded applications in these domains are currently performed in the seismic industry for better noise suppression and for signal enhancement. One-step shot-domain filtering is adequate for some applications. However, in practice, cascaded applications in shot-and common-receiver domains usually give better results when the S/N ratio is low. Multichannel filtering after stacking (especially after repeated applications in shot and/or receiver domains) may create undesirable results such as artificial continuations, or smearing and smoothing of small features such as small throw faults and fine stratigraphic details. Consequently, multichannel filtering after stacking must be undertaken with the utmost care and occasionally only as a last resort. Multichannel filters with fan-shaped responses (linear moveout filters) should be applied after NMO correction. These are the filters commonly used in the seismic industry where they have such names as velocity filters, moveout filters, f-k filters and coherency filters. Filtering before NMO correction may result in break-up and flattening especially of those shallow reflection events with relatively higher curvatures and diffractions. NMO correction is needed prior to wavefield separation from VSP stacks for the same practical reasons outlined above whenever source-receiver offsets are involved. Creation of artificial lineup and smearing at the outputs of multichannel filters is presently the common practical concern. Optimum multichannel filters with well-defined pass, reject and transition bands overcome the latter problems when applied before stacking and after NMO correction. The trace dimension of these filters must be kept small to avoid such lineups and the smoothing of small structures. Good results can be obtained with only five traces, but seven traces seems to be a better compromise both in surface and well seismic applications. The so-called f-k filtering and τ-p domain filtering are no exceptions to the above practical considerations. Residual static computations after multichannel filtering also need special consideration. Since multichannel filtering improves spatial continuity, residual static algorithms using local correlation, i.e. nonsurface-consistent algorithms, may be impractical especially after multichannel filtering.  相似文献   

3.
A new spectral factorization method is presented for the estimation of a causal as well as a causally invertible ARMA operator from the correlation sequence of seismic traces. The method has been implemented for multichannel deconvolution of seismic traces with the aim of exploiting the trace-to-trace correlation that exists within seismograms. A layered earth model with a small reflectivity sequence has been considered, and the seismic traces have been considered as the output of a linear system driven by white noise reflection coefficient sequences. The present method is the concatenation of three algorithms, namely Kung's method for state variable ( F , G , H ) realization using a singular value decomposition (SVD) algorithm, Faurre's technique for computation of the strong spectral factor and Leverrier's algorithm for ARMA representation of the spectral factor. The inverted ARMA operator is used as a recursive filter for deconvolution of seismic traces. In the example shown, two traces with a covariance sequence of 160 ms length have been considered for multichannel deconvolution of stacked seismic traces. The results presented, when compared with those obtained from a conventional deconvolution algorithm, have shown encouraging prospects.  相似文献   

4.
We present a singular value decomposition (SVD) filtering method for the enhancement of coherent reflections and for attenuation of noise. The method is applied in two steps. First normal move‐out (NMO) correction is applied to shot or CMP records, with the purpose of flattening the reflections. We use a spatial SVD filter with a short sliding window to enhance coherent horizontal events. Then the data are sorted in common‐offset panels and the local dip is estimated for each panel. The next SVD filtering is performed on a small number of traces and a small number of time samples centred around the output sample position. Data in a local window are corrected for linear moveout corresponding to the dips before SVD. At the central time sample position, we sum over the dominant eigenimages of a few traces, corresponding to SVD dip filtering. We illustrate the method using land seismic data from the Tacutu basin, located in the north‐east of Brazil. The results show that the proposed method is effective and is able to reveal reflections masked by ground‐roll and other types of noise.  相似文献   

