首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The digital elevation model (DEM) has become an essential tool for an increasing array of mountain runoff analyses, particularly the derivation and mapping of stream channel networks. This study examines how well commonly applied DEM‐based channel derivation methods at different spatial resolutions can represent the channel network for a glaciated Rocky Mountain headwater catchment. The specific objectives are to (1) examine how differences in gridded DEM resolution affect spatially distributed values of local slope, specific contributing area, and topographic wetness index derived from both eight and infinite directional flow algorithms, (2) map the actual stream channel network to examine the influence of surface variables on channel initiation, and (3) assess accuracy of DEM‐derived networks compared with the field surveyed network. Results show that for the same contributing area threshold, increasing grid cell size leads to increased channelization of modeled networks. A plot of local slope versus contributing area reveals a negative relationship similar to that of prior studies in un‐glaciated areas but with breaks in slope at contributing areas that are too small to represent thresholds for channelization. Field survey results and evaluation of DEM‐derived channel networks suggest that channel network formation is not clearly related to surface topographic variables at Loch Vale. Digitally derived channel networks do not accurately predict low order channel locations, but approximations of the channel network with drainage density and headward extent of channelization similar to the observed network can be derived with both a 1 m and 10 m DEM using a contributing area threshold of approximately 4x104 m2. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The automatic mapping of drainage networks from terrain representation has been an interesting topic in hydrological and geomorphological modeling. However, the existing methods often suffer from high sensitivity to terrain noise or lose significant stream branches and accurate channel paths. In this paper, we propose a contour-based framework in drainage network extraction. The proposed framework incorporates discrete curve evolution (DCE) to eliminate the noise influence by dynamically segmenting the contour lines (CLs) into valley bends, and to detect the valley feature points. The skeleton construction technique is then applied to distill more accurate channel paths in complex terrain. Finally, a linking step is undertaken to generate the channel network. The proposed method was tested on a series of elevation datasets, with varied resolution, region size, and local relief. The experiments verified that the proposed method can achieve highly accurate channel networks and is robust, even in regions with high-contrast relief, and/or in cases with significant terrain noise and irregularities.  相似文献   

3.
This paper addresses the effect of accurately mapping spatially heterogeneous drainage densities in high‐altitude alpine basins on Rescaled Width Functions (RWFs), used in some applications as a minimalist model of the hydrologic response. The channel network and 373 of its channel heads were mapped in the field in a high mountain catchment in the Swiss Alps. The mapped channel network is characterized by highly uneven drainage density, here described by the distribution of the length to the first channelized site computed along steepest descent from any unchannelled site. Various channel networks were extracted from a 1 m lidar‐derived digital terrain model and compared with the field‐mapped channel network using geomorphologic parameters, hillslope‐to‐channel distance and RWFs. Our results show that the channel network derived by statistical analysis of surface morphology is consistent with the field‐mapped network. Larger discrepancies were observed when the channel network was obtained with classical threshold‐based approaches relying on cumulative drainage area and local slope. The actual arrangement of the drainage densities has a significant impact on the RWFs. The discrepancy was largest between RWFs derived from classical extraction methods and RWFs derived with the field‐mapped network, indicating an inappropriate extraction of the channelled portion of the high‐altitude catchment that is a reflection of the variety of channel initiation processes. Our results suggest that spatial heterogeneity of the drainage density might play an important role in modelling streamflow generation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The drainage networks of catchment areas burned by wildfire were analysed at several scales. The smallest scale (1–1000 m2) representative of hillslopes, and the small scale (1000 m2 to 1 km2), representative of small catchments, were characterized by the analysis of field measurements. The large scale (1–1000 km2), representative of perennial stream networks, was derived from a 30‐m digital elevation model and analysed by computer analysis. Scaling laws used to describe large‐scale drainage networks could be extrapolated to the small scale but could not describe the smallest scale of drainage structures observed in the hillslope region. The hillslope drainage network appears to have a second‐order effect that reduces the number of order 1 and order 2 streams predicted by the large‐scale channel structure. This network comprises two spatial patterns of rills with width‐to‐depth ratios typically less than 10. One pattern is parallel rills draining nearly planar hillslope surfaces, and the other pattern is three to six converging rills draining the critical source area uphill from an order 1 channel head. The magnitude of this critical area depends on infiltration, hillslope roughness and critical shear stress for erosion of sediment, all of which can be substantially altered by wildfire. Order 1 and 2 streams were found to constitute the interface region, which is altered by a disturbance, like wildfire, from subtle unchannelized drainages in unburned catchments to incised drainages. These drainages are characterized by gullies also with width‐to‐depth ratios typically less than 10 in burned catchments. The regions (hillslope, interface and channel) had different drainage network structures to collect and transfer water and sediment. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The influence of the method of identification of the drainage network on its geomorphological characteristics and on its hydrological response is analysed. Blue lines, photo-interpreted networks and networks generated from digital elevation models (DEMs) by an automatic algorithm are compared with field observations for two small alpine catchments. The comparisons are carried out in quantitative terms by using several geomorphological indices and functions and by calculating the hydrological response of the networks as represented by their geomorphologic instantaneous unit hydrograph (GIUH). The results show that the effect of the identification method on the geomorphological indices and on the hydrological response is significant, and that the threshold area for channel initiation is not constant. Moreover, the available data show a poor correlation between local slope and threshold area. Finally, the influence of the threshold area on the shape of the GIUH is larger when the residence time on the hillslopes is of the same order as the residence time in the network. In the opposite case, the variability of the flow velocity along the network seems to play an important role. © 1997 John Wiley & Sons, Ltd.  相似文献   

