首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the low permeability of claypan soils, groundwater has been heavily contaminated by nitrate in agricultural watersheds dominated by claypan soils. However, it is unclear how nitrate concentrations in groundwater affect stream water quality. In this study, streamflow pathways were investigated using natural geochemical tracers in the 73-km2 Goodwater Creek Experimental Watershed in northeastern Missouri. Samples were collected from 2011 to 2017 from stream water (weekly-biweekly), precipitation (event-based), groundwater in 25 wells with screened depths varying from 2 to 16 m (bimonthly–seasonal) and interflow above the claypan in 7 shallow piezometers (weekly–monthly). The results of endmember mixing analysis using major ions indicate that streamflow was dominated by near-surface runoff (59 ± 20%), followed by interflow (25 ± 16%) and groundwater (16 ± 13%). Analysis of endmember distances using the mixing space defined by stream water chemistry suggests that groundwater contributions to streamflow came primarily from the intermediate to deep glacial till aquifer near and below 8 m. Near-surface runoff was persistent and dominant even after isolated precipitation events during a prolonged dry period. It is hypothesised that the alluvial aquifer near stream banks acts as a mixing zone to receive and store various source waters, resulting in persistent delivery of runoff to the stream. Groundwater, even though its contribution was limited, plays a significant role in regulating streamflow NO3 concentrations. This study significantly improves our understanding of claypan hydrology and will lead to the development of models and decision support tools for implementation of management practices that improve groundwater and stream water quality in restrictive layer watersheds.  相似文献   

2.
We observed polymictic behaviour in stream pools in Long Meadow, Sequoia National Park, California—part of the Southern Sierra Critical Zone Observatory. Stream pools stratified thermally during the day time and were isothermal at night—this pattern persists from the middle of summer into the fall. We found that four characteristics typical of a mountain meadow environment—low stream flow, open sky, cold groundwater discharge, and elevated organic carbon concentrations—are particularly conducive to pool stratification. Incoming shortwave radiation was the dominant energy input to heat pool water while nighttime emitted longwave radiation was the major cooling mechanism. Relatively cold groundwater discharge into the pool bottom increased density stratification within the pool. Elevated DOC concentrations increased the capacity of the pool to absorb photosynthetically active radiation and also promoted stratification. Stream velocities in the meadow were generally insufficient to meet threshold Richardson numbers and mix the pools during the daytime; smaller stream cross sectional areas would have potential for destabilizing pools in the daytime. We propose a conceptual model for describing polymictic stream pools and assessing the potential for polymictic pools to occur. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Water source and lake landscape position can strongly influence the physico‐chemical characteristics of flowing waters over space and time. We examined the physico‐chemical heterogeneity in surface waters of an alpine stream‐lake network (>2600 m a.s.l.) in Switzerland. The catchment comprises two basins interspersed with 26 cirque lakes. The larger lakes in each basin are interconnected by streams that converge in a lowermost lake with an outlet stream. The north basin is primarily fed by precipitation and groundwater, whereas the south basin is fed mostly by glacial melt from rock glaciers. Surface flow of the entire channel network contracted by ~60% in early autumn, when snowmelt runoff ceased and cold temperatures reduced glacial outputs, particularly in the south basin. Average water temperatures were ~4 °C cooler in the south basin, and temperatures increased by about 4–6 °C along the longitudinal gradient within each basin. Although overall water conductivity was low (<27 µS cm?1) because of bedrock geology (ortho‐gneiss), the south basin had two times higher conductivity values than the north basin. Phosphate‐phosphorus levels were below analytical detection limits, but particulate phosphorus was about four times higher in the north basin (seasonal average: 9 µg l?1) than in the south basin (seasonal average: 2 µg l?1). Dissolved nitrogen constituents were around two times higher in the south basin than in the north basin, with highest values averaging > 300 µg l?1 (nitrite + nitrate‐nitrogen), whereas particulate nitrogen was approximately nine times greater in the north basin (seasonal average: 97 µg l?1) than in the south basin (seasonal average: 12 µg l?1). Total inorganic carbon was low (usually <0·8 mg l?1), silica was sufficient for algal growth, and particulate organic carbon was 4·5 times higher in the north basin (average: 0·9 mg l?1) than in the south basin (average: 0·2 mg l?1). North‐basin streams showed strong seasonality in turbidity, particulate‐nitrogen and ‐phosphorus, and particulate organic carbon, whereas strong seasonality in south‐basin streams was observed in conductivity and dissolved nitrogen. Lake position influenced the seasonal dynamics in stream temperatures and nutrients, particularly in the groundwater/precipitation‐fed north‐basin network. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Major inorganic ions and stable carbon and oxygen isotopes in stream water, groundwater, groundwater seeps and springs were measured in the Corral Canyon meadow complex and watershed in the Toquima Mountains of central Nevada, USA. The purpose of the study was to determine whether stream water or groundwater was the source of water that supports vegetation in the meadow complex. Water samples from the watershed and meadow complex were mixed cation–HCO3 type. Stream water sampled at different locations in the meadow complex showed variations in temperature, pH and specific conductance. The cation–anion proportions for stream water were similar to groundwater, groundwater seeps and runoff from the meadow complex. Stable oxygen isotope ratios for stream water (?17·1 to ?17·6‰ versus VSMOW) and groundwater and groundwater seeps in the meadow site (?17·0 to ?17·7‰ versus VSMOW) were similar, and consistent with a local meteoric origin. Dissolved inorganic carbon (DIC) and the δ 13CDIC for stream water (?12·1 to ?15·0‰ versus VPDB) were different from that of groundwater from the meadow complex (?15·3 to ?19·9‰ versus VPDB), suggesting different carbon evolution pathways. However, a simple model based on cation–δ 13CDIC suggests that stream water was being recharged by shallow groundwater, groundwater seeps and runoff from the meadow complex. This leads to the conclusion that the source of water that supports vegetation in the meadow complex was primarily groundwater. The results of this study suggest that multiple chemical and stable carbon isotope tracers are useful in determining the source of water that supports vegetation in meadow complexes in small alpine watersheds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
We measured deuterium excess (d = δD ? 8δ18O) in throughfall, groundwater, soil water, spring water, and stream water for 3 years in a small headwater catchment (Matsuzawa, 0·68 ha) in the Kiryu Experimental Watershed in Japan. The d value represents a kinetic effect produced when water evaporates. The d value of the throughfall showed a sinusoidal change (amplitude: 6·9‰ relative to Vienna standard mean ocean water (V‐SMOW)) derived from seasonal changes in the source of water vapour. The amplitude of this sinusoidal change was attenuated to 1·3–6·9‰ V‐SMOW in soil water, groundwater, spring water, and stream water. It is thought that these attenuations derive from hydrodynamic transport processes in the subsurface and mixing processes at an outflow point (stream or spring) or a well. The mean residence time (MRT) of water was estimated from d value variations using an exponential‐piston flow model and a dispersion model. MRTs for soil water were 0–5 months and were not necessarily proportional to the depth. This may imply the existence of bypass flow in the soil. Groundwater in the hillslope zone had short residence times, similar to those of the soil water. For groundwater in the saturated zone near the spring outflow point, the MRTs differed between shallow and deeper groundwater; shallow groundwater had a shorter residence time (5–8 months) than deeper groundwater (more than 9 months). The MRT of stream water (8–9 months) was between that of shallow groundwater near the spring and deeper groundwater near the spring. The seasonal variation in the d value of precipitation arises from changes in isotopic water vapour composition associated with seasonal activity of the Asian monsoon mechanism. The d value is probably an effective tracer for estimating the MRT of subsurface water not only in Japan, but also in other East Asian countries influenced by the Asian monsoon. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Wetlands often form the transition zone between upland soils and watershed streams, however, stream–wetland interactions and hydrobiogeochemical processes are poorly understood. We measured changes in stream nitrogen (N) through one riparian wetland and one beaver meadow in the Archer Creek watershed in the Adirondack Mountains of New York State, USA from 1 March to 31 July 1996. In the riparian wetland we also measured changes in groundwater N. Groundwater N changed significantly from tension lysimeters at the edge of the peatland to piezometer nests within the peatland. Mean N concentrations at the peatland perimeter were 1·5, 0·5 and 18·6 µmol L?1 for NH4+, NO3? and DON (dissolved organic nitrogen), respectively, whereas peatland groundwater N concentration was 56·9, 1·5 and 31·6 