5.
—Adaptive filters offer advantages over Wiener filters for time-varying processes. They are used for deconvolution of seismic data which exhibit non-stationary behavior, and seldom for noise reduction. Different algorithms for adaptive filtering exist. The least-mean-squares (LMS) algorithm, because of its simplicity, has been widely applied to data from different fields that fall outside geophysics. The application of the LMS algorithm to improve the signal-to-noise ratio in deep reflection seismic pre-stack data is studied in this paper. Synthetic data models and field data from the DEKORP project are used to this end.¶Three adaptive filter techniques, one-trace technique, two-trace technique and time-slice technique, are examined closely to establish the merits and demerits of each technique. The one-trace technique does not improve the signal-to-noise ratio in deep reflection seismic data where signal and noise cover the same frequency range. With the two-trace technique, the strongest noise reduction is achieved for small noise on the data. The filter efficiency decreases rapidly with increasing noise. Furthermore, the filter performance is poor upon application to common-midpoint (CMP) gathers with no normal-moveout (NMO) corrections. Application of the two-trace method to seismic traces before dynamic correction results in gaps in the signal along the reflection hyperbolas. The time-slice technique, introduced in this paper, offers the best answer. In this case, the one-trace technique is applied to the NMO-corrected gathers across all traces in each gather at each time to separate the low-wavenumber component of the signal in offset direction from the high-wavenumber noise component. The stacking velocities used for the dynamic correction do not need to be known very accurately because in deep reflection seismics, residual moveouts are small and have only a minor influence on the results of the adaptive time-slice technique. Noise reduction is more significant with the time-slice technique than with the two-trace technique. The superiority of the adaptive time-slice technique is demonstrated with the DEKORP data.  相似文献   

6.
Several types of multichannel filters have been introduced in the past with the purpose of rejecting, in a seismic section, coherent noise having a slope different from that of the signal. These filters, generally, tend to introduce a certain amount of mixing and therefore the output trace shows increased horizontal coherence. This is due to the model on which these filters are based, since the hypothesis is posed that the reflectors are continuous. This may be dangerous since it could lead to mistaken interpretations, for example when small faults or breaks are made to disappear in the output section. Other problems that could arise in the application of multichannel filters after-stack are space-aliasing and high-pass filtering. The former occurs when coherent noise is rejected with apparent Velocity V and frequency fa=V/X, where X is the distance between traces. In this case, the signal also is distorted since it is rejected in the same frequency range. The high pass filtering effect occurs when the multichannel filter is designed to remove low coherent noise with high apparent velocity. In the paper a family of multichannel filters is presented based on a model of the seismic section such that minimum mixing effects appear. The filters are designed to give good results even in the case of low frequency and high velocity coherent noise. Some practical examples are shown.  相似文献   

7.
Optimum stacking filters based on estimates of trace signal-to-uncorrelated noise ratios are assessed and compared in performance with conventional straight stacking. It is shown that for the trace durations and signal bandwidths normally encountered in seismic reflection data the errors in estimating signal/noise ratios largely counteract the theoretical advantages of the optimum filter. The more specific the filter (e.g. the more frequency components included in its design) the more this is true. Even for a simple weighted stack independent of frequency, the performance is likely to be better than a straight (equal weights) stack only for relatively high signal/noise ratios, when the performance is not critical anyway.  相似文献   

8.
Design procedures and characteristics of three stacking filters are discussed which may find application in various three-dimensional velocity filtering problems. These filters are derived in the time-domain as optimum multichannel Wiener filters. Random stationary functions are assumed as stochastic models for the seismic traces. All power and crosspower spectra which are the basic elements of the multichannel normal equations are statistically averaged according to specific three-dimensional considerations. Various properties of the input traces may be incorporated in the design of the optimum filters. With fairly general assumptions about the input these filters are deterministic in the sense that they are applicable to a broad class of input traces with similar statistics in amplitudes and arrival times of signals.  相似文献   

9.
Median filters may be used with seismic data to attenuate coherent wavefields. An example is the attenuation of the downgoing wavefield in VSP data processing. The filter is applied across the traces in the ‘direction’ of the wavefield. The final result is given by subtracting the filtered version of the record from the original record. This method of median filtering may be called ‘median filtering operated in subtraction’. The method may be extended by automatically estimating the slowness of coherent wavefields on a record. The filter is then applied in a time- and-space varying manner across the record on the basis of the slowness values at each point on the record. Median filters are non-linear and hence their behaviour is more difficult to determine than linear filters. However, there are a number of methods that may be used to analyse median filter behaviour: (1) pseudo-transfer functions to specific time series; (2) the response of median filters to simple seismic models; and (3) the response of median filters to steps that simulate terminating wavefields, such as faults on stacked data. These simple methods provide an intuitive insight into the behaviour of these filters, as well as providing a semiquantitative measurement of performance. The performance degradation of median filters in the presence of trace-to-trace variations in amplitude is shown to be similar to that of linear filters. The performance of median filters (in terms of signal distortion) applied obliquely across a record may be improved by low-pass filtering (in the t-dimension). The response of median filters to steps is shown to be affected by background noise levels. The distortion of steps introduced by median filters approaches the distortion of steps introduced by the corresponding linear filter for high levels of noise.  相似文献   

