首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the lowest order small-slope approximation (SSA) scattering cross section for Biot theory is derived. Numerical results are obtained for both backscattering and bistatic scattering using a modified power law spectrum, and these results are compared with those of lowest order perturbation theory (PT). Frequencies ranging from 100 Hz to 3 kHz are used for surfaces with RMS heights h of 0.1 and 1 m and a correlation length l of 10 m. The angle of incidence for the bistatic results is limited to 45/spl deg/. It is found that for the smaller surface height roughness (h = 0.1 m), the SSA and PT give the same results for frequencies up to almost 1 kHz for both backscattering and bistatic scattering. For h = 1 m, the SSA and PT backscatter results are in good agreement at all frequencies for incident grazing angles up to approximately 45/spl deg/. For the bistatic results, the SSA and PT results agree only at low grazing angles of scatter. In the specular region, the results differ significantly.  相似文献   

2.
As part of the sediment acoustics experiment 1999 (SAX99), backscattering from a sand sediment was measured in the 20- to 300-kHz range for incident grazing angles from 10/spl deg/ to 40/spl deg/. Measured backscattering strengths are compared to three different scattering models: a fluid model that uses the mass density of the sediment in determining backscattering, a poroelastic model based on Biot theory and an "effective density" fluid model derived from Biot theory. These comparisons rely heavily on the extensive environmental characterization carried out during SAX99. This environmental characterization is most complete at spatial scales relevant to acoustic frequencies from 20 to 50 kHz. Model/data comparisons lead to the conclusions that rough surface scattering is the dominant scattering mechanism in the 20-50-kHz frequency range and that the Biot and effective density fluid models are more accurate than the fluid model in predicting the measured scattering strengths. For 50-150 kHz, rough surface scattering strengths predicted by the Biot and effective density fluid models agree well with the data for grazing angles below the critical angle of the sediment (about 30/spl deg/) but above the critical angle the trends of the models and the data differ. At 300 kHz, data/model comparisons indicate that the dominant scattering mechanism may no longer be rough surface scattering.  相似文献   

3.
High-frequency bistatic sediment scattering experiment was conducted in the shallow waters off the east coasts of Korea. Acoustic data were taken as a function of grazing angle (30°, 45°, and 60°), scattered angle (30°, 45°, and 60°), and bistatic (azimuthal) angle (0°, 60°, and 120°). Besides a flat bottom it was artificially raked so as to produce directional ripples. The measured scattering strengths for a flat bottom were compared to model predictions of D.R. Jackson et al. (1986). The surface reverberation component is seen to dominate over the volume scattering part at the frequency of 240 kHz. Compared to the flat bottom case, the scattering strengths for directional ripples showed lower and higher variation depending on the ripple's orientation  相似文献   

4.
Reverberation measurements made by the SACLANT Undersea Research Centre at three shallow-water sites (130-190-m depth) are compared with each other and with estimates from the DREA normal-mode reverberation model OGOPOGO. The experiments over silt-clay and sand seabeds were conducted at slightly bistatic geometries (0.7-6.0-km source-receiver separation), using explosive sources detonated at mid-water depths. The signals were received on hydrophones of either a vertical or horizontal array and analyzed in one-tenth-decade frequency bands from 25 to 1000 Hz. The data are compared with each other to investigate the site differences and frequency dependencies, and with the estimates from the reverberation model OGOPOGO to interpret the data and to obtain a qualitative measure of the scattering. For modeling purposes, geoacoustic models of the seabed were assumed, and the reverberation data were fitted by adjusting the Lambert bottom scattering coefficients. Good model agreement was obtained with both individual hydrophone and data. Though somewhat sensitive to the geoacoustic the Lambert coefficients give a measure of the frequency dependence of the scattering. For the silt-clay bottom, the scattering is weak but is independent of frequency; for the sand bottoms, the scattering is stronger and increases with frequency. These results are compared with estimates from other experiments  相似文献   

