首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sorption of the 14 rare earth elements (REE) by basaltic rock is investigated as a function of pH, ionic strength and aqueous REE concentrations. The rock sample, originating from a terrestrial basalt flow (Rio Grande do Sul State, Brazil), is composed of plagioclase, pyroxene and cryptocrystalline phases. Small amounts of clay minerals are present, due to rock weathering. Batch sorption experiments are carried out under controlled temperature conditions of 20 °C with the <125 μm fraction of the ground rock in solutions of 0.025 M and 0.5 M NaCl and at pH ranging from 2.7 to 8. All 14 REEs are investigated simultaneously with initial concentrations varying from 10−7 to 10−4 mol/L. Some experiments are repeated with only europium present to evaluate possible competitive effects between REE. Experimental results show the preferential retention of the heavy REEs at high ionic strength and circumneutral pH conditions. Moreover, results show that REE sorption increases strongly with decreasing ionic strength, indicating two types of sorption sites: exchange and specific sites. Sorption data are described by a Generalised Composite (GC) non-electrostatic model: two kinds of surface reactions are treated, i.e. cation exchange at >XNa sites, and surface complexation at >SOH sites. Total site density (>XNa + >SOH) is determined by measuring the cation exchange capacity (CEC = 52 μmol/m2). Specific concentrations of exchange sites and complexation sites are determined by fitting the Langmuir equation to sorption isotherms of REE and phosphate ions. Site densities of 22 ± 5 and 30 ± 5 μmol/m2 are obtained for [>XNa] and [>SOH], respectively. The entire set of REE experimental data is modeled using a single exchange constant (log Kex = 9.7) and a surface complexation constant that progressively increases from log K = −1.15 for La(III) to −0.4 for Lu(III).The model proves to be fairly robust in describing other aluminosilicate systems. Maintaining the same set of sorption constants and only adjusting the site densities, we obtain good agreement with the literature data on REE/kaolinite and REE/smectite sorption. The Generalised Composite non-electrostatic model appears as an easy and efficient tool for describing sorption by complex aluminosilicate mineral assemblages.  相似文献   

2.
The interaction of the lanthanides (Ln) with humic substances (HS) was investigated with a novel chemical speciation tool, Capillary Electrophoresis-Inductively Coupled Plasma Mass Spectrometry (CE-ICP-MS). By using an EDTA-ligand competition method, a bi-modal species distribution of LnEDTA and LnHS is attained, separated by CE, and detected online by sector field ICP-MS. We quantified the binding of all 14 rare earth elements (REEs), Sc and Y with Suwannee river fulvic acid, Leonardite coal humic acid, and Elliot soil humic acid under environmental conditions (pH 6-9, 0.001-0.1 mol L−1 NaNO3, 1-1000 nmol L−1 Ln, 10-20 mg L−1 HS). Conditional binding constants for REE-HS interaction (Kc) ranged from 8.9 < log Kc < 16.5 under all experimental conditions, and display a lanthanide contraction effect, ΔLKc: a gradual increase in Kc from La to Lu by 2-3 orders of magnitude as a function of decreasing ionic radius. HS polyelectrolyte effects cause Kc to increase with increasing pH and decreasing ionic strength. ΔLKc increases significantly with increasing pH, and likely with decreasing ionic strength. Based on a strong correlation between ΔLKc values and denticity for organic acids, we suggest that HS form a range of tri- to tetra-dentate complexes under environmental conditions. These results confirm HS to be a strong complexing agent for Ln, and show rigorous experimental evidence for potential REE fractionation by HS complexation.  相似文献   