10.
A new filtering technique for single‐fold wide‐angle reflection/refraction seismic data is presented. The technique is based on the wavelet decomposition of a set of adjacent traces followed by coherence analysis. The filtering procedure consists of three steps. In the first, a wavelet decomposition of traces into different detail levels is performed. In the second, the coherence attributes for each level are evaluated by calculating cross‐correlation functions of detail portions contained in a space–time moving window. Finally, the filtered traces are obtained as a weighted reconstruction of the trace details. Each weight is obtained from the coherence‐attributes distribution estimated in a proper interval. A sequence of tests is then conducted in order to select possible optimum or unsuitable wavelet bases. The efficiency of the filter proposed was assessed by calculating some properly designed parameters in order to compare it with other standard de‐noising techniques. The proposed method produced a clear signal enhancement in high‐density wide‐angle seismic data, thus proving that it is a useful processing tool for a reliable correlation of seismic phases.  相似文献   

11.
Different types of median-based methods can be used to improve multichannel seismic data, particularly at the stacking stage in processing. Different applications of the median concept are described and discussed. The most direct application is the Simple Median Stack (SMS), i.e. to use as output the median value of the input amplitudes at each reflection time. By the Alpha-Trimmed Mean (ATM) method it is possible to exclude an optional amount of the input amplitudes that differ most from the median value. A more novel use of the median concept is the Weighted Median Stack (WMS). This method is based on a long-gapped median filter. The implicit weighting, which is purely statistical in nature, is due to the edge effects that occur when the gapped filter is applied. By shifting the traces around before filtering, the maximum weight may be given to, for example, the far-offset traces. The fourth method is the Iterative Median Stack (IMS). This method, which also includes a strong element of weighting, consists of a repeated use of a gapped median filter combined with a gradual shortening of the filter after each pass. Examples show how the seismic data can benefit from the application of these methods.  相似文献   

12.
Optimum multichannel filters can be designed to process seismic events falling on hyperbolic moveout curves using the conventional least-squares method. Contrary to the linear moveout filters, autocorrelation and crosscorrelation functions inherent in the normal equations have to be computed numerically. However, computation times of filter coefficients are comparable to linear moveout operators. For a given source-receiver geometry and assuming straight ray-path, relative moveout of a seismic reflection event is dependent on the two way arrival time and rms velocity. Consequently, to avoid overlapping of pass and reject moveout windows, hyperbolic moveout filters have to be designed over time gates rather than for the whole record lengths. Hyperbolic and hyperbolic-linear moveout filters applied to synthetic and field seismic reflection traces show good signal-to-noise (S/N) ratio improvements. Results of some combined synthetic and field data examples are presented.  相似文献   

13.
Vibroseis data recorded at short source–receiver offsets can be swamped by direct waves from the source. The signal-to-noise ratio, where primary reflections are the signal and correlation side lobes are the noise, decreases with time and late reflection events are overwhelmed. This leads to low seismic resolution on the vibroseis correlogram. A new precorrelation filtering approach is proposed to suppress correlation noise. It is the ‘squeeze-filter-unsqueeze’ (SFU) process, a combination of ‘squeeze’ and ‘unsqueeze’ (S and U) transformations, together with the application of either an optimum least-squares filter or a linear recursive notch filter. SFU processing provides excellent direct wave removal if the onset time of the direct wave is known precisely, but when the correlation recognition method used to search for the first arrival fails, the SFU filtering will also fail. If the tapers of the source sweeps are badly distorted, a harmonic distortion will be introduced into the SFU-filtered trace. SFU appears to be more suitable for low-noise vibroseis data, and more effective when we know the sweep tapers exactly. SFU requires uncorrelated data, and is thus cpu intensive, but since it is automatic, it is not labour intensive. With non-linear sweeps, there are two approaches to the S,U transformations in SFU. The first requires the non-linear analytical sweep formula, and the second is to search and pick the zero nodes on the recorded pilot trace and then carry out the S,U transformations directly without requiring the algorithm or formula by which the sweep was generated. The latter method is also valid for vibroseis data with a linear sweep. SFU may be applied to the removal of any undesired signal, as long as the exact onset time of the unwanted signal in the precorrelation domain is known or determinable.  相似文献   