5.
In some applications of underwater acoustics, it is important to know the ripple structure on shallow-water sediments. For example, the prediction of buried target detection via sound scattering by ripples depends critically on the ripple height and spatial wavelength. Another example is the study of sediment transport, where knowing the ripple structure and its evolution over time helps to understand the forcing on the bottom and the response of sediments. Here, backscatter data from a 300-kHz system are used to show that ripple wavelength and height can be estimated from backscatter images via a simple inversion formula. The inversion results are consistent with in situ measurements of the ripple field using an independent measurement system. Motivated by the backscatter data, we have developed a time-domain numerical model to simulate scattering of high-frequency sound by a ripple field. This model treats small-scale scatterers as Lambertian scatterers distributed randomly on the large-scale ripple field. Numerical simulations are conducted to investigate the conditions under which remote sensing of bottom ripple heights, wavelength, and its power spectrum is possible.   相似文献   

6.
The shallow refracted path through sea floor sediments plays a significant role in the transmission of acoustic energy at low frequencies. For bottom grazing angles of 90/spl deg/ to 25/spl deg/, low-frequency acoustic energy was observed to come from reflected paths. For bottom grazing angles of 25/spl deg/ to 10/spl deg/ the dominant source of low-frequency acoustic energy is from shallow refracted paths through the sediments. At angles less than 10/spl deg/, low-frequency acoustic energy is received from both the refracted and the reflected paths. The refracted path is possible because of the positive gradient within the sediment. The sudden emergence of the refracted arrival is related to the overall sound path length in the sediment and sediment absorption of sound. Since sediment absorption is directly proportional to frequency, only low-frequency energy is transmitted via this path. The refracted path may well exist where unconsolidated sediments of at least a few hundred feet are present.  相似文献   

7.
Experiments on sand mounds in oscillatory flow, undertaken in controlled, large-scale laboratory conditions, have produced well-defined data sets for model comparison. Three bathymetries with different levels of submergence, including a surface-piercing case, were tested. The maximum slope was about 1:5.5. Sediment transport is due to bed load with ripple formation. The principal time-dependent bulk parameters are the vertical distance of the centre of gravity above the base and the volume of the mound. A semi-implicit finite-volume depth-averaged hydrodynamic model is used to drive morphodynamics, using van Rijn's sediment flux model generalized to take account of bed slope, and some justification is given for depth-averaged modeling in these conditions. Starting the model runs with the conditions at the end of the first cycle avoided initial atypical physical behaviour. In general good predictions were obtained with an angle of repose reduced from the standard value of about 30° for stationary beds to 15°. For these situations, morphodynamics was largely unaffected by a hydrodynamic roughness height in the range 2.5D50 to 51D50, with larger values accounting for ripple roughness. The reduced angle of repose may be physically expected with mobile beds but this specific value is only expected to be suited to this form of bed motion. In one case an exaggerated ripple formed near the top of the mound reducing agreement with experiment. For the submerged case with normal ripple structure excellent predictions were obtained. For the initially surface-piercing mound, the time of submergence was better predicted with a 30° angle of repose, presumably due to the prominent influence of the near stationary bed near the wet/dry interface, although long term predictions were better predicted with 15°. The occurrence of vortex shedding in the first cycle modeled was in agreement with experimental observation.  相似文献   

8.
As part of the environmental characterization to model acoustic bottom scattering during the high-frequency sediment acoustics experiment (SAX99), fine-scale sediment roughness of a medium sand was successfully measured within a 600 /spl times/ 600-m area by two methods: stereo photography and a technique using a conductivity system. Areal coverage of the two methods, representing approximately 0.16 m/sup 2/ of the sea floor, was comparable, resulting in the depiction and quantification of half-meter wavelength sand ripples. Photogrammetric results were restricted to profiles digitized at 1-mm intervals; sediment conductivity results generated gridded micro-bathymetric measurements with 1- to 2-cm node spacing. Roughness power spectra give similar results in the low-spatial-frequency domains where the spectra estimated from both approaches overlap. However, spectra derived from higher resolution photogrammetric results appear to exhibit a multiple-power-law fit. Roughness measurements also indicate that spectrum changes as a function of time. Application of statistical confidence bounds on the power spectra indicates that roughness measurements separated by only 1-2 m may be spatially nonstationary.  相似文献   