6.
Despite decades of research on the ecological consequences of stream network expansion, contraction and fragmentation, surprisingly little is known about the hydrological mechanisms that shape these processes. Here, we present field surveys of the active drainage networks of four California headwater streams (4–27 km2) spanning diverse topographic, geologic and climatic settings. We show that these stream networks dynamically expand, contract, disconnect and reconnect across all the sites we studied. Stream networks at all four sites contract and disconnect during seasonal flow recessions, with their total active network length, and thus their active drainage densities, decreasing by factors of two to three across the range of flows captured in our field surveys. The total flowing lengths of the active stream networks are approximate power‐law functions of unit discharge, with scaling exponents averaging 0.27 ± 0.04 (range: 0.18–0.40). The number of points where surface flow originates obey similar power‐law relationships, as do the lengths and origination points of flowing networks that are continuously connected to the outlet, with scaling exponents averaging 0.36–0.48. Even stream order shifts seasonally by up to two Strahler orders in our study catchments. Broadly, similar stream length scaling has been observed in catchments spanning widely varying geologic, topographic and climatic settings and spanning more than two orders of magnitude in size, suggesting that network extension/contraction is a general phenomenon that may have a general explanation. Points of emergence or disappearance of surface flow represent the balance between subsurface transmissivity in the hyporheic zone and the delivery of water from upstream. Thus the dynamics of stream network expansion and contraction, and connection and disconnection, may offer important clues to the spatial structure of the hyporheic zone, and to patterns and processes of runoff generation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
River networks have been shown to obey power scaling laws and to follow self‐organization principles. Their self‐similar (fractal) properties open a path to relate small scale and large scale hydrological processes, such as erosion, deposition or geological movements. However, the existence of a self‐similar dimension has only been checked using either the whole channel network or, on the contrary, a single channel link. No study has explicitly addressed the possible spatial variation of the self‐similar properties between these two extreme geomorphologic objects. Here, a new method based on self‐similarity maps (SSM) is proposed to spatially explore the stream length self‐similar dimension Dl within a river network. The mapping principle consists in computing local self‐similar dimensions deduced from a fit of stream length estimations using increasing divider sizes. A local uncertainty related to the fit quality is also computed and localized on every stream. To assess the efficiency of the approach, contrasted river networks are simulated using optimal channel networks (OCN), where each network is characterized by an exponent γ conditioning its overall topology. By building SSM of these networks, it is shown that deviations from uniform self‐similarity across space occur. Depending on the type of network (γ parameter), these deviations are or are not related to Strahler's order structure. Finally, it is found numerically that the structural averaged stream length self‐similar dimension Dl is closely related to the more functional γ parameter. Results form a bridge between the studies on river sinuosity (single channel) and growth of channel networks (watershed). As for every method providing spatial information where they were lacking before, the SSM may soon help to accurately interpret natural networks and help to simulate more realistic channel networks. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Digital flow networks derived from digital elevation models (DEMs) sensitively react to errors due to measurement, data processing and data representation. Since high‐resolution DEMs are increasingly used in geomorphological and hydrological research, automated and semi‐automated procedures to reduce the impact of such errors on flow networks are required. One such technique is stream‐carving, a hydrological conditioning technique to ensure drainage connectivity in DEMs towards the DEM edges. Here we test and modify a state‐of‐the‐art carving algorithm for flow network derivation in a low‐relief, agricultural landscape characterized by a large number of spurious, topographic depressions. Our results show that the investigated algorithm reconstructs a benchmark network insufficiently in terms of carving energy, distance and a topological network measure. The modification to the algorithm that performed best, combines the least‐cost auxiliary topography (LCAT) carving with a constrained breaching algorithm that explicitly takes automatically identified channel locations into account. We applied our methods to a low relief landscape, but the results can be transferred to flow network derivation of DEMs in moderate to mountainous relief in situations where the valley bottom is broad and flat and precise derivations of the flow networks are needed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Predicting runoff and erosion from watersheds burned by wildfires requires an understanding of the three-dimensional structure of both hillslope and channel drainage networks. We investigate the small- and large-scale structures of drainage networks using field studies and computer analysis of 30- m digital elevation model. Topologic variables were derived from a composite 30-m DEM, which included 14 order 6 watersheds within the Pikes Peak batholith. Both topologic and hydraulic variables were measured in the field in two smaller burned watersheds (3.7 and 7.0 hectares) located within one of the order 6 watersheds burned by the 1996 Buffalo Creek Fire in Central Colorado. Horton ratios of topologic variables (stream number, drainage area, stream length, and stream slope) for small-scale and large-scale watersheds are shown to scale geometrically with stream order (i.e., to be scale invariant). However, the ratios derived for the large-scale drainage networks could not be used to predict the rill and gully drainage network structure. Hydraulic variables (width, depth, cross- sectional area, and bed roughness) for small-scale drainage networks were found to be scale invariant across 3 to 4 stream orders. The relation between hydraulic radius and cross-sectional area is similar for fills and gullies, suggesting that their geometry can be treated similarly in hydraulic modeling. Additionally, the rills and gullies have relatively small width-to-depth ratios, implying sidewall friction may be important to the erosion and evolutionary process relative to main stem channels.  相似文献   

