首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The present study aims to develop a hybrid multi‐model using the soft computing approach. The model is a combination of a fuzzy logic, artificial neural network (ANN) and genetic algorithm (GA). While neural networks are low‐level computational structures that perform well dealing with raw data, fuzzy logic deal with reasoning on a higher level by using linguistic information acquired from domain experts. However, fuzzy systems lack the ability to learn and cannot adjust themselves to a new environment. Moreover, experts occasionally make mistakes and thus some rules used in a system may be false. A network type structure of the present hybrid model is a multi‐layer feed‐forward network, the main part is a fuzzy system based on the first‐order Sugeno fuzzy model with a fuzzification and a defuzzification processes. The consequent parameters are determined by least square method. The back‐propagation is applied to adjust weights of network. Then, the antecedent parameters of the membership function are updated accordingly by the gradient descent method. The GA was applied to select the fuzzy rule. The hybrid multi‐model was used to forecast the flood level at Chiang Mai (under the big flood 2005) and the Koriyama flood (2003) in Japan. The forecasting results are evaluated using standard global goodness of fit statistic, efficient index (EI), the root mean square error (RMSE) and the peak flood error. Moreover, the results are compared to the results of a neuro‐genetic model (NGO) and ANFIS model using the same input and output variables. It was found that the hybrid multi‐model can be used successfully with an efficiency index (EI) more than 0·95 (for Chiang Mai flood up to 12 h ahead forecasting) and more than 0·90 (for Koriyama flood up to 8 h ahead forecasting). In general, all of three models can predict the water level with satisfactory results. However, the hybrid model gave the best flood peak estimation among the three models. Therefore, the use of fuzzy rule base, which is selected by GA in the hybrid multi‐model helps to improve the accuracy of flood peak. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
This paper analyses the skills of fuzzy computing based rainfall–runoff model in real time flood forecasting. The potential of fuzzy computing has been demonstrated by developing a model for forecasting the river flow of Narmada basin in India. This work has demonstrated that fuzzy models can take advantage of their capability to simulate the unknown relationships between a set of relevant hydrological data such as rainfall and river flow. Many combinations of input variables were presented to the model with varying structures as a sensitivity study to verify the conclusions about the coherence between precipitation, upstream runoff and total watershed runoff. The most appropriate set of input variables was determined, and the study suggests that the river flow of Narmada behaves more like an autoregressive process. As the precipitation is weighted only a little by the model, the last time‐steps of measured runoff are dominating the forecast. Thus a forecast based on expected rainfall becomes very inaccurate. Although good results for one‐step‐ahead forecasts are received, the accuracy deteriorates as the lead time increases. Using the one‐step‐ahead forecast model recursively to predict flows at higher lead time, however, produces better results as opposed to different independent fuzzy models to forecast flows at various lead times. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Accurate water level forecasts are essential for flood warning. This study adopts a data‐driven approach based on the adaptive network–based fuzzy inference system (ANFIS) to forecast the daily water levels of the Lower Mekong River at Pakse, Lao People's Democratic Republic. ANFIS is a hybrid system combining fuzzy inference system and artificial neural networks. Five ANFIS models were developed to provide water level forecasts from 1 to 5 days ahead, respectively. The results show that although ANFIS forecasts of water levels up to three lead days satisfied the benchmark, four‐ and five‐lead‐day forecasts were only slightly better in performance compared with the currently adopted operational model. This limitation is imposed by the auto‐ and cross‐correlations of the water level time series. Output updating procedures based on the autoregressive (AR) and recursive AR (RAR) models were used to enhance ANFIS model outputs. The RAR model performed better than the AR model. In addition, a partial recursive procedure that reduced the number of recursive steps when applying the AR or the RAR model for multi‐step‐ahead error prediction was superior to the fully recursive procedure. The RAR‐based partial recursive updating procedure significantly improved three‐, four‐ and five‐lead‐day forecasts. Our study further shows that for long lead times, ANFIS model errors are dominated by lag time errors. Although the ANFIS model with the RAR‐based partial recursive updating procedure provided the best results, this method was able to reduce the lag time errors significantly for the falling limbs only. Improvements for the rising limbs were modest. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Abstract

An updating technique is a tool to update the forecasts of mathematical flood forecasting model based on data observed in real time, and is an important element in a flood forecasting model. An error prediction model based on a fuzzy rule-based method was proposed as the updating technique in this work to improve one- to four-hour-ahead flood forecasts by a model that is composed of the grey rainfall model, the grey rainfall—runoff model and the modified Muskingum flow routing model. The coefficient of efficiency with respect to a benchmark is applied to test the applicability of the proposed fuzzy rule-based method. The analysis reveals that the fuzzy rule-based method can improve flood forecasts one to four hours ahead. The proposed updating technique can mitigate the problem of the phase lag in forecast hydrographs, and especially in forecast hydrographs with longer lead times.  相似文献   

5.
