首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
P. MARSH  J. W. POMEROY 《水文研究》1996,10(10):1383-1400
Models of surface energy balance and snow metamorphism are utilized to predict the energy and meltwater fluxes at an Arctic site in the forest–tundra transition zone of north-western Canada. The surface energy balance during the melt period is modelled using an hourly bulk aerodynamic approach. Once a snowcover becomes patchy, advection from the bare patches to the snow-covered areas results in a large spatial variation in basin snowmelt. In order to illustrate the importance of small-scale, horizontal advection, a simple parameterization scheme using sensible heat fluxes from snow free areas was tested. This scheme estimates the maximum horizontal advection of sensible heat from the bare patches to the snow-covered areas. Calculated melt was routed through the measured snowcover in each landscape type using a variable flow path, meltwater percolation model. This allowed the determination of the spatial variability in the timing and magnitude of meltwater release for runoff. Model results indicate that the initial release of meltwater first occurred on the shallow upland tundra sites, but meltwater release did not occur until nearly two weeks later on the deep drift snowcovers. During these early periods of melt, not all meltwater is available for runoff. Instead, there is a period when some snowpacks are only partially contributing to runoff, and the spatial variation of runoff contribution corresponds to landscape type. Comparisons of melt with and without advection suggests that advection is an important process controlling the timing of basin snowmelt.  相似文献   

2.
Abstract

The dominant source of streamflow in many mountainous watersheds is snowmelt recharge through shallow groundwater systems. The hydrological response of these watersheds is controlled by basin structure and spatially distributed snowmelt. The purpose of this series of two papers is to simulate spatially varying snowmelt and groundwater response in a small mountainous watershed. This paper examines the spatially and temporally variable snowmelt to be used as input to the groundwater flow modelling described in the second paper. Snowmelt simulation by the Simultaneous Heat and Water (SHAW) model (a detailed process model of the interrelated heat, water and solute movement through vegetative cover, snow, residue and soil) was validated by applying the model to two years of data at three sites ranging from shallow transient snow cover on a west-facing slope to a deep snow drift on a north-facing slope. The simulated energy balances for several melt periods are presented. Snow depth, density, and the magnitude and timing of snow cover outflow were simulated well for all sites.  相似文献   

3.
W. T. Sloan  C. G. Kilsby  R. Lunn 《水文研究》2004,18(17):3371-3390
General circulation models (GCMs), or stand‐alone models that are forced by the output from GCMs, are increasingly being used to simulate the interactions between snow cover, snowmelt, climate and water resources. The variation in snowpack extent, and hence albedo, through time in a cell is likely to be substantial, especially in mid‐latitude mountainous regions. As a consequence, the energy budget simulation by a GCM relies on a realistic representation of snowpack extent. Similarly, from a water resource perspective, the spatial extent of the pack is key in predicting meltwater discharges into rivers. In this paper a simple computationally efficient regional snow model has been developed, which is based on a degree‐day approach and simulates the fraction of the model domain covered by snow, the spatially averaged melt rate and the mean snowpack depth. Computational efficiency is achieved through a novel spatial averaging procedure, which relies on the assumptions that precipitation and temperature scale linearly with elevation and that the distribution of elevations in the domain can be modelled by a continuous function. The resulting spatially averaged model is compared with both observations of the duration of snow cover throughout Austria and with results from a distributed model based on the same underlying assumptions but applied at a fine spatial resolution. The new spatially averaged model successfully simulated the seasonal snow duration observations and reproduced the daily dynamics of snow cover extent, the spatially averaged melt rate and mean pack depth simulated by the distributed model. It, therefore, offers a computationally efficient and easily applied alternative to the current crop of regional snow models. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Radionuclides released to the environment and deposited with or onto snow can be stored over long time periods if ambient temperature stays low, particularly in glaciated areas or high alpine sites. The radionuclides will be accumulated in the snowpack during the winter unless meltwater runoff at the snow base occurs. They will be released to surface waters within short time during snowmelt in spring. In two experiments under controlled melting conditions of snow in the laboratory, radionuclide migration and runoff during melt‐freeze‐cycles were examined. The distribution of Cs‐134 and Sr‐85 tracers in homogeneous snow columns and their fractionation and potential preferential elution in the first meltwater portions were determined. Transport was associated with the percolation of meltwater at ambient temperatures above 0 °C after the snowpack became ripe. Mean migration velocities in the pack were examined for both nuclides to about 0.5 cm hr?1 after one diurnal melt‐freeze‐cycle at ambient temperatures of ?2 to 4 °C. Meltwater fluxes were calculated with a median of 1.68 cm hr?1. Highly contaminated portions of meltwater with concentration factors between 5 and 10 against initial bulk concentrations in the snowpack were released as ionic pulse with the first meltwater. Neither for caesium nor strontium preferential elution was observed. After recurrent simulated day‐night‐cycles (?2 to 4 °C), 80% of both radionuclides was released with the first 20% of snowmelt within 4 days. 50% of Cs‐134 and Sr‐85 were already set free after 24 hr. Snowmelt contained highest specific activities when the melt rate was lowest during the freeze‐cycles due to concentration processes in remaining liquids, enhanced by the melt‐freeze‐cycling. This implies for natural snowpack after significant radionuclide releases, that long‐time accumulation of radionuclides in the snow during frost periods, followed by an onset of steady meltwater runoff at low melt rates, will cause the most pronounced removal of the contaminants from the snow cover. This scenario represents the worst case of impact on water quality and radiation exposure in aquatic environments.  相似文献   

5.
A process‐based, spatially distributed hydrological model was developed to quantitatively simulate the energy and mass transfer processes and their interactions within arctic regions (arctic hydrological and thermal model, ARHYTHM). The model first determines the flow direction in each element, the channel drainage network and the drainage area based upon the digital elevation data. Then it simulates various physical processes: including snow ablation, subsurface flow, overland flow and channel flow routing, soil thawing and evapotranspiration. The kinematic wave method is used for conducting overland flow and channel flow routing. The subsurface flow is simulated using the Darcian approach. The energy balance scheme was the primary approach used in energy‐related process simulations (snowmelt and evapotranspiration), although there are options to model snowmelt by the degree‐day method and evapotranspiration by the Priestley–Taylor equation. This hydrological model simulates the dynamic interactions of each of these processes and can predict spatially distributed snowmelt, soil moisture and evapotranspiration over a watershed at each time step as well as discharge in any specified channel(s). The model was applied to Imnavait watershed (about 2·2 km2) and the Upper Kuparuk River basin (about 146 km2) in northern Alaska. Simulated results of spatially distributed soil moisture content, discharge at gauging stations, snowpack ablations curves and other results yield reasonable agreement, both spatially and temporally, with available data sets such as SAR imagery‐generated soil moisture data and field measurements of snowpack ablation, and discharge data at selected points. The initial timing of simulated discharge does not compare well with the measured data during snowmelt periods mainly because the effect of snow damming on runoff was not considered in the model. Results from the application of this model demonstrate that spatially distributed models have the potential for improving our understanding of hydrology for certain settings. Finally, a critical component that led to the performance of this modelling is the coupling of the mass and energy processes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Spring snow melt run‐off in high latitude and snow‐dominated drainage basins is generally the most significant annual hydrological event. Melt timing, duration, and flow magnitude are highly variable and influence regional climate, geomorphology, and hydrology. Arctic and sub‐arctic regions have sparse long‐term ground observations and these snow‐dominated hydrologic regimes are sensitive to the rapidly warming climate trends that characterize much of the northern latitudes. Passive microwave brightness temperatures are sensitive to changes in the liquid water content of the snow pack and make it possible to detect incipient melt, diurnal melt‐refreeze cycles, and the approximate end of snow cover on the ground over large regions. Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Scanning Radiometer for EOS (AMSR‐E) passive microwave brightness temperatures (Tb) and diurnal amplitude variations (DAV) are used to investigate the spatial variability of snowmelt onset timing (in two stages, ‘DAV onset’ and ‘melt onset’) and duration for a complex sub‐arctic landscape during 2005. The satellites are sensitive to small percentages of liquid water, and therefore represent ‘incipient melt’, a condition somewhat earlier than a traditional definition of a melting snowpack. Incipient melt dates and duration are compared to topography, land cover, and hydrology to investigate the strength and significance of melt timing in heterogeneous landscapes in the Pelly River, a major tributary to the Yukon River. Microwave‐derived melt onset in this region in 2005 occurred from late February to late April. Upland areas melt 1–2 weeks later than lowland areas and have shorter transition periods. Melt timing and duration appear to be influenced by pixel elevation, aspect, and uniformity as well as other factors such as weather and snow mass distribution. The end of the transition season is uniform across sensors and across the basin in spite of a wide variety of pixel characteristics. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The June 2013 flood in the Canadian Rockies featured rain‐on‐snow (ROS) runoff generation at alpine elevations that contributed to the high streamflows observed during the event. Such a mid‐summer ROS event has not been diagnosed in detail, and a diagnosis may help to understand future high discharge‐producing hydrometeorological events in mountainous cold regions. The alpine hydrology of the flood was simulated using a physically based model created with the modular cold regions hydrological modelling platform. The event was distinctive in that, although at first, relatively warm rain fell onto existing snowdrifts inducing ROS melt; the rainfall turned to snowfall as the air mass cooled and so increased snowcover and snowpacks in alpine regions, which then melted rapidly from ground heat fluxes in the latter part of the event. Melt rates of existing snowpacks were substantially lower during the ROS than during the relatively sunny periods preceding and following the event as a result of low wind speeds, cloud cover and cool temperatures. However, at the basin scale, melt volumes increased during the event as a result of increased snowcover from the fresh snowfall and consequent large ground heat contributions to melt energy, causing snowmelt to enhance rainfall–runoff by one fifth. Flow pathways also shifted during the event from relatively slow sub‐surface flow prior to the flood to an even contribution from sub‐surface and fast overland flow during and immediately after the event. This early summer, high precipitation ROS event was distinctive for the impact of decreased solar irradiance in suppressing melt rates, the contribution of ground heat flux to basin scale snowmelt after precipitation turned to snowfall, the transition from slow sub‐surface to fast overland flow runoff as the sub‐surface storage saturated and streamflow volumes that exceeded precipitation. These distinctions show that summer, mountain ROS events should be considered quite distinct from winter ROS and can be important contributors to catastrophic events. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
We apply the process‐based, distributed TOPKAPI‐ETH glacio‐hydrological model to a glacierized catchment (19% glacierized) in the semiarid Andes of central Chile. The semiarid Andes provides vital freshwater resources to valleys in Chile and Argentina, but only few glacio‐hydrological modelling studies have been conducted, and its dominant hydrological processes remain poorly understood. The catchment contains two debris‐free glaciers reaching down to 3900 m asl (Bello and Yeso glaciers) and one debris‐covered avalanche‐fed glacier reaching to 3200 m asl (Piramide Glacier). Our main objective is to compare the mass balance and runoff contributions of both glacier types under current climatic conditions. We use a unique dataset of field measurements collected over two ablation seasons combined with the distributed TOPKAPI‐ETH model that includes physically oriented parameterizations of snow and ice ablation, gravitational distribution of snow, snow albedo evolution and the ablation of debris‐covered ice. Model outputs indicate that while the mass balance of Bello and Yeso glaciers is mostly explained by temperature gradients, the Piramide Glacier mass balance is governed by debris thickness and avalanches and has a clear non‐linear profile with elevation as a result. Despite the thermal insulation effect of the debris cover, the mass balance and contribution to runoff from debris‐free and debris‐covered glaciers are similar in magnitude, mainly because of elevation differences. However, runoff contributions are distinct in time and seasonality with ice melt starting approximately four weeks earlier from the debris‐covered glacier, what is of relevance for water resources management. At the catchment scale, snowmelt is the dominant contributor to runoff during both years. However, during the driest year of our simulations, ice melt contributes 42 ± 8% and 67 ± 6% of the annual and summer runoff, respectively. Sensitivity analyses show that runoff is most sensitive to temperature and precipitation gradients, melt factors and debris cover thickness. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Mountain water resources management often requires hydrological models that need to handle both snow and ice melt. In this study, we compared two different model types for a partly glacierized watershed in central Switzerland: (1) an energy‐balance model primarily designed for snow simulations; and (2) a temperature‐index model developed for glacier simulations. The models were forced with data extrapolated from long‐term measurement records to mimic the typical input data situation for climate change assessments. By using different methods to distribute precipitation, we also assessed how various snow cover patterns influenced the modelled runoff. The energy‐balance model provided accurate discharge estimations during periods dominated by snow melt, but dropped in performance during the glacier ablation season. The glacier melt rates were sensitive to the modelled snow cover patterns and to the parameterization of turbulent heat fluxes. In contrast, the temperature‐index model poorly reproduced snow melt runoff, but provided accurate discharge estimations during the periods dominated by glacier ablation, almost independently of the method used to distribute precipitation. Apparently, the calibration of this model compensated for the inaccurate precipitation input with biased parameters. Our results show that accurate estimates of snow cover patterns are needed either to correctly constrain the melt parameters of the temperature‐index model or to ensure appropriate glacier surface albedos required by the energy‐balance model. Thus, particularly when only distant meteorological stations are available, carefully selected input data and efficient extrapolation methods of meteorological variables improve the reliability of runoff simulations in high alpine watersheds. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
An analysis of the hydrological effects of vegetation changes in the Columbia River basin over the last century was performed using two land cover scenarios. The first was a reconstruction of historical land cover vegetation, c. 1900, as estimated by the federal Interior Columbia Basin Ecosystem Management Project (ICBEMP). The second was current land cover as estimated from remote sensing data for 1990. Simulations were performed using the variable infiltration capacity (VIC) hydrological model, applied at one‐quarter degree spatial resolution (approximately 500 km2 grid cell area) using hydrometeorological data for a 10 year period starting in 1979, and the 1900 and current vegetation scenarios. The model represents surface hydrological fluxes and state variables, including snow accumulation and ablation, evapotranspiration, soil moisture and runoff production. Simulated daily hydrographs of naturalized streamflow (reservoir effects removed) were aggregated to monthly totals and compared for nine selected sub‐basins. The results show that, hydrologically, the most important vegetation‐related change has been a general tendency towards decreased vegetation maturity in the forested areas of the basin. This general trend represents a balance between the effects of logging and fire suppression. In those areas where forest maturity has been reduced as a result of logging, wintertime maximum snow accumulations, and hence snow available for runoff during the spring melt season, have tended to increase, and evapotranspiration has decreased. The reverse has occurred in areas where fire suppression has tended to increase vegetation maturity, although the logging effect appears to dominate for most of the sub‐basins evaluated. Predicted streamflow changes were largest in the Mica and Corralin sub‐basins in the northern and eastern headwaters region; in the Priest Rapids sub‐basin, which drains the east slopes of the Cascade Mountains; and in the Ice Harbor sub‐basin, which receives flows primarily from the Salmon and Clearwater Rivers of Idaho and western Montana. For these sub‐basins, annual average increases in runoff ranged from 4·2 to 10·7% and decreases in evapotranspiration ranged from 3·1 to 12·1%. In comparison with previous studies of individual, smaller sized watersheds, the modelling approach used in this study provides predictions of hydrological fluxes that are spatially continuous throughout the interior Columbia River basin. It thus provides a broad‐scale framework for assessing the vulnerability of watersheds to altered streamflow regimes attributable to changes in land cover that occur over large geographical areas and long time‐frames. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