10.
湖北牛山湖小型鱼类的群落结构及多样性   总被引:2,自引:1,他引:1  
流域数据模型是流域特征的语义、行为和规则的表达,是进行集成流域模拟和管理的空间数据组织的重要内容.本文以长江三角洲太湖流域上游的西苕溪流域为例,将汇流单元分为自然流域、“大包围”、圩区三种形式,分别建立了各自内部的河湖网络关系,即山区由自然流域单元,内包含水库(或湖泊)、河流、水工点的树状河湖网络关系;平原区由人工汇流单元,内包含大包围、圩区、湖泊、湿地、河道、水工点的网状河湖网络关系,为建立适合我国的流域数据模型做了有益的探索.  相似文献   

11.
The cumulative probability distributions for stream order, stream length, contributing area, and energy dissipation per unit length of channel are derived, for an ordered drainage system, from Horton's laws of network composition. It is shown how these distributions can be related to the fractal nature of single rivers and river networks. Finally, it is shown that the structure proposed here for these probability distributions is able to fit the observed frequency distributions, and their deviations from straight lines in a log-log plot.  相似文献   

12.
流域水系自动提取的方法和应用   总被引:31,自引:3,他引:28  
李昌峰  冯学智  赵锐 《湖泊科学》2003,15(3):205-212
讨论由栅格数字高程模型(DEM)自动提取流域水系的原理和方法,并以西苕溪中上游流域为研究区进行了河网生成实验. 研究表明:在山地丘陵区和平均地形坡度不小于3°的区域,所生成河网具有很高的可靠性. 为了解决在平均地形坡度小于3°的平坦区域河网生成中产生的虚拟河网与自然水系偏差较大的问题,提出了利用主干河道和平原水系数字化作为约束条件的生成河网的方法,取得了与实际情况比较接近的结果,从而使水文要素的模拟更具有实际意义.  相似文献   

13.
Stream networks used in studies of basin morphometry, network topology, flood hydrology, and sediment production should be defined as precisely as possible. Previous work has drawn attention to the way in which stream network definition varies on maps of different scales, on maps employing different conventions devised in relation to the dynamic network, and according to whether maps, remote sensing or field survey sources are used. Networks also vary in extent according to the date of survey and after considering the instructions to surveyors it is shown that such changes, over periods of 100 years reflect changes in network extent. For three areas of Britain, network change can be identified by comparison of maps of different dates, by comparison of these changes with the results of field survey, and by reference to dateable features such as inclosure boundaries. Changes of drainage networks since the nineteenth century are shown to be significant in extent and they have often occurred as a result of the replacement of flushes by clearly defined stream channels. This transformation has often occurred as a result of new or modified systems of stormwater drainage from roads, tracks or farms, and the planning of the future disposal of road drainage should be considered carefully in relation to such stream network changes. The changes of drainage networks identified from maps of different dates and editions can provide a useful data base for studies of network topology and may also be significant in relation to palaeohydrological investigations.  相似文献   