Accurate prediction of the water level in a reservoir is crucial to optimizing the management of water resources. A neuro-fuzzy hybrid approach was used to construct a water level forecasting system during flood periods. In particular, we used the adaptive network-based fuzzy inference system (ANFIS) to build a prediction model for reservoir management. To illustrate the applicability and capability of the ANFIS, the Shihmen reservoir, Taiwan, was used as a case study. A large number (132) of typhoon and heavy rainfall events with 8640 hourly data sets collected in past 31 years were used. To investigate whether this neuro-fuzzy model can be cleverer (accurate) if human knowledge, i.e. current reservoir operation outflow, is provided, we developed two ANFIS models: one with human decision as input, another without. The results demonstrate that the ANFIS can be applied successfully and provide high accuracy and reliability for reservoir water level forecasting in the next three hours. Furthermore, the model with human decision as input variable has consistently superior performance with regard to all used indexes than the model without this input.  相似文献   

6.
A back‐propagation algorithm neural network (BPNN) was developed to synchronously simulate concentrations of total nitrogen (TN), total phosphorus (TP) and dissolved oxygen (DO) in response to agricultural non‐point source pollution (AGNPS) for any month and location in the Changle River, southeast China. Monthly river flow, water temperature, flow travel time, rainfall and upstream TN, TP and DO concentrations were selected as initial inputs of the BPNN through coupling correlation analysis and quadratic polynomial stepwise regression analysis for the outputs, i.e. downstream TN, TP and DO concentrations. The input variables and number of hidden nodes of the BPNN were then optimized using a combination of growing and pruning methods. The final structure of the BPNN was determined from simulated data based on experimental data for both the training and validation phases. The predicted values obtained using a BPNN consisting of the seven initial input variables (described above), one hidden layer with four nodes and three output variables matched well with observed values. The model indicated that decreasing upstream input concentrations during the dry season and control of NPS along the reach during average and flood seasons may be an effective way to improve Changle River water quality. If the necessary water quality and hydrology data are available, the methodology developed here can easily be applied to other case studies. The BPNN model is an easy‐to‐use modelling tool for managers to obtain rapid preliminary identification of spatiotemporal water quality variations in response to natural and artificial modifications of an agricultural drainage river. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
BMA集合预报在淮河流域应用及参数规律初探   总被引:1,自引:1,他引:0  
以淮河流域吴家渡水文站作为试验站点,采用基于贝叶斯平均法(BMA)的集合预报模型处理来源于马斯京根法、一维水动力学方法、BPNN(Back Propagation Neural Network)的预报流量序列,通过分析BMA的参数以及其预报结果,对各方法在淮河典型站点流量预报中的适用性进行验证与分析.经2003—2016年19场洪水模拟检验可知,BMA模型能够有效避免模型选择带来的洪水预报误差放大效应,可以提供高精度、鲁棒性强的洪水预报结果.通过进一步比较各模型统计最优的频率与BMA权重值之间的相关性,发现权重值不适用于对单场洪水预报精度评定,而适用于描述多场洪水预报中,模型为最优的统计频率;基于大量先验信息,提前获取BMA的权重等参数,将是指导模型选择、降低洪水预报不确定性、改进洪水预报技术的有效手段.  相似文献   

8.