3.
Due to their potential retention capacity, clay minerals have been proposed for use in the engineered barriers for the storage of high-level radioactive actinides in deep geological waste repositories. However, there is still a lack of data on the sorption of actinides in clays in conditions simulating those of the repositories. The present article examines the sorption of two lanthanides (actinide analogues) in a set of smectitic clays (FEBEX bentonite, MX80 bentonite, hectorite, saponite, Otay montmorillonite, and Texas montmorillonite). Distribution coefficients (Kd) were determined in two media: water and 0.02 mol L−1 Ca, the latter representing the cement leachates that may modify the chemical composition of the water in contact with the clay. The Kd values of the lanthanides used in the experiments (La and Lu) varied greatly (25-50 000 L kg−1) depending on the ionic medium (higher values in water than in the Ca medium), the initial lanthanide concentration (up to three orders of magnitude decrease inversely with lanthanide concentration), and the examined clay (up to one order of magnitude for the same lanthanide and sorption medium). Freundlich and Langmuir isotherms were used to fit sorption data to allow comparison of the sorption parameters among smectites. The model based on the two-site Langmuir isotherms provided the best fit of the sorption data, confirming the existence of sorption sites with different binding energies. The sites with higher sorption affinity were about 6% of the total sorption capacity in the water medium, and up to 17% in the Ca medium, although in this latter site sorption selectivity was lower. The wide range of Kd values obtained regarding the factors examined indicated that the retention properties of the clays should also be considered when selecting a suitable clay for engineered barriers.  相似文献   

4.
The mobility of strontium in subsurface is largely influenced by sorption on to clay minerals. In the present study, kaolinite clay samples collected from the Kalpakkam nuclear plant site were employed to understand the sorption characteristics of strontium by batch method. The effect of several parameters such as time, strontium ion concentration, pH, temperature and ionic strength was investigated. The kinetic studies suggested pseudo-second-order mechanism. The experimental sorption data was fitted to Langmuir adsorption model for obtaining the sorption capacity of the sorbent. The maximum sorption capacity was 5.77 mg/g at 298 K and was found to increase with an increase in temperature. It was observed that the distribution coefficient (K d) of strontium on clay increased as the pH of the solution increased. The distribution coefficient was found to decrease with an increase in concentration of Na+ and Ca2+ ions. This variation of K d suggests that cation exchange is the predominant sorption process. It was also observed that sorption process is endothermic. The thermodynamic parameters such as ∆G 0, ∆H 0 and ∆S 0 were calculated. The negative values obtained for ∆G 0 indicated that the sorption of strontium on clay was spontaneous at all studied concentrations. ∆G 0 becomes more negative with an increase in temperature, suggests that the sorption process is more favorable at higher temperatures.  相似文献   

5.
The microscopic reversibility of the sorption of Sm and Yb onto kaolinite and smectite is investigated by introducing an isotopic disequilibrium between the clay and the solution. The experiments are performed at 25°C, in 0.025 or 0.5 M NaClO4 and from pH 4 up to pH 7. The isotopic exchange is monitored as a function of time over a duration of 355 hours. The first stage of the experiment consists of equilibrating the clays with a natural or spiked lanthanide solution. The second stage consists of interchanging the solutions between twin phials (same clay, pH and ionic strength, but with different lanthanide isotopic compositions). The isotopic composition and concentration of aqueous lanthanides are analysed by ICP-MS. The results are as follows: (1) the lanthanide isotopic composition of the solution is rapidly modified and stabilised within 24 h; (2) the isotopic exchange between the solid and the solution is not always complete; (3) the degree of microscopic reversibility (isotopic exchange) decreases with increasing pH. These results are explained by the fact that exchange is easier for lanthanides linked to the surface as outer-sphere complexes (physical sorption), which predominate at low pH, than for atoms sorbed as inner-sphere complexes (chemical sorption) which predominate at high pH. The contrasted kinetics observed for the different kind of sites provide additional constraints for the modeling of migration processes in natural systems.  相似文献   