9.
It has long been known that the statistical properties of acoustic echoes from individual fish can have non-Rayleigh characteristics. The statistical properties of echoes from zooplankton are generally less understood. In this study, echoes from individual fish and zooplankton from a series of laboratory measurements from the past decade are investigated. In the experiments, acoustic echoes from various individual organisms were measured over a wide range of frequencies and orientations, typically in 1/spl deg/-3/spl deg/ increments. In the analysis in this paper, the echoes from most of those measurements are grouped according to ranges of orientation, which correspond to typical orientation distributions of these organisms in the natural ocean environment. This grouping provides a distribution of echo values for each range of orientation. This approach, in essence, emulates a field experiment whereby distributions of echoes would be recorded for different distributions of orientations of the organisms. For both the fish and zooplankton data, there are conditions under which the echoes are strongly non-Rayleigh distributed. In some cases, the distribution is quantitatively connected to the physics of the scattering process while, in other cases, the connection is described qualitatively. Exploitation of the animal-specific statistics for classification purposes is suggested.  相似文献   

10.
An upgrade to bistatic scattering strength modelling that is based on the authors' current understanding of bottom topographic scattering with an emphasis on modeling the `forward lobe' where Lambert's law fails quite significantly is reported. Low-frequency bottom scatter modeling is reviewed with particular emphasis on the issues of the forward scattered lobe. A specific model (a modified version of BISSM) is proposed, and the model's advantages and limitations are discussed. The requirement for certain high-resolution geomorphic data needed to support the model is discussed. Like the original BISSM, the version does not modify the accepted form for diffuse scattering, but it does modify the form of the forward lobe  相似文献   

11.
Detection of buried targets using a synthetic aperture sonar   总被引:1,自引:0,他引:1  
This paper presents observations of buried target detections made using a 20-kHz synthetic aperture sonar. At grazing angles below the critical angle, surprisingly high signal-to-noise detections were made of cylindrical targets buried at depths of 15 and 50 cm. During a separate set of measurements, buried spheres were clearly seen at steep grazing angles, but were generally not seen below the critical angle. Since scattering from wave-generated sand ripples may contribute to detections at grazing angles below critical angle, the information available on the ripple fields is discussed and used in acoustic backscatter simulations for the buried spheres. Lack of information on the ripple height precludes a definitive explanation for the absence of buried sphere detections at subcritical grazing angles.  相似文献   

12.
Shallow-water bottom reverberation measurements   总被引:2,自引:0,他引:2  
High-frequency bottom reverberation measurements were made at an experimental site in the Gulf of Mexico. The acoustic data were taken as a function of frequency (40-180 kHz) and grazing angle (40-33°). The measured acoustic reverberation results are compared to predictions made by models developed by Jackson et al. (1986, 1996) and Boyle and Chotiros (1995). The models used inputs from the analysis of sediment cores and stereophotography. The model predictions show differences from each other and from the data. The results show reverberation-level variabilities as a function of frequency that cannot be accurately predicted by these models  相似文献   