The use of a neuro‐fuzzy approach is proposed to model the dynamics of entrainment of a coarse particle by rolling. It is hypothesized that near‐bed turbulent flow structures of different magnitude and duration or frequency and energy content are responsible for the particle displacement. A number of Adaptive Neuro‐Fuzzy Inference System (ANFIS) architectures are proposed and developed to link the hydrodynamic forcing exerted on a solid particle to its response, and model the underlying nonlinear dynamics of the system. ANFIS combines the advantages of fuzzy inference (If‐Then) rules with the power of learning and adaptation of the neural networks. The model components and forecasting procedure are discussed in detail. To demonstrate the model's applicability for near‐threshold flow conditions an example is provided, where flow velocity and particle displacement data from flume experiments are used as input and output for the training and testing of the ANFIS models. In particular, a Laser Doppler velocimeter (LDV) is employed to obtain long records of local streamwise velocity components upstream of a mobile exposed particle. These measurements are acquired synchronously with the time history of the particle's position detected by a setup including a He‐Ne laser and a photodetector. The representation of the input signal in the time and frequency domain is implemented and the best performing models are found capable of reproducing the complex dynamics of particle response. Following a trial and error approach the different models are compared in terms of their efficiency and forecast accuracy using a number of performance indices. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
洪涝灾害是世界主要自然灾害之一,优化洪水预报方案对防洪决策至关重要,然而传统水文模型存在参数多、调参受人为因素影响,泛化能力弱等问题。针对上述问题,本文提出基于改进的鲸鱼优化算法和长短期记忆网络构建自动优化参数的WOA-LSTM模型,通过优化神经网络结构进一步增强该模型的稳定性和精确度,并且建立不同预见期下的洪水预报模型来分析讨论神经网络结构与预报期之间的关系。以横锦水库流域1986—1997年洪水资料为例,其中以流域7个雨量站点的降雨以及横锦站水文资料为输入,不同预见期下洪水过程作为输出,以1986—1993年作为模型的率定期,1994—1997年作为模型的检验期,研究结果表明:(1)以峰现时差、确定性系数、径流深误差和洪峰流量误差作为评价指标,相比较于LSTM模型和新安江模型对检验期的模拟结果表明WOA-LSTM模型拥有更高的精度、预报结果更稳定;(2)结合置换特征值和SHAP法分析模型特征值重要性,增强了神经网络模型的可解释性;(3)通过改变神经网络结构在一定程度避免由于预见期增加和数据关联性下降而导致的模型预报精度下降的问题,最终实验表明该模型在预见期1~6 h下都可以满足横锦水库的洪水预报要求,可以为当地的防洪决策提供依据。  相似文献   

10.
The major purpose of this study is to effectively construct artificial neural networks‐based multistep ahead flood forecasting by using hydrometeorological and numerical weather prediction (NWP) information. To achieve this goal, we first compare three mean areal precipitation forecasts: radar/NWP multisource‐derived forecasts (Pr), NWP precipitation forecasts (Pn), and improved precipitation forecasts (Pm) by merging Pr and Pn. The analysis shows that the accuracy of Pm is higher than that of Pr and Pn. The analysis also indicates that the NWP precipitation forecasts do provide relative effectiveness to the merging procedure, particularly for forecast lead time of 4–6 h. In sum, the merged products performed well and captured the main tendency of rainfall pattern. Subsequently, a recurrent neural network (RNN)‐based multistep ahead flood forecasting techniques is produced by feeding in the merged precipitation. The evaluation of 1–6‐h flood forecasting schemes strongly shows that the proposed hydrological model provides accurate and stable flood forecasts in comparison with a conventional case, and significantly improves the peak flow forecasts and the time‐lag problem. An important finding is the hydrologic model responses which do not seem to be sensitive to precipitation predictions in lead times of 1–3 h, whereas the runoff forecasts are highly dependent on predicted precipitation information for longer lead times (4–6 h). Overall, the results demonstrate that accurate and consistent multistep ahead flood forecasting can be obtained by integrating predicted precipitation information into ANNs modelling. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The Xinanjiang model, which is a conceptual rainfall‐runoff model and has been successfully and widely applied in humid and semi‐humid regions in China, is coupled by the physically based kinematic wave method based on a digital drainage network. The kinematic wave Xinanjiang model (KWXAJ) uses topography and land use data to simulate runoff and overland flow routing. For the modelling, the catchment is subdivided into numerous hillslopes and consists of a raster grid of flow vectors that define the water flow directions. The Xinanjiang model simulates the runoff yield in each grid cell, and the kinematic wave approach is then applied to a ranked raster network. The grid‐based rainfall‐runoff model was applied to simulate basin‐scale water discharge from an 805‐km2 catchment of the Huaihe River, China. Rainfall and discharge records were available for the years 1984, 1985, 1987, 1998 and 1999. Eight flood events were used to calibrate the model's parameters and three other flood events were used to validate the grid‐based rainfall‐runoff model. A Manning's roughness via a linear flood depth relationship was suggested in this paper for improving flood forecasting. The calibration and validation results show that this model works well. A sensitivity analysis was further performed to evaluate the variation of topography (hillslopes) and land use parameters on catchment discharge. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a new approach to improving real‐time reservoir operation. The approach combines two major procedures: the genetic algorithm (GA) and the adaptive network‐based fuzzy inference system (ANFIS). The GA is used to search the optimal reservoir operating histogram based on a given inflow series, which can be recognized as the base of input–output training patterns in the next step. The ANFIS is then built to create the fuzzy inference system, to construct the suitable structure and parameters, and to estimate the optimal water release according to the reservoir depth and inflow situation. The practicability and effectiveness of the approach proposed is tested on the operation of the Shihmen reservoir in Taiwan. The current M‐5 operating rule curves of the Shihmen reservoir are also evaluated. The simulation results demonstrate that this new approach, in comparison with the M‐5 rule curves, has superior performance with regard to the prediction of total water deficit and generalized shortage index (GSI). Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
This study evaluates two (of the many) modelling approaches to flood forecasting for an upland catchment (the River South Tyne at Haydon Bridge, England). The first modelling approach utilizes ‘traditional’ hydrological models. It consists of a rainfall–runoff model (the probability distributed model, or PDM) for flow simulation in the upper catchment. Those flows are then routed to the lower catchment using two kinematic wave (KW) routing models. When run in forecast‐mode, the PDM and KW models utilize model updating procedures. The second modelling approach uses neural network models, which use a ‘pattern‐matching’ process to produce model forecasts.Following calibration, the models are evaluated in terms of their fit to continuous stage data and flood event magnitudes and timings within a validation period. Forecast times of 1 h, 2 h and 4 h are selected (the catchment has a response time of approximately 4 h). The ‘traditional’ models generally perform adequately at all three forecast times. The neural networks produce reasonable forecasts of small‐ to medium‐sized flood events but have difficulty in forecasting the magnitude of the larger flood events in the validation period. Possible modifications to the latter approach are discussed. © Crown copyright 2002. Reproduced with the permission of Her Majesty's stationery office. Published by John Wiley & Sons, Ltd.  相似文献   

14.
This paper presented a new classified real-time flood forecasting framework by integrating a fuzzy clustering model and neural network with a conceptual hydrological model. A fuzzy clustering model was used to classify historical floods in terms of flood peak and runoff depth, and the conceptual hydrological model was calibrated for each class of floods. A back-propagation (BP) neural network was trained by using real-time rainfall data and outputs from the fuzzy clustering model. BP neural network provided a rapid on-line classification for real-time flood events. Based on the on-line classification, an appropriate parameter set of hydrological model was automatically chosen to produce real-time flood forecasting. Different parameter sets was continuously used in the flood forecasting process because of the changes of real-time rainfall data and on-line classification results. The proposed methodology was applied to a large catchment in Liaoning province, China. Results show that the classified framework provided a more accurate prediction than the traditional non-classified method. Furthermore, the effects of different index weights in fuzzy clustering were also discussed.  相似文献   

15.
针对降雨输入不确定性对实时洪水预报影响的问题,本文采用不考虑未来预报降雨、考虑未来预报降雨、考虑预报降雨的降雨量误差和降雨时间误差4种方法,以陕西省两个半湿润流域(陈河流域和大河坝流域)为研究区域,分析不同预见期和不同降雨输入情况下洪水预报的精度.研究表明:相对于不考虑未来降雨情况,考虑未来降雨后在预报预见期较长时对预报结果精度提升较大,在预见期较短时对预报结果精度提升不显著;暴雨中心位置不同对预报精度影响也不同,当暴雨中心位于流域下游时降雨量误差对流量预报误差影响更大;降雨量误差主要影响洪量相对误差和洪峰相对误差,且这种影响是线性的,对确定性系数的影响是非线性的二次函数,降雨时间误差主要影响峰现时间误差.  相似文献   

16.