µmol L?1 for NH4+, NO3? and DON, respectively. The mean concentrations of stream water N species at the inlet to the wetlands were 1·5, 10·1 and 16·9 µmol L?1 for NH4+, NO3? and DON, respectively and 1·6, 28·1 and 8·4 µmol L?1 at the wetland outlet. Although groundwater total dissolved N (TDN) concentrations changed more than stream water TDN through the wetlands, hydrological cross‐sections for the peatland showed that wetland groundwater contributed minimally to stream flow during the study period. Therefore, surface water N chemistry was affected more by in‐stream N transformations than by groundwater N transformations because the in‐stream changes, although small, affected a much greater volume of water. Stream water N input–output budgets indicated that the riparian peatland retained 0·16 mol N ha?1 day?1 of total dissolved N and the beaver meadow retained 0·26 mol N ha?1 day?1 during the study period. Nitrate dominated surface water TDN flux from the wetlands during the spring whereas DON dominated during the summer. This study demonstrates that although groundwater N changed significantly in the riparian peatland, those changes were not reflected in the stream. Consequently, although in‐stream changes of N concentrations were less marked than those in groundwater, they had a greater effect on stream water chemistry—because wetland groundwater contributed minimally to stream flow. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Biologically mediated redox processes in the riparian zone, like denitrification, can have substantially beneficial impacts on stream water quality. The extent of these effects, however, depends greatly on the hydrological boundary conditions. The impact of hydrological processes on a wetland's nitrogen sink capacity was investigated in a forested riparian fen which is drained by a first‐order perennial stream. Here, we analysed the frequency distributions and time‐series of pH and nitrogen, silica, organic carbon and oxygen concentrations in throughfall, soil solution, groundwater and stream water, and the groundwater levels and stream discharges from a 3‐year period. During baseflow conditions, the stream was fed by discharging shallow, anoxic groundwater and by deep, oxic groundwater. Whereas the latter delivered considerable amounts of nitrogen (~0·37 mg l?1) to the stream, the former was almost entirely depleted of nitrogen. During stormflow, near‐surface runoff in the upper 30 cm soil layer bypassed the denitrifying zone and added significant amounts to the nitrogen load of the stream. Nitrate‐nitrogen was close to 100% of deep groundwater and stream‐water nitrogen concentration. Stream‐water baseflow concentrations of nitrate, dissolved carbon and silica were about 1·6 mg l?1, 4 mg l?1 and 7·5 mg l?1 respectively, and >3 mg l?1, >10 mg l?1 and <4 mg l?1 respectively during discharge peaks. In addition to that macroscale bypassing effect, there was evidence for a corresponding microscale effect: Shallow groundwater sampled by soil suction cups indicated complete denitrification and lacked any seasonal signal of solute concentration, which was in contrast to piezometer samples from the same depth. Moreover, mean solute concentration in the piezometer samples resembled more that of suction‐cup samples from shallower depth than that of the same depth. We conclude that the soil solution cups sampled to a large extent the immobile soil‐water fraction. In contrast, the mobile fraction that was sampled by the piezometers exhibited substantially shorter residence time, thus being less exposed to denitrification, but predominating discharge of that layer to the stream. Consequently, assessing the nitrogen budget based on suction‐cup data tended to overestimate the nitrogen consumption in the riparian wetland. These effects are likely to become more important with the increased frequency and intensity of rainstorms that are expected due to climate change. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Water temperature is an important determinant of the growth and development of malaria mosquito immatures. To gain a better understanding of the daily temperature dynamics of malaria mosquito breeding sites and of the relationships between meteorological variables and water temperature, three clear water pools (diameter × depth: 0·16 × 0·04, 0·32 × 0·16 and 0·96 × 0·32 m) were created in Kenya. Continuous water temperature measurements at various depths were combined with weather data collections from a meteorological station. The water pools were homothermic, but the top water layer differed by up to about 2 °C in temperature, depending on weather conditions. Although the daily mean temperature of all water pools was similar (27·4–28·1 °C), the average recorded difference between the daily minimum and maximum temperature was 14·4 °C in the smallest versus 7·1 °C in the largest water pool. Average water temperature corresponded well with various meteorological variables. The temperature of each water pool was continuously higher than the air temperature. A model was developed that predicts the diurnal water temperature dynamics accurately, based on the estimated energy budget components of these water pools. The air–water interface appeared the most important boundary for energy exchange processes and on average 82–89% of the total energy was gained and lost at this boundary. Besides energy loss to longwave radiation, loss due to evaporation was high; the average estimated daily evaporation ranged from 4·2 mm in the smallest to 3·7 mm in the largest water pool. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The performance of a constructed wetland for wastewater treatment was examined for four months (December 1995 to March 1996). The study area, hereby referred to as the Splash wetland, is approximately 0·5 ha, and is located in the southern part of Nairobi city. Splash wetland continuously receives domestic sewage from two busy restaurants. Treated wastewater is recycled for re‐use for various purposes in the restaurants. Both wet and dry season data were analysed with a view of determining the impact of seasonal variation on the system performance. The physical and chemical properties of water were measured at a common intake and at series of seven other points established along the wetland gradient and at the outlet where the water is collected and pumped for re‐use at the restaurants. The physico‐chemical characteristics of the wastewater changed significantly as the wastewater flowed through the respective wetland cells. A comparison of wastewater influent versus the effluent from the wetland revealed the system's apparent success in water treatment, especially in pH modification, removal of suspended solids, organic load and nutrients mean influent pH = 5·7 ± 0·5, mean effluent pH 7·7 ± 0·3; mean influent BOD5 = 1603·0 ± 397·6 mg/l, mean effluent BOD5 = 15·1 ± 2·5 mg/l; mean influent COD = 3749·8 ± 206·8 mg/l, mean effluent COD = 95·6 ± 7·2 mg/l; mean influent TSS = 195·4 ± 58·7 mg/l, mean effluent TSS = 4·7 ± 1·9 mg/l. As the wastewater flowed through the wetland system dissolved free and saline ammonia, NH4+, decreased from 14·6 ± 4·1 mg/l to undetectable levels at the outlet. Dissolved oxygen increased progressively through the wetland system. Analysis of the data available did not reveal temporal variation in the system's performance. However, significant spatial variation was evident as the wetland removed most of the common pollutants and considerably improved the quality of the water, making it safe for re‐use at the restaurants. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
18O is an ideal tracer for characterizing hydrological processes because it can be reliably measured in several watershed hydrological compartments. Here, we present multiyear isotopic data, i.e. 18O variations (δ18O), for precipitation inputs, surface water and groundwater in the Shingobee River Headwaters Area (SRHA), a well‐instrumented research catchment in north‐central Minnesota. SRHA surface waters exhibit δ18O seasonal variations similar to those of groundwaters, and seasonal δ18O variations plotted versus time fit seasonal sine functions. These seasonal δ18O variations were interpreted to estimate surface water and groundwater mean residence times (MRTs) at sampling locations near topographically closed‐basin lakes. MRT variations of about 1 to 16 years have been estimated over an area covering about 9 km2 from the basin boundary to the most downgradient well. Estimated MRT error (±0·3 to ±0·7 years) is small for short MRTs and is much larger (±10 years) for a well with an MRT (16 years) near the limit of the method. Groundwater transit time estimates based on Darcy's law, tritium content, and the seasonal δ18O amplitude approach appear to be consistent within the limits of each method. The results from this study suggest that use of the δ18O seasonal variation method to determine MRTs can help assess groundwater recharge areas in small headwaters catchments. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Despite the significant influence of temperature upon alpine stream benthic communities, thermal regimes of the water column and hyporheic zone of these mountain streams have received limited attention. This paper reports upon a detailed spatio‐temporal study of water column and streambed temperatures undertaken within the Taillon–Gabiétous catchment, French Pyrénées, that aims: (1) to characterize the nature and dynamics of alpine stream water column and streambed thermal patterns; (2) to investigate stream thermal variability under a range of hydroclimatological conditions; and (3) to consider the implications of (1) and (2) for alpine stream benthic communities. The catchment contains four highly dynamic hydrological sources and pathways: (1) two cirque glaciers (Taillon and Gabiétous); (2) seasonal snowpacks; (3) a karst groundwater system; and (4) hillslope aquifers. Water column temperatures were monitored continuously at four sites located