6.
In this study, we conducted electrophoretic mobility, potentiometric titration, and metal sorption experiments to investigate the surface charge characteristics of Bacillus subtilis and the electrostatic interactions between metal cations and the cell surface electric field. Electrophoretic mobility experiments performed as a function of pH and ionic strength show an isoelectric point of pH 2.4, with the magnitude of the electrokinetic potential increasing with increasing pH, and decreasing with increasing ionic strength. Potentiometric titration experiments conducted from pH 2.4 to 9 yield an average surface charge excess of 1.6 μmol/mg (dry mass). Corresponding cell wall charge density values were used to calculate the Donnan potential (ΨDON) as function of pH and ionic strength. Metal sorption experiments conducted with Ca(II), Sr(II), and Ba(II) exhibit strong ionic strength dependence, suggesting that the metal ions are bound to the bacterial cell wall via an outer-sphere complexation mechanism. Intrinsic metal sorption constants for the sorption reactions were determined by correcting the apparent sorption constant with the Boltzmann factor. A 1:2 metal-ligand stoichiometry provides the best fit to the experimental data with log K2int values of 5.9 ± 0.3, 6.0 ± 0.2, 6.2 ± 0.2 for Ca(II), Sr(II), and Ba(II) respectively. Electrophoretic mobility measurements of cells sorbed with Ca(II), Sr(II), and Ba(II) support the 1:2 sorption stoichiometry. These results indicate that electrical potential parameters derived from the Donnan model can be applied to predict metal binding onto bacterial surfaces over a wide range of pH and ionic strength conditions.  相似文献   

7.
针对赣南风化淋积型稀土矿中稀土元素的分异现象,通过研究该稀土矿的主要矿物成分——高岭石和埃洛石-7的矿物特征及其在不同条件下的吸附特征,探讨了该类型稀土矿的成矿机制和稀土元素分异机理。高岭石和埃洛石-7吸附稀土元素的能力受体系p H值以及金属阳离子钾、钠的的影响,且埃洛石-7吸附稀土元素的能力高于高岭石。横向对比实验结果表明当体系中赋存有K+时,两种粘土矿物对稀土元素的吸附呈现出分化趋势,其中高岭石主要吸附中-重稀土元素,埃洛石-7反之,因此风化淋积型稀土矿风化过程中释放出的K+可能会使高岭石和埃洛石-7呈现出差异吸附特征,进而反过来影响稀土矿中稀土元素的配分。  相似文献   

8.
Rare earth element (REE) adsorption onto sand from a well characterized aquifer, the Carrizo Sand aquifer of Texas, has been investigated in the laboratory using a batch method. The aim was to improve our understanding of REE adsorption behavior across the REE series and to develop a surface complexation model for the REEs, which can be applied to real aquifer-groundwater systems. Our batch experiments show that REE adsorption onto Carrizo sand increases with increasing atomic number across the REE series. For each REE, adsorption increases with increasing pH, such that when pH >6.0, >98% of each REE is adsorbed onto Carrizo sand for all experimental solutions, including when actual groundwaters from the Carrizo Sand aquifer are used in the experiments. Rare earth element adsorption was not sensitive to ionic strength and total initial REE concentrations in our batch experiments. It is possible that the differences in experimental ionic strength conditions (i.e., 0.002-0.01 M NaCl) chosen were insufficient to affect REE adsorption behavior. However, cation competition (e.g., Ca, Mg, and Zn) did affect REE adsorption onto Carrizo sand, especially for light rare earth elements (LREEs) at low pH. Rare earth element adsorption onto Carrizo sand can be successfully modeled using a generalized two-layer surface complexation model. Our model calculations suggest that REE complexation with strong surface sites of Carrizo sand exceeds the stability of the aqueous complexes LnOH2+, LnSO4+, and LnCO3+, but not that of Ln(CO3)2- or LnPO4o in Carrizo groundwaters. Thus, at low pH (<7.3), where major inorganic ligands did not effectively compete with surface sites for dissolved REEs, free metal ion (Ln3+) adsorption was sufficient to describe REE adsorption behavior. However, at higher pH (>7.3) where solution complexation of the dissolved REEs was strong, REEs were adsorbed not only as free metal ion (Ln3+) but also as aqueous complexes (e.g., as Ln(CO3)2- in Carrizo groundwaters). Because heavy rare earth elements (HREEs) were preferentially adsorbed onto Carrizo sand compared to LREEs, original HREE-enriched fractionation patterns in Carrizo groundwaters from the recharge area flattened along the groundwater flow path in the Carrizo Sand aquifer due to adsorption of free- and solution-complexed REEs.  相似文献   