13.
Radar backscatter measurements made as part of Project MARSEN in 1979 from the Noordwijk tower off the Dutch coast are used to calculate apparent ripple (capillary and short-gravity wave) spectra by inverting the small-perturbation scattering theory. The measurements were made at 10 and 15 GHz for angles of incidence ranging from20degto70deg; this means that the range of Bragg-resonant spatial wavenumbers covered is from 1.43 to 5.90 cm-1. Results of coincidentC- andX-band experiments by the Institute Francais du Petrole (IFP) andX-band experiments by a group of Dutch researchers (TNO) are compared with our results and good general agreement is found. Our initial results show a steeper falloff of the spectra with increasing wavenumber than reported previously, particularly at low windspeeds. When the spectra are modified to account for the difference between previous aircraft and tower measurements [1], the observed spectra agree well with the appropriate part of Pierson's wave spectrum as modified by Fung and Lee [2].  相似文献   

14.
为了解各向异性随机粗糙海面的微波双站散射机制及其特性,本文利用解析近似的积分方程模型以及一种改进的半经验海浪谱模型实现了对各向异性随机粗糙海面的全极化微波散射仿真模拟,并与卫星观测数据、经验的地球物理模式函数及已有的解析近似散射模型仿真结果进行了对比,验证了仿真结果的可行性和准确性。利用该模型分析了入射波频率、入射角、极化方式、海面风速及风向等参数对各向异性海面双站散射的影响。模拟结果表明,在不同的入射角、散射角及方位角等观测几何条件下,海面不同波段的双站散射表现出不同的空间散射特性,且对风速、风向等海面动力学参数表现出不同的敏感性,以L波段为例,海面向后半球双站散射在各个极化方式下都对风速较为敏感,而在同极化方式下,其对风向的响应在中低风速和高风速条件下相反,整体而言,低风速下海面双站散射对风向更为敏感。这表明对于海面动力参数的反演,双站散射可以提供比传统单站雷达后向散射更丰富的物理信息。本文探讨了各向异性海面微波双站散射特性,为基于主动式及分布式微波传感器的海洋动力参数遥感反演提供了理论分析基础。  相似文献   

15.
Broad-band forward loss and backscattering measurements were made at low to moderate grazing angles in shallow water off San Diego using pulses extending from 1 to 6 kHz in bandwidth. For forward bounce measurements, these large bandwidths achieved time resolutions as small as 0.25 ms, and revealed fine-scale subbottom layering with separations down to approximately 50 cm. The forward loss values show large fluctuations (>10 dB) over translation distances of 20-50 m in some cases or between two measurement runs separated by a few hundred meters in other cases. This observation, along with associated variations in the extent and number of subbottom arrivals, indicates a distinct patchiness in surficial sediment type. Previous measurements made in nearby locales also evidenced strong variations in bottom loss, but lacked the spatial resolution to discern interface reflections from subbottom contributions. Broad-band backscattering strength measured at 20-40° grazing was quite homogeneous over the entire region, probably because the critical angle is below 20°, as inferred from forward loss measurements. Theory suggests that scattering at angles above critical is from subbottom inhomogeneities rather than boundary roughness. The grazing angle and frequency dependence of these backscattering data are relatively weak  相似文献   

16.
An in situ resistivity profiler was developed to measure with minimal disruption, the near-surface porosity of shallow-water marine sands. Results from a siliciclastic site off NW Florida and two Bahamian carbonate sites (an ooid shoal and coral reef sand flat) suggest the following general features. First, there is a 5- to 15-mm thick zone of elevated porosity adjacent to the sediment-water interface. Porosity in this layer was from 0.05 to 0.25 (decimal porosity) greater than the subjacent values, and would be difficult to resolve using traditional measurement techniques. Second, average porosity at >10-mm depth was 0.38 /spl plusmn/ 0.01 at the siliciclastic site, 0.39 /spl plusmn/ 0.01 at the ooid shoal site, and 0.49 /spl plusmn/ 0.02 at the coral reef sand flat site; consistent with literature values. Third, individual profiles exhibited 0.05-0.15 fluctuations about the mean, with vertical length scales of 5-15 mm. These fluctuations may be the result of grain packing heterogeneities caused by hydrodynamic sorting during deposition and subsequent physical and biological mixing or could be artifacts caused by disruption of the grain framework. Fourth, ripple troughs at the siliciclastic sand site had a significantly higher near-surface porosity compared to ripple crests, due most likely to the presence of detrital material in the troughs.  相似文献   