14.
Drainage networks are the basis for segmentation of watersheds, an essential component in hydrological modelling, biogeochemical applications, and resource management plans. With the rapidly increasing availability of topographic information as digital elevation models (DEMs), there have been many studies on DEM‐based drainage network extraction algorithms. Most of traditional drainage network extraction methods require preprocessing of the DEM in order to remove “spurious” sink, which can cause unrealistic results due to removal of real sinks as well. The least cost path (LCP) algorithm can deal with flow routing over sinks without altering data. However, the existing LCP implementations can only simulate either single flow direction or multiple flow direction over terrain surfaces. Nevertheless, terrain surfaces in the real world are usually very complicated including both convergent and divergent flow patterns. The triangular form‐based multiple flow (TFM) algorithm, one of the traditional drainage network extraction methods, can estimate both single flow and multiple flow patterns. Thus, in this paper, it is proposed to combine the advantages of the LCP algorithm and the TFM algorithm in order to improve the accuracy of drainage network extraction from the DEM. The proposed algorithm is evaluated by implementing a data‐independent assessment method based on four mathematical surfaces and validated against “true” stream networks from aerial photograph, respectively. The results show that when compared with other commonly used algorithms, the new algorithm provides better flow estimation and is able to estimate both convergent and divergent flow patterns well regarding the mathematical surfaces and the real‐world DEM.  相似文献   

15.
The etymology and historic usage of such terms as ‘anabranch’, ‘anastamose’ and ‘braided’ within river science are reviewed. Despite several decades of modern research to define river channel typologies inclusive of single channels and multiple channel networks, typologies remain ill‐conditioned and consequently ill‐defined. Conventionally employed quantitative planform characteristics of river networks possibly cannot be used alone to define channel types, yet the planform remains a central part of all modern classification schemes, supplemented by sedimentological and other qualitative channel characteristics. Planform characteristics largely have been defined using non‐standardized metrics describing individual network components, such as link lengths, braiding intensity and bifurcation angles, which often fail to separate visually‐different networks of channels. We find that existing typologies remain pragmatically utilitarian rather than fundamentally physics‐based and too often fail to discriminate between two distinctive and important processes integral to new channel initiation and flow‐splitting: (i) in‐channel bar accretion, and (ii) channel avulsion and floodplain excision. It is suggested that, first, if channel planform is to remain central to river typologies, then more rigorous quantitative approaches to the analysis of extended integral channel networks at extended reach scales (rather than network components) are required to correctly determine whether ‘visually‐different’ channel patterns can be discriminated consistently; and, second, if such visually‐different styles do in fact differ in their governing processes of formation and maintenance. A significant question is why do so many seemingly equilibrium network geometries possess a large number of anabranches in excess of predictions from theoretical considerations? The key research frontier with respect to initiating and maintaining multichannel networks remains the understanding and discrimination of accretionary‐bar flow splitting versus avulsive processes. Existing and new knowledge on flow splitting processes needs to be better integrated into channel typologies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The dispersive nature of the highly sodic silts of the Triassic‐rich unit of the Góchar formation plays a fundamental role in the erosion of the Mocatán catchment badlands in Almería, where a rejuvenating pipe and incised channel network is rapidly evacuating slope materials. Referring to concepts of medium‐ and long‐term landscape evolution, and incorporating contemporary thoughts on the role of connectivity in system evolution from the geomorphological literature, this paper attempts to develop a conceptual model of the way geologic, topographic, material property and ecological factors combine to explain the complex geomorphological evolution of the site. An electronic distance measurement (EDM) survey was undertaken using a Leica TC3100, to produce a detailed topographic map. This database was supplemented by geomorphological, geological and ecological data derived from ground survey and remote sensing, and further morphometric analysis undertaken. Preferred orientations of channel segments, and the topographic distribution of pipe‐roof‐collapse features and outfalls in relation to known stratigraphic controls, suggests that, once coupled to the slope‐base channel, pipe networks develop in a systematic, sequential way. A wave of incision moving up the main channel reconnects channels with slopes, and the resulting increased hydraulic gradients on sideslopes encourage extensive deep pipe development for the first time in these materials. Once major pipe development is possible, three‐dimensional pipe networks enlarge and then collapse to form an extensive, partially coupled steep‐sided gully network. From this perspective, the coupling of the pipe to a rejuvenating channel is a significant intrinsic threshold event and the main reason that badlands have developed locally in these dispersive materials. It is concluded that erosion in this landscape will only be suppressed after a considerable period of slope‐base stability, which could allow a gradual loss of sodium from the surface by leaching or organic exchanges. Both theoretical and management implications are explored. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
After horton     
The divergent and yet related problems of post-Hortonian studies of drainage density and channel network geometry are viewed against the difficulties of defining first-order channels and basins. It is proposed that the junction of an unbranched perennial (or blue-line) channel with another perennial channel be taken as the starting point for definitions and that the entire contour-crenulation network tributary to that point be considered the first-order stream. It is shown that the concept of network diameter may be used to describe the networks so delimited and that it appears to provide a useful starting point for interregional comparisons. Finally, an analysis of Blyth and Rodda's (1973) data on channel lengths and discharge indicates that network diameter may be as closely related to discharge as is channel length itself.  相似文献   