14.
Seismic data often contain traces that are dominated by noise; these traces should be removed (edited) before multichannel filtering or stacking. Noise bursts and spikes should be edited before single channel filtering. Spikes can be edited using a running median filter with a threshold; noise bursts can be edited by comparing the amplitudes of each trace to those of traces that are nearby in offset-common midpoint space. Relative amplitude decay rates of traces are diagnostic of their signal-to-noise (S/N) ratios and can be used to define trace editing criteria. The relative amplitude decay rate is calculated by comparing the time-gated trace amplitudes to a control function that is the median trace amplitude as a function of time, offset, and common midpoint. The editing threshold is set using a data-adaptive procedure that analyses a histogram of the amplitude decay rates. A performance evaluation shows that the algorithm makes slightly fewer incorrect trace editing decisions than human editors. The procedure for threshold setting achieves a good balance between preserving the fold of the data and removing the noisiest traces. Tests using a synthetic seismic line show that the relative amplitude decay rates are diagnostic of the traces’S/N ratios. However, the S/N ratios cannot be accurately usefully estimated at the start of processing, where noisy-trace editing is most needed; this is the fundamental limit to the accuracy of noisy trace editing. When trace equalization is omitted from the processing flow (as in amplitude-versus-offset analysis), precise noisy-trace editing is critical. The S/N ratio of the stack is more sensitive to type 2 errors (failing to reject noisy traces) than it is to type 1 errors (rejecting good traces). However, as the fold of the data decreases, the S/N ratio of the stack becomes increasingly sensitive to type 1 errors.  相似文献   

15.
径向时频峰值滤波算法是一种有效保持低信噪比地震勘探记录中反射同相轴的随机噪声压制方法,但该算法对空间非平稳地震勘探随机噪声压制效果不理想.本文研究空间非平稳地震勘探随机噪声,即各道噪声功率不同的地震勘探随机噪声,其在径向滤波轨线上表征近似脉冲噪声,在径向时频峰值滤波过程中干扰相邻道滤波结果.为了减小空间非平稳随机噪声的影响,本文提出一种基于绝对级差统计量(ROAD)的径向时频峰值滤波随机噪声压制方法.该方法首先根据径向轨线上信号的绝对级差统计量检测空间非平稳地震勘探随机噪声,然后结合局部时频峰值滤波和径向时频峰值滤波压制地震勘探记录中的随机噪声.将ROAD径向时频峰值滤波方法应用于合成记录和实际共炮点地震记录,结果表明ROAD径向时频峰值滤波方法可以压制空间非平稳地震勘探随机噪声且不损害有效信号,有效抑制随机噪声空间非平稳对滤波结果的影响.与径向时频峰值滤波相比,ROAD径向时频峰值滤波方法更适用于空间非平稳地震勘探随机噪声压制.  相似文献   

16.
二维最佳线性数字滤波器的设计原理   总被引:2,自引:0,他引:2       下载免费PDF全文
针对如何在干扰场的背景上区分出低缓异常,以及在位场的向下延拓一类计算中如何限制因误差的高频放大所导至的解的不稳定性等问题,本文探讨了在“最小二乘”意义下的最佳线性数字滤波器的设计原理,并将它转化为下述数学问题,即在L2线性赋范函数空间中如何选取最佳滤波函数的问题。在空间域中直接解这个问题是十分复杂和困难的,我们发现在波数域中用变分法中的等周问题的解法直接选取最佳线性滤波器的传输函数(或波数响应),则在数学方法上既简单又严格。这样选取的最佳线性滤波器的传输函数L(f,k)其表达式也很简单,即L(f,k)=|Si(f,k)|2/{|Si(f,k)|2+λ|Ni(f,k)|2}。式中,|Si(f,k)|2及|Ni(f,k)|2分别代表滤波器输入端讯号和干扰的能谱(或功率谱),f、k分别代表x、y方向上的波数,λ为大于零的常数。 对上述两类问题以及相关的两种最佳线性滤波器而言,L(f,k)的表达式是相同的,而区别仅在于其参变量λ的选取条件不同而已。 有了最佳线性滤波器的传输函数L(f,k)的理论公式,就可以在最小二乘的意义下分析和评价国内外所发表的解决上述两类问题的各种线性滤波方法,并能指出在不同的讯号与干扰条件下,在理论上线性滤波可能达到的最佳效果,从而为设计二维线性数字滤波器时,提供一个理论上的准则。 对位  相似文献   