In the western USA, shifts from snow to rain precipitation regimes and increases in western juniper cover in shrub‐dominated landscapes can alter surface water input via changes in snowmelt and throughfall. To better understand how shifts in both precipitation and semi‐arid vegetation cover alter above‐ground hydrological processes, we assessed how rain interception differs between snow and rain surface water input; how western juniper alters snowpack dynamics; and how these above‐ground processes differ across western juniper, mountain big sagebrush and low sagebrush plant communities. We collected continuous surface water input with four large lysimeters, interspace and below‐canopy snow depth data and conducted periodic snow surveys for two consecutive water years (2013 and 2014). The ratio of interspace to below‐canopy surface water input was greater for snow relative to rain events, averaging 79.4% and 54.8%, respectively. The greater surface water input ratio for snow is in part due to increased deposition of redistributed snow under the canopy. We simulated above‐ground energy and water fluxes in western juniper, low sagebrush and mountain big sagebrush for two 8‐year periods under current and projected mid‐21st century warmer temperatures with the Simultaneous Heat and Water (SHAW) model. Juniper compared with low and mountain sagebrush reduced surface water input by an average of 138 mm or 24% of the total site water budget. Conversely, warming temperatures reduced surface water input by only an average of 14 mm across the three vegetation types. The future (warmer) simulations resulted in earlier snow disappearance and surface water input by 51 and 45 days, respectively, across juniper, low sagebrush and mountain sagebrush. Information from this study can help land managers in the sagebrush steppe understand how both shifts in climate and semi‐arid vegetation will alter fundamental hydrological processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A comprehensive understanding of seasonal hydrological dynamics is required to describe the influence of pore‐water pressure on the stability of landslides in snowy regions. This study reports on the results of continuous meteorological and hydrological observations over 2 years on a landslide body comprising Neogene sedimentary rocks in northern Japan, where a thick (3–5 m) seasonal snowpack covers the land surface. Monitoring of the volumetric water content in shallow unsaturated zones (<0.8 m depth) and pore‐water pressure in saturated bedrock at depths of 2.0 and 5.2 m revealed clear seasonality in hydrological responses to rainfall and meltwater supply. During snow‐free periods, both the shallow soil moisture and deep pore‐water pressure responded rapidly to intense rainwater infiltration. In contrast, during snowmelt, the deep pore pressure fluctuated in accordance with the daily cycle of meltwater input, without notable changes in shallow moisture conditions. During occasional foehn events that cause intense snow melting in midwinter, meltwater flows preferentially through the layered snowpack, converging to produce a localized water supply at the ground surface. This episodically triggers a significant rise in pore‐water pressure. The seasonal differences in hydrological responses were characterized by a set of newly proposed indices for the magnitude and quickness of increases in the pressure head near the sliding surface. Under snow‐covered conditions, the magnitude of the pressure increase tends to be suppressed, probably owing to a reduction in infiltration caused by a seasonal decrease in the permeability of surface soils, and effective pore‐water drainage through the highly conductive colluvial layer. Deep groundwater flow within bedrock remained in a steady upwelling state, enhanced by increasing moisture in shallow soils under snow cover, reflecting the convergence of subsurface water from surrounding hillslopes.  相似文献   

14.
Leaf area index (LAI) and canopy coverage are important parameters when modelling snow process in coniferous forests, controlling interception and transmitting radiation. Estimates of LAI and sky view factor show large variability depending on the estimation method used, and it is not clear how this is reflected in the calculated snow processes beneath the canopy. In this study, the winter LAI and sky view fraction were estimated using different optical and biomass‐based approximations in several boreal coniferous forest stands in Fennoscandia with different stand density, age and site latitude. The biomass‐based estimate of LAI derived from forest inventory data was close to the values derived from the optical measurements at most sites, suggesting that forest inventory data can be used as input to snow hydrological modelling. Heterogeneity of tree species and site fertility, as well as edge effects between different forest compartments, caused differences in the LAI estimates at some sites. A snow energy and mass balance model (SNOWPACK) was applied to detect how the differences in the estimated values of the winter LAI and sky view fraction were reflected in simulated snow processes. In the simulations, an increase in LAI and a decrease in sky view fraction changed the snow surface energy balance by decreasing shortwave radiation input and increasing longwave radiation input. Changes in LAI and sky view fraction affected directly snow accumulation through altered throughfall fraction and indirectly snowmelt through the changed surface energy balance. Changes in LAI and sky view fraction had a greater impact on mean incoming radiation beneath the canopy than on other energy fluxes. Snowmelt was affected