18.
Little is known about how active stream network expansion during rainstorms influences the ability of riparian buffers to improve water quality. We used aerial photographs to quantify stream network expansion during the wet winter season in five agricultural catchments in western Oregon, USA. Winter stream drainage densities were nearly two orders of magnitude greater than summer stream densities, and agricultural land use was much more abundant along transient portions (e.g. swales, road ditches) of stream networks. Water moving from agricultural fields into expanded stream networks during large hydrologic events has the opportunity to bypass downstream riparian buffers along perennial streams and contribute nonpoint‐source pollutants directly into perennial stream channels. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Watershed structure influences the timing, magnitude, and spatial location of water and solute entry to stream networks. In turn, stream reach transport velocities and stream network geometry (travel distances) further influence the timing of export from watersheds. Here, we examine how watershed and stream network organization can affect travel times of water from delivery to the stream network to arrival at the watershed outlet. We analysed watershed structure and network geometry and quantified the relationship between stream discharge and solute velocity across six study watersheds (11.4 to 62.8 km2) located in the Sawtooth Mountains of central Idaho, USA. Based on these analyses, we developed stream network travel time functions for each watershed. We found that watershed structure, stream network geometry, and the variable magnitude of inputs across the network can have a pronounced affect on water travel distances and velocities within a stream network. Accordingly, a sample taken at the watershed outlet is composed of water and solutes sourced from across the watershed that experienced a range of travel times in the stream network. We suggest that understanding and quantifying stream network travel time distributions are valuable for deconvolving signals observed at watershed outlets into their spatial and temporal sources, and separating terrestrial and in‐channel hydrological, biogeochemical, and ecological influences on in‐stream observations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
What controls the architecture of drainage networks is a fundamental question in geomorphology. Recent work has elucidated the mechanisms of drainage network development in steadily uplifting landscapes, but the controls on drainage‐network morphology in transient landscapes are relatively unknown. In this paper we exploit natural experiments in drainage network development in incised Plio‐Quaternary alluvial fan surfaces in order to understand and quantify drainage network development in highly transient landscapes, i.e. initially unincised low‐relief surfaces that experience a pulse of rapid base‐level drop followed by relative base‐level stasis. Parallel drainage networks formed on incised alluvial‐fan surfaces tend to have a drainage spacing that is approximately proportional to the magnitude of the base‐level drop. Numerical experiments suggest that this observed relationship between the magnitude of base‐level drop and mean drainage spacing is the result of feedbacks among the depth of valley incision, mass wasting and nonlinear increases in the rate of colluvial sediment transport with slope gradient on steep valley side slopes that lead to increasingly wide valleys in cases of larger base‐level drop. We identify a threshold magnitude of base‐level drop above which side slopes lengthen sufficiently to promote increases in contributing area and fluvial incision rates that lead to branching and encourage drainage networks to transition from systems of first‐order valleys to systems of higher‐order, branching valleys. The headward growth of these branching tributaries prevents the development of adjacent, ephemeral drainages and promotes a higher mean valley spacing relative to cases in which tributaries do not form. Model results offer additional insights into the response of initially unincised landscapes to rapid base‐level drop and provide a preliminary basis for understanding how varying amounts of base‐level change influence valley network morphology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号