Self‐organizing maps (SOMs) have been successfully accepted widely in science and engineering problems; not only are their results unbiased, but they can also be visualized. In this study, we propose an enforced SOM (ESOM) coupled with a linear regression output layer for flood forecasting. The ESOM re‐executes a few extra training patterns, e.g. the peak flow, as recycling input data increases the mapping space of peak flow in the topological structure of SOM, and the weighted sum of the extended output layer of the network improves the accuracy of forecasting peak flow. We have investigated an ESOM neural network by using the flood data of the Da‐Chia River, Taiwan, and evaluated its performance based on the results obtained from a commonly used back‐propagation neural network. The results demonstrate that the ESOM neural network has great efficiency for clustering, especially for the peak flow, and super capability of modelling the flood forecast. The topology maps created from the ESOM are interesting and informative. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Spatially distributed hydrologic models can be effectively utilized for flood event simulation over basins where a complex system of reservoirs affecting the natural flow regime is present. Flood peak attenuation through mountain reservoirs can, in fact, mitigate the impact of major floods in flood‐prone areas of the lower river valley. Assessment of this effect for a complex reservoir system is performed with a spatially distributed hydrologic model where the surface runoff formation and the hydraulic routing through each reservoir and the river system are performed at a fine spatial and time resolution. The Toce River basin is presented as a case study, because of the presence of 14 active hydroelectric dams that affect the natural flow regime. A recent extreme flood event is simulated using a multi‐realization kriging method for modelling the spatial distribution of rainfall. A sensitivity analysis of the key elements of the distributed hydrologic model is also performed. The flood hydrograph attenuation is assessed. Several possible reservoir storage conditions are used to characterize the initial condition of each reservoir. The results demonstrate how a distributed hydrologic model can contribute to defining strategies for reservoir management in flood mitigation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
A short‐term flood inundation prediction model has been formulated based on the combination of the super‐tank model, forced with downscaled rainfall from a global numerical weather prediction model, and a one‐dimensional (1D) hydraulic model. Different statistical methods for downscaled rainfall have been explored, taking into account the availability of historical data. It has been found that the full implementation of a statistical downscaling model considering physically‐based corrections to the numerical weather prediction model output for rainfall prediction performs better compared with an altitudinal correction method. The integration of the super‐tank model into the 1D hydraulic model demonstrates a minimal requirement for the calibration of rainfall–runoff and flood propagation models. Updating the model with antecedent rainfall and regular forecast renewal has enhanced the model's capabilities as a result of the data assimilation processes of the runoff and numerical weather prediction models. The results show that the predicted water levels demonstrate acceptable agreement with those measured by stream gauges and comparable to those reproduced using the actual rainfall. Moreover, the predicted flood inundation depth and extent exhibit reasonably similar tendencies to those observed in the field. However, large uncertainties are observed in the prediction results in lower, flat portions of the river basin where the hydraulic conditions are not properly analysed by the 1D flood propagation model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Accurate forecasting of hydrological time‐series is a quite important issue for a wise and sustainable use of water resources. In this study, an adaptive neuro‐fuzzy inference system (ANFIS) approach is used to construct a time‐series forecasting system. In particular, the applicability of an ANFIS to the forecasting of the time‐series is investigated. To illustrate the applicability and capability of an ANFIS, the River Great Menderes, located in western Turkey, is chosen as a case study area. The advantage of this method is that it uses the input–output data sets. A total of 5844 daily data sets collected from 1985 to 2000 are used for the time‐series forecasting. Models having various input structures were constructed and the best structure was investigated. In addition, four various training/testing data sets were built by cross‐validation methods and the best data set was obtained. The performance of the ANFIS models in training and testing sets was compared with observations and also evaluated. In order to get an accurate and reliable comparison, the best‐fit model structure was also trained and tested by artificial neural networks and traditional time‐series analysis techniques and the results compared. The results indicate that the ANFIS can be applied successfully and provide high accuracy and reliability for time‐series modelling. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
A temporal artificial neural network‐based model is developed and applied for long‐lead rainfall forecasting. Tapped delay lines and recurrent connections are two different components that are used along with a static multilayer perceptron network to design a time‐delay recurrent neural network. The proposed model is, in fact, a combination of time‐delay and recurrent neural networks. The model is applied in three case studies of the Northwest, West, and Southwest basins of Iran. In addition, an autoregressive moving average with exogenous inputs (ARMAX) model is used as a baseline in order to be compared with the time‐delay recurrent neural networks developed in this study. Large‐scale climate signals, such as sea‐level pressure, that affect the rainfall of the study area are used as the predictors in the models, as well as the persistence between rainfall data. The results of winter‐spring rainfall forecasts are discussed thoroughly. It is demonstrated that in all cases the proposed neural network results in better forecasts in comparison with the statistical ARMAX model. Moreover, it is found that in two of three case studies the time‐delay recurrent neural networks perform better than either recurrent or time‐delay neural networks. The results demonstrate that the proposed method can significantly improve the long‐lead forecast by utilizing a non‐linear relationship between climatic predictors and rainfall in a region. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号