17.
Passive microseismic data are commonly buried in noise, which presents a significant challenge for signal detection and recovery. For recordings from a surface sensor array where each trace contains a time‐delayed arrival from the event, we propose an autocorrelation‐based stacking method that designs a denoising filter from all the traces, as well as a multi‐channel detection scheme. This approach circumvents the issue of time aligning the traces prior to stacking because every trace's autocorrelation is centred at zero in the lag domain. The effect of white noise is concentrated near zero lag; thus, the filter design requires a predictable adjustment of the zero‐lag value. Truncation of the autocorrelation is employed to smooth the impulse response of the denoising filter. In order to extend the applicability of the algorithm, we also propose a noise prewhitening scheme that addresses cases with coloured noise. The simplicity and robustness of this method are validated with synthetic and real seismic traces.  相似文献   

18.
A seismic trace is modeled as a moving average (MA) process both in signal and noise: a signal wavelet convolved with a reflection coefficient series plus colored random noise. Seismic reflection coefficients can be estimated from seismic traces using suitable estimation algorithms if the input wavelet is known and vice versa. The maximum likelihood (ML) algorithm is used to estimate the system order and the reflection coefficients. The system order is related to the arrival time of the latest signal in a complex seismic reflection event. The least-squares (LS) method does not provide such information. The ML algorithm makes assumptions only about the Gaussian nature of the noise. It is better suited for seismic applications since the LS method inherits the white noise assumption. The Gauss-Newton (G-N) and Newton-Raphson (N-R) optimization algorithms are used to obtain the ML and the LS estimates. Reflection coefficient estimations are affected by the choice of sampling rate of seismic data. Theoretically, the optimum choice in system identification is the Nyquist rate. Experience with synthetic data confirms the theory. In practice, good estimates of reflection coefficients are possible only up to certain pulse separations (or, equivalently, orders). This is mostly due to numerical problems with the optimization algorithms used and partly due to the limited bandwidth of seismic signals. Good estimates from data simulated using three airgun array pulses recorded with 6–128 Hz filter setting are possible up to about 40.0 ms pulse separations. Successful estimations from pinchout and thin layer simulations and well controlled offshore “bright-spots” are given.  相似文献   

19.
均衡拟多道匹配滤波法在波动方程法压制多次波中的应用   总被引:7,自引:6,他引:7  
本文针对单道最小二乘自适应匹配滤波方法在一次波和多次波分量不正交的情况下不能获得正确匹配的问题,提出均衡拟多道最小二乘自适应匹配滤波方法,该方法采取在空间方向上均衡的办法,使得均衡范围内记录中的一次波和多次波分量总是正交的,并结合拟多道最小二乘自适应匹配能更好匹配记录波形的特点,使得该方法取得很好的自适应匹配效果.通过对简单模型、SEG/EAGE SMAART模型和实际资料压制多次波的处理,结果表明该方法效果良好.  相似文献   

20.
Attenuation of random noise and enhancement of structural continuity can significantly improve the quality of seismic interpretation. We present a new technique, which aims at reducing random noise while protecting structural information. The technique is based on combining structure prediction with either similarity‐mean filtering or lower‐upper‐middle filtering. We use structure prediction to form a structural prediction of seismic traces from neighbouring traces. We apply a non‐linear similarity‐mean filter or an lower‐upper‐middle filter to select best samples from different predictions. In comparison with other common filters, such as mean or median, the additional parameters of the non‐linear filters allow us to better control the balance between eliminating random noise and protecting structural information. Numerical tests using synthetic and field data show the effectiveness of the proposed structure‐enhancing filters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号