9.
The sorption of Np(V) and Np(IV) onto kaolinite has been studied in the absence and presence of humic acid (HA) in a series of batch equilibrium experiments under different experimental conditions: [Np]0: 1.0 × 10-6 or 1.0 × 10-5 M, [HA]0: 0 or 50 mg/L, I: 0.01 or 0.1 M NaClO4, solid to liquid ratio: 4 g/L, pH: 6–11, anaerobic or aerobic conditions, without or with carbonate. The results showed that the Np(V) sorption onto kaolinite is affected by solution pH, ionic strength, Np concentration, presence of carbonate and HA. In the absence of carbonate, the Np(V) uptake increased with pH up to ∼96% at pH 11. HA further increased the Np(V) sorption between pH 6 and 9 but decreased the Np(V) sorption between pH 9 and 11. In the presence of carbonate, the Np(V) sorption increased with pH and reached a maximum of 54% between pH 8.5 and 9. At higher pH values, the Np(V) sorption decreased due to the presence of dissolved neptunyl carbonate species with a higher negative charge that were not sorbed onto the kaolinite surface which is negatively charged in this pH range. HA again decreased the Np(V) uptake in the near-neutral to alkaline pH range due to formation of aqueous neptunyl humate complexes. The decrease of the initial Np(V) concentration from 1.0 × 10−5 M to 1.0 × 10−6 M led to a shift of the Np(V) adsorption edge to lower pH values. A higher ionic strength increased the Np(V) uptake onto kaolinite in the presence of carbonate but had no effect on Np(V) uptake in the absence of carbonate.  相似文献   

10.
Batch experiments were conducted to study the sorption of uranium on selected clay minerals (KGa-1b and KGa-2 reference kaolinite, SWy-2 and STx-1b reference montmorillonite, and IBECO natural bentonite) as a function of pH (4–9) and 0.001, 0.01, and 0.025 M NaCl in equilibrium with the CO2 partial pressure of the atmosphere. Uranium concentrations were kept below 100 μg L−1 to avoid precipitation of amorphous Uranium-hydroxides. Solely PTFE containers and materials were used, because experiments showed significant sorption at higher pH on glass ware. All batch experiments were performed over a period of 24 h, since kinetic experiments proved that the common 10 or 15 min are in many cases by far not sufficient to reach equilibrium. Kaolinite showed much greater uranium sorption than the other clay minerals due to the more aluminol sites available. Sorption on the poorly crystallized KGa-2 was higher than on the well-crystallized KGa-1b. Uranium sorption on STx-1b and IBECO exhibited parabolic behavior with a sorption maximum around pH 6.5. Sorption of uranium on montmorillonites showed a distinct dependency on sodium concentrations because of the effective competition between uranyl and sodium ions, whereas less significant differences in sorption were found for kaolinite. The presence of anatase as impurity in kaolinite enhanced the binding of uranyl-carbonate complexes with surface sites. The kinetic of uranium sorption behavior was primarily dependent on the clay minerals and pH. A multisite surface complexation model without assuming exchange is based on the binding of the most dominant uranium species to aluminol and silanol edge sites of montmorillonite, respectively to aluminol and titanol surface sites of kaolinite. For eight surface species, the log_k was determined from the experimental data using the parameter estimation code PEST together with PHREEQC.  相似文献   