17.
A normal-mode model for calculating reverberation in shallow water is presented. Some illustrative calculations are given for the bistatic case and for vertical and horizontal line-array receivers. Emphasis is on comparison with measurements of bistatic reverberation obtained at a shallow-water area in the Mediterranean. The data are from explosive sources received by a towed array, analyzed in one-tenth-decade frequency bands at subkilohertz frequencies. Model calculations for a flat-bottomed environment indicate a strong dependence on propagation conditions and a weak dependence on beam steering direction. Preliminary comparisons give quite good agreement between measured reverberation and model predictions, but point to the need for extending modeling efforts to handle range-dependent environments  相似文献   

18.
The experiment, The Acoustic Characterization Test III, was conducted in the oceanographically complex Strait of Korea to accurately measure the sound transmission under known environmental conditions. Geoacoustic profiles derived from geophysical measurements, measured bathymetry, and sound-speed profiles were the basis for range dependent parabolic equation (PE) calculations. Agreement between measured and calculated transmission loss was obtained with an attenuation profile in the near water-sediment interface layer with a dependence on frequency to the 1.8 power consistent with measurements in other sand-silt areas. Since the environment was oceanographically complex and the shipping noise levels were high, the coherency of the sound transmission was estimated using relative signal gain (RSG). RSG was taken as the difference between the gain calculated with PE and measured with the array and at longer ranges and higher frequencies was found to be approximately -2 dB with a signal gain coefficient of variation of 5%. This RSG degradation, attributed to the random signal phase fluctuations resulting from scattering from the surfaces and volume of the waveguide, yielded using a Gaussian coherence function a spatial coherence length of 30/spl lambda/ @ 400 Hz-40 km. In addition, high resolution imaging of five targets with two bottom mounted arrays illustrate the achievable performance of low-to-mid frequency active sonar in this environment.  相似文献   

19.
This paper presents observations of a buried sphere detected with a low-frequency (5–35-kHz) synthetic aperture sonar (SAS). These detections were made with good signal-to-noise ratios (SNRs) at both above and below the critical grazing angle. The raw data for the below-critical-grazing angle detection shows that the acoustic penetration is skewed by the 29$^{circ}$ offset of the ripple field relative to the sonar path. This observed skew is in agreement with T-matrix calculations carried out to model penetration into the bottom via ripple diffraction. Additionally, measured SNRs over different frequency bands are compared to predictions made using both first- and second-order perturbation theory for ripple diffraction. Both the data and the models indicate a peak detection region around 25 kHz for the environmental conditions present during the test. These results confirm that ripple diffraction can play a critical role in long range (subcritical angle) buried target detection.   相似文献   

20.
A joint surface roughness/volumetric perturbation scattering theory is utilized to characterize the reverberation from a littoral ocean bottom. The result is a reflected field spectrum that consists of specular and off-specular components. The predicted scattering strength from the off-specular component is shown to be comprised of interface roughness scattering, sediment inhomogeneity volumetric scattering, and interface roughness/sediment inhomogeneity correlation scattering. The sediment inhomogeneity volumetric scattering is shown to contain two contributions that are due to fractional variations in sediment densities and sound velocities. Both contributions are shown to be affected by the interface effect by a round-trip transmission coefficient factor. These two fractional variations are shown to contribute differently to scattering strength but similarly to backscattering strength. Inversely predicted roughness spectra from various sets of backscattering strength data are shown to be consistent with a generally known roughness spectrum. Both inversely predicted roughness and volumetric scattering physical property spectra are found to be self-consistent. However, the use of only ocean bottom backscattering strength data is found to be insufficient to judge whether the roughness or the volumetric scattering dominates. Reverberation characterizations using bistatic scattering strength data and signal spread data are planned for future studies  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号