along the Taillon glacial stream and at three groundwater springs (two karstic and one hillslope) over the 2002 summer melt season. An eighth site (Tourettes) was established on a predominantly groundwater‐fed stream with limited meltwater input. Bed temperatures (0·05, 0·20 and 0·40 m depth) and river discharge were measured at three sites: (1) the Taillon stream; (2) the Tourettes stream; and (3) below the confluence of (1) and (2). Air temperatures, incoming short‐wave radiation and precipitation were recorded to characterize atmospheric conditions. Glacial stream water column temperatures increased downstream, although groundwater tributaries punctuated longitudinal patterns. Karstic groundwater streams were cooler and more thermally stable than the glacial stream (except at the glacier snout). Hillslope groundwater stream temperatures were most variable and, on average, the warmest of all sites. Streambed temperatures in the glacial stream were coldest and most variable whilst the warmest and least variable streambed temperatures were recorded in an adjacent groundwater tributary. Temperature variability was strongly related to: (1) dynamic water source and pathway contributions; (2) proximity to source; and (3) prevailing hydroclimatological conditions. The high thermal heterogeneity within this catchment may sustain relatively diverse benthic communities, including some endemic Pyrénéan macroinvertebrate taxa. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
The aim of this research was to refine the actual conceptual model related to the activation of high‐altitude temporary springs within the carbonate Apennines in southern Italy. The research was carried out through geophysical, hydrogeological, hydrochemical and isotopic investigations at the Acqua dei Faggi experimental site during five hydrologic years. The research demonstrated that, in carbonate aquifers where low‐permeability faults cause the aquifer system to be compartmentalized, high‐altitude temporary springs may be recharged by groundwater. In such settings, neither surface water infiltration in karst systems nor perched temporary aquifers play a role of utmost importance. The rare (once or a few time a year) activation of such springs is due to the fact that groundwater unusually reach the threshold head that allows the spring to flow. The activation of the studied high‐altitude temporary spring also depended on relationships between a low‐permeability fault core and a karst system that locally interrupts the low‐permeability barrier. In fact, when the hydraulic head did not reach the karst system, the concentrated head loss within the fault core did not allow the spring to flow, because the groundwater entirely flowed through the fault towards the downgradient compartment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Conservative solute injections were conducted in three first-order montane streams of different geological composition to assess the influence of parent lithology and alluvial characteristics on the hydrological retention of nutrients. Three study sites were established: (1) Aspen Creek, in a sandstone–siltstone catchment with a fine-grained alluvium of low hydraulic conductivity (1·3×10−4 cm/s), (2) Rio Calaveras, which flows through volcanic tuff with alluvium of intermediate grain size and hydraulic conductivity (1·2×10−3 cm/s), and (3) Gallina Creek, located in a granite/gneiss catchment of coarse, poorly sorted alluvium with high hydraulic conductivity (4·1×10−3 cm/s). All sites were instrumented with networks of shallow groundwater wells to monitor interstitial solute transport. The rate and extent of groundwater–surface water exchange, determined by the solute response in wells, increased with increasing hydraulic conductivity. The direction of surface water–groundwater interaction within a stream was related to local variation in vertical and horizontal hydraulic gradients. Experimental tracer responses in the surface stream were simulated with a one-dimensional solute transport model with inflow and storage components (OTIS). Model-derived measures of hydrological retention showed a corresponding increase with increasing hydraulic conductivity. To assess the temporal variability of hydrological retention, solute injection experiments were conducted in Gallina Creek under four seasonal flow regimes during which surface discharge ranged from baseflow (0·75 l/s in October) to high (75 l/s during spring snowmelt). Model-derived hydrological retention decreased with increasing discharge. The results of our intersite comparison suggest that hydrological retention is strongly influenced by the geologic setting and alluvial characteristics of the stream catchment. Temporal variation in hydrological retention at Gallina Creek is related to seasonal changes in discharge, highlighting the need for temporal resolution in studies of the dynamics of surface water–groundwater interactions in stream ecosystems. © 1997 by John Wiley & Sons, Ltd.  相似文献   

14.