more than snow accumulation. The effect of canopy parameters on evaporation loss from intercepted snow was comparable with the effect of variation in governing meteorological variables such as precipitation intensity and air temperature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Tundra snow cover is important to monitor as it influences local, regional, and global‐scale surface water balance, energy fluxes, as well as ecosystem and permafrost dynamics. Observations are already showing a decrease in spring snow cover duration at high latitudes, but the impact of changing winter season temperature and precipitation on variables such as snow water equivalent (SWE) is less clear. A multi‐year project was initiated in 2004 with the objective to quantify tundra snow cover properties over multiple years at a scale appropriate for comparison with satellite passive microwave remote sensing data and regional climate and hydrological models. Data collected over seven late winter field campaigns (2004 to 2010) show the patterns of snow depth and SWE are strongly influenced by terrain characteristics. Despite the spatial heterogeneity of snow cover, several inter‐annual consistencies were identified. A regional average density of 0.293 g/cm3 was derived and shown to have little difference with individual site densities when deriving SWE from snow depth measurements. The inter‐annual patterns of SWE show that despite variability in meteorological forcing, there were many consistent ratios between the SWE on flat tundra and the SWE on lakes, plateaus, and slopes. A summary of representative inter‐annual snow stratigraphy from different terrain categories is also presented. © 2013 Her Majesty the Queen in Right of Canada. Hydrological Processes. © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
It is well known that snow plays an important role in land surface energy balance; however, modelling the subgrid variability of snow is still a challenge in large‐scale hydrological and land surface models. High‐resolution snow depth data and statistical methods can reveal some characteristics of the subgrid variability of snow depth, which can be useful in developing models for representing such subgrid variability. In this study, snow depth was measured by airborne Lidar at 0.5‐m resolution over two mountainous areas in south‐western Wyoming, Snowy Range and Laramie Range. To characterize subgrid snow depth spatial distribution, measured snow depth data of these two areas were meshed into 284 grids of 1‐km × 1‐km. Also, nine representative grids of 1‐km × 1‐km were selected for detailed analyses on the geostatistical structure and probability density function of snow depth. It was verified that land cover is one of the important factors controlling spatial variability of snow depth at the 1‐km scale. Probability density functions of snow depth tend to be Gaussian distributions in the forest areas. However, they are eventually skewed as non‐Gaussian distribution, largely due to the no‐snow areas effect, mainly caused by snow redistribution and snow melt. Our findings show the characteristics of subgrid variability of snow depth and clarify the potential factors that need to be considered in modelling subgrid variability of snow depth.  相似文献   

17.
Runoff hydrology has a large historical context concerned with the mechanisms and pathways of how water is transferred to the stream network. Despite this, there has been relatively little application of runoff generation theory to cold regions, particularly the expansive treeless environments where tundra vegetation, permafrost, and organic soils predominate. Here, the hydrological cycle is heavily influenced by 1) snow storage and release, 2) permafrost and frozen ground that restricts drainage, and 3) the water holding capacity of organic soils. While previous research has adapted temperate runoff generation concepts such as variable source area, transmissivity feedback, and fill‐and‐spill, there has been no runoff generation concept developed explicitly for tundra environments. Here, we propose an energy‐based framework for delineating runoff contributing areas for tundra environments. Aerodynamic energy and roughness height control the end‐of‐winter snow water equivalent, which varies orders of magnitude across the landscape. Radiant energy in turn controls snowmelt and ground thaw rates. The combined spatial pattern of aerodynamic and radiant energy control flow pathways and the runoff contributing areas of the catchment, which are persistent on a year‐to‐year basis. While ground surface topography obviously plays an important role in the assessment of contributing areas, the close coupling of energy to the hydrological cycles in arctic and alpine tundra environments dictates a new paradigm. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