Spatially distributed groundwater recharge was simulated for a segment of a semi‐arid valley using three different treatments of meteorological input data and potential evapotranspiration (PET). For the same area, timeframe, land cover characteristics and soil properties, groundwater recharge was estimate using (i) single‐station climate data with monthly PET calculated by the Thornthwaite method; (ii) single‐station climate data with daily PET calculated by the Penman–Monteith method; and (iii) daily gridded climate data with spatially distributed PET calculated using the Penman–Monteith method. For each treatment, the magnitude and distribution of actual evapotranspiration (AET) for summer months compared well with those estimated for a 5‐year crop study, suggesting that the near‐surface hydrological processes were replicated and that subsequent groundwater recharge rates are realistic. However, for winter months, calculated AET was near zero when using the Thornthwaite PET method. Mean annual groundwater recharge varied from ~3·2 to 10·0 mm when PET was calculated by the Thornthwaite method, and from ~1·8 to 7·5 mm when PET was calculated by the Penman–Monteith method. Comparisons of bivariate plots of seasonal recharge rates estimated from single‐station versus gridded surface climate reveal that there is greater variability between the different methods for spring months, which is the season of greatest recharge. Furthermore, these seasonal differences are shown to provide different results when compared to the depth to water table, which could lead to different results of evaporative extinction depth. These findings illustrate potential consequences of using different approaches for representing spatial meteorological input data, which could provide conflicting predictions when modelling the influence of climate change on groundwater recharge. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Restoring hydrologic connectivity between channels and floodplains is common practice in stream and river restoration. Floodplain hydrology and hydrogeology impact stream hydraulics, ecology, biogeochemical processing, and pollutant removal, yet rigorous field evaluations of surface water–groundwater exchange within floodplains during overbank floods are rare. We conducted five sets of experimental floods to mimic floodplain reconnection by pumping stream water onto an existing floodplain swale. Floods were conducted throughout the year to capture seasonal variation and each involved two replicate floods on successive days to test the effect of varying antecedent moisture. Water levels and specific conductance were measured in surface water, soil, and groundwater within the floodplain, along with surface flow into and out of the floodplain. Vegetation density varied seasonally and controlled the volume of surface water storage on the floodplain. By contrast, antecedent moisture conditions controlled storage of water in floodplain soils, with drier antecedent moisture conditions leading to increased subsurface storage and slower flood wave propagation across the floodplain surface. The site experienced spatial heterogeneity in vertical connectivity between surface water and groundwater across the floodplain surface, where propagation of hydrostatic pressure, preferential flow, and bulk Darcy flow were all mechanisms that may have occurred during the five floods. Vertical connectivity also increased with time, suggesting higher frequency of floodplain inundation may increase surface water–groundwater exchange across the floodplain surface. Understanding the variability of floodplain impacts on water quality noted in the literature likely requires better accounting for seasonal variations in floodplain vegetation and antecedent moisture as well as heterogeneous exchange flow mechanisms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Continuous temperature measurements at 11 stream sites in small lowland streams of North Zealand, Denmark over a year showed much higher summer temperatures and lower winter temperatures along the course of the stream with artificial lakes than in the stream without lakes. The influence of lakes was even more prominent in the comparisons of colder lake inlets and warmer outlets and led to the decline of cold‐water and oxygen‐demanding brown trout. Seasonal and daily temperature variations were, as anticipated, dampened by forest cover, groundwater input, input from sewage plants and high downstream discharges. Seasonal variations in daily water temperature could be predicted with high accuracy at all sites by a linear air‐water regression model (r2: 0·903–0·947). The predictions improved in all instances (r2: 0·927–0·964) by a non‐linear logistic regression according to which water temperatures do not fall below freezing and they increase less steeply than air temperatures at high temperatures because of enhanced heat loss from the stream by evaporation and back radiation. The predictions improved slightly (r2: 0·933–0·969) by a multiple regression model which, in addition to air temperature as the main predictor, included solar radiation at un‐shaded sites, relative humidity, precipitation and discharge. Application of the non‐linear logistic model for a warming scenario of 4–5 °C higher air temperatures in Denmark in 2070‐2100 yielded predictions of temperatures rising 1·6–3·0 °C during winter and summer and 4·4–6·0 °C during spring in un‐shaded streams with low groundwater input. Groundwater‐fed springs are expected to follow the increase of mean air temperatures for the region. Great caution should be exercised in these temperature projections because global and regional climate scenarios remain open to discussion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
The impact of landfill contaminated groundwater along a reach of a small stream adjacent to a municipal landfill was investigated using stable carbon isotopes as a tracer. Groundwater below the stream channel, groundwater seeping into the stream, groundwater from the stream banks and stream water were sampled and analysed for dissolved inorganic carbon (DIC) and the isotope ratio of DIC (δ13CDIC). Representative samples of groundwater seeping into the stream were collected using a device (a ‘seepage well’) specifically designed for collecting samples of groundwater seeping into shallow streams with soft sediments. The DIC and δ13CDIC of water samples ranged from 52 to 205 mg C/L and ?16·9 to +5·7‰ relative to VPDB standard, respectively. Groundwater from the stream bank adjacent to the landfill and some samples of groundwater below the stream channel and seepage into the stream showed evidence of δ13C enriched DIC (δ13CDIC = ?2·3 to +5·7‰), which we attribute to landfill impact. Stream water and groundwater from the stream bank opposite the landfill did not show evidence of landfill carbon (δ13CDIC = ?10·0 to ?16·9‰). A simple mixing model using DIC and δ13CDIC showed that groundwater below the stream and groundwater seeping into the stream could be described as a mixture of groundwater with a landfill carbon signature and uncontaminated groundwater. This study suggests that the hyporheic zone at the stream–groundwater interface probably was impacted by landfill contaminated groundwater and may have significant ecological implications for this ecotone. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Alluvial mountain streams exhibit a range of channel forms: pool–riffle, plane bed, step–pool and cascades. Previous work suggested that these forms exist within discrete, and progressively steeper slope classes. Measurements conducted at over 100 sites in west‐central and central Idaho confirm that slope steepens progressively as one moves from pool–riffle, to plane bed, to step–pool, and finally to cascades. Median slope for pool–riffle topography is 0·0060, for plane beds 0·013, for step–pools 0·044, and for cascades 0·068. There is substantial overlap in the slopes associated with these channel forms. Pool–riffle topography was found at slopes between 0·0010 and 0·015, plane beds between 0·0010 and 0·035, step–pools between 0·015 and 0·134, and cascades between 0·050 and 0·12. Step–pools are particularly striking features in headwater streams. They are characterized by alternating steep and gentle channel segments. The steep segments (step risers) are transverse accumulations of boulder and cobbles, while the gentle segments (pools) contain finer material. Step wavelength is best correlated to step height which is in turn best correlated to the median particle size found on step risers. This result differs from past studies that have reported channel slope to be the dominant control on step wavelength. The presumed geometry and Froude number associated with the features under formative conditions are consistent with the existence field for antidunes and by extension with the hypothesis that step–pools are formed by antidunes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