As large, high‐severity forest fires increase and snowpacks become more vulnerable to climate change across the western USA, it is important to understand post‐fire disturbance impacts on snow hydrology. Here, we examine, quantify, parameterize, model, and assess the post‐fire radiative forcing effects on snow to improve hydrologic modelling of snow‐dominated watersheds having experienced severe forest fires. Following a 2011 high‐severity forest fire in the Oregon Cascades, we measured snow albedo, monitored snow, and micrometeorological conditions, sampled snow surface debris, and modelled snowpack energy and mass balance in adjacent burned forest (BF) and unburned forest sites. For three winters following the fire, charred debris in the BF reduced snow albedo, accelerated snow albedo decay, and increased snowmelt rates thereby advancing the date of snow disappearance compared with the unburned forest. We demonstrate a new parameterization of post‐fire snow albedo as a function of days‐since‐snowfall and net snowpack energy balance using an empirically based exponential decay function. Incorporating our new post‐fire snow albedo decay parameterization in a spatially distributed energy and mass balance snow model, we show significantly improved predictions of snow cover duration and spatial variability of snow water equivalent across the BF, particularly during the late snowmelt period. Field measurements, snow model results, and remote sensing data demonstrate that charred forests increase the radiative forcing to snow and advance the timing of snow disappearance for several years following fire. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Arctic river basins are amongst the most vulnerable to climate change. However, there is currently limited knowledge of the hydrological processes that govern flow dynamics in Arctic river basins. We address this research gap using natural hydrochemical and isotopic tracers to identify water sources that contributed to runoff in river basins spanning a gradient of glacierization (0–61%) in Svalbard during summer 2010 and 2011. Spatially distinct hydrological processes operating over diurnal, weekly and seasonal timescales were characterized by river hydrochemistry and isotopic composition. Two conceptual water sources (‘meltwater’ and ‘groundwater’) were identified and used as a basis for end‐member mixing analyses to assess seasonal and year‐to‐year variability in water source dynamics. In glacier‐fed rivers, meltwater dominated flows at all sites (typically >80%) with the highest contributions observed at the beginning of each study period in early July when snow cover was most extensive. Rivers in non‐glacierized basins were sourced initially from snowmelt but became increasingly dependent on groundwater inputs (up to 100% of total flow volume) by late summer. These hydrological changes were attributed to the depletion of snowpacks and enhanced soil water storage capacity as the active layer expanded throughout each melt season. These findings provide insight into the processes that underpin water source dynamics in Arctic river systems and potential future changes in Arctic hydrology that might be expected under a changing climate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Modelling nutrient transport during snowmelt in cold regions remains a major scientific challenge. A key limitation of existing nutrient models for application in cold regions is the inadequate representation of snowmelt, including hydrological and biogeochemical processes. This brief period can account for more than 80% of the total annual surface runoff in the Canadian Prairies and Northern Canada and processes such as atmospheric deposition, overwinter redistribution of snow, ion exclusion from snow crystals, frozen soils, and snow‐covered area depletion during melt influence the distribution and release of snow and soil nutrients, thus affecting the timing and magnitude of snowmelt runoff nutrient concentrations. Research in cold regions suggests that nitrate (NO3) runoff at the field‐scale can be divided into 5 phases during snowmelt. In the first phase, water and ions originating from ion‐rich snow layers travel and diffuse through the snowpack. This process causes ion concentrations in runoff to gradually increase. The second phase occurs when this snow ion meltwater front has reached the bottom of the snowpack and forms runoff to the edge‐of‐the‐field. During the third and fourth phases, the main source of NO3 transitions from the snowpack to the soil. Finally, the fifth and last phase occurs when the snow has completely melted, and the thawing soil becomes the main source of NO3 to the stream. In this research, a process‐based model was developed to simulate hourly export based on this 5‐phase approach. Results from an application in the Red River Basin of southern Manitoba, Canada, shows that the model can adequately capture the dynamics and rapid changes of NO3 concentrations during this period at relevant temporal resolutions. This is a significant achievement to advance the current nutrient modelling paradigm in cold climates, which is generally limited to satisfactory results at monthly or annual resolutions. The approach can inform catchment‐scale nutrient models to improve simulation of this critical snowmelt period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号