Data substantiating perched conditions in layered bedrock uplands are rare and have not been widely reported. Field observations in layered sedimentary bedrock in southwestern Wisconsin, USA, provide evidence of a stable, laterally extensive perched aquifer. Data from a densely instrumented field site show a perched aquifer in shallow dolomite, underlain by a shale-and-dolomite aquitard approximately 25 m thick, which is in turn underlain by sandstone containing a 30-m-thick unsaturated zone above a regional aquifer. Heads in water supply wells indicate that perched conditions extend at least several kilometers into hillsides, which is consistent with published modeling studies. Observations of unsaturated conditions in the sandstone over a 4-year period, historical development of the perched aquifer, and perennial flow from upland springs emanating from the shallow dolomite suggest that perched groundwater is a stable hydrogeologic feature under current climate conditions. Water-table hydrographs exhibit apparent differences in the amount and timing of recharge to the perched and regional flow systems; steep hydraulic gradients and tritium and chloride concentrations suggest there is limited hydraulic connection between the two. Recognition and characterization of perched flow systems have practical importance because their groundwater flow and transport pathways may differ significantly from those in underlying flow systems. Construction of multi-aquifer wells and groundwater withdrawal in perched systems can further alter such pathways.  相似文献   

20.
Studies of hyporheic exchange flows have identified physical features of channels that control exchange flow at the channel unit scale, namely slope breaks in the longitudinal profile of streams that generate subsurface head distributions. We recently completed a field study that suggested channel unit spacing in stream longitudinal profiles can be used to predict the spacing between zones of upwelling (flux of hyporheic water into the stream) and downwelling (flux of stream water into the hyporheic zone) in the beds of mountain streams. Here, we use two‐dimensional groundwater flow and particle tracking models to simulate vertical and longitudinal hyporheic exchange along the longitudinal axis of stream flow in second‐, third‐, and fourth‐order mountain stream reaches. Modelling allowed us to (1) represent visually the effect that the shape of the longitudinal profile has on the flow net beneath streambeds; (2) isolate channel unit sequence and spacing as individual factors controlling the depth that stream water penetrates the hyporheic zone and the length of upwelling and downwelling zones; (3) evaluate the degree to which the effects of regular patterns in bedform size and sequence are masked by irregularities in real streams. We simulated hyporheic exchange in two sets of idealized stream reaches and one set of observed stream reaches. Idealized profiles were constructed using regression equations relating channel form to basin area. The size and length of channel units (step size, pool length, etc.) increased with increasing stream order. Simulations of hyporheic exchange flows in these reaches suggested that upwelling lengths increased (from 2·7 m to 7·6 m), and downwelling lengths increased (from 2·9 m to 6·0 m) with increase in stream order from second to fourth order. Step spacing in the idealized reaches increased from 5·3 m to 13·7 m as stream size increased from second to fourth order. Simulated downwelling lengths increased from 4·3 m in second‐order streams to 9·7 m in fourth‐order streams with a POOL–RIFFLE–STEP channel unit sequence, and increased from 2·5 m to 6·1 m from second‐ to fourth‐order streams with a POOL–STEP–RIFFLE channel unit sequence. Upwelling lengths also increased with stream order in these idealized channels. Our results suggest that channel unit spacing, size, and sequence are all important in determining hyporheic exchange patterns of upwelling and downwelling. Though irregularities in the size and spacing of bedforms caused flow nets to be much more complex in surveyed stream reaches than in idealized stream reaches, similar trends emerged relating the average geomorphic wavelength to the average hyporheic wavelength in both surveyed and idealized reaches. This article replaces a previously published version (Hydrological Processes, 19 (17), 2915–2929 (2005) [ DOI:10.1002/hyp.5790 ]. See also retraction notice DOI:10.1002/hyp.6350 Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号