11.
Pharmaceuticals have gained significant attention in recent years due to the environmental risks posed by their versatile application and occurrence in the natural aquatic environment. The transportation and distribution of pharmaceuticals in the environmental media mainly depends on their sorption behavior in soils, sediment?Cwater systems and waste water treatment plants, which varies widely across pharmaceuticals. Sorption of ibuprofen, a non-steroidal anti-inflammatory drug, onto various soil minerals, viz., kaolinite, montmorillonite, goethite, and activated carbon, as a function of pH (3?C11), ionic strength (NaCl concentration: 0.001?C0.5?M), and the humic acid concentration (0?C1,000?mg/L) was investigated through batch experiments. Experimental results showed that the sorption of ibuprofen onto all sorbents was highest at pH 3, with highest sorption capacity for activated carbon (28.5?mg/g). Among the minerals, montmorillonite sorbed more ibuprofen than kaolinite and goethite, with sorption capacity increasing in the order goethite (2.2?mg/g)?<?kaolinite (3.1?mg/g)?<?montmorillonite (6.1?mg/g). The sorption capacity of the selected minerals increased with increase in ionic strength of the solution in acidic pH condition indicating that the effect of pH was predominant compared to that of ionic strength. An increase in humic acid concentration from low to high values made the sorption phenomena very complex in the soil minerals. Based on the experimental observations, montmorillonite, among the selected soil minerals, could serve as a good candidate to remove high concentrations of ibuprofen from aqueous solution.  相似文献   

12.
Elevated polycyclic aromatic hydrocarbon (PAH) concentrations were determined in different Chinese coals, with the highest concentrations in bituminous coals. Phenanthrene (Phen) was chosen as the probe compound for PAHs to study the sorption behavior of coal. No native Phen was detected in desorption experiments indicating irreversible sorption–desorption behavior of PAHs in raw coal samples. Sorption mechanism was further studied under varying conditions of pH value and ionic strength. Different ranks of coal showed different sorption behavior under acidic, neutral, and alkaline conditions. Batch experiments were further processed for the selected coals at pH values from 3 to 11 at a constant aqueous concentration. Sorption capacities of all coals decreased with increased pH except for YJ coal. Furthermore, although DOC-associated Phen mass contributed little to the total Phen mass under different pH values, the significant negative correlations between M DOC and log K OC values were observed for all coal samples, indicating a significant role played by DOC in the coal sorption. In addition, sorption experiments under varying ionic strength showed that the ionic strength influence was more obvious in sorption isotherms for higher rank coals with increasing ionic strength, and this effect was most significant when ionic strength increased from 0 to 0.15 M, especially at relatively low aqueous concentrations.  相似文献   

13.
Diffusion and sorption behaviors of cationic Cs+, anionic I and neutral HTO in samples of the Wakkanai Formation from the Horonobe underground research laboratory (URL), Japan, were investigated as a function of ionic strength (I) of synthetic groundwater by through-diffusion and batch sorption experiments and mechanistic modeling. The effective diffusivities (De) measured by through-diffusion experiments showed cation excess and anion exclusion effects, which were strongly dependent on I; De for Cs+ decreased as I increased, De for I showed the opposite dependency and De for HTO showed no dependence. The sorption of Cs+ measured by through-diffusion and batch sorption experiments were described by Freundlich isotherms with consistent parameters and decreased with I as a result of competitive ion exchange.Diffusion and sorption behaviors were interpreted by assuming the clay components of illite and smectite control diffusion and sorption mechanisms. The component additive (CA) sorption model, which includes illite and smectite contents and their ion exchange constants, provided a reasonable account of the Cs+ sorption trends measured as functions of I and Cs concentration. The diffusion model was developed by coupling the electrical double layer (EDL) model, describing the change of ionic concentrations (cation excess and anion deficit) and viscoelectric effects caused by electrostatic interaction at negatively charged clay surfaces, and a simplified pore model assuming one type of pore shape and includes their size distribution. When averaging the electrostatic effects by using the pore surface area distribution, the model could predict the cation excess and anion exclusion effects, and its dependence on I reasonably well. This result implies the nanoscale pores dominating the pore surface area can strongly impact on ionic diffusion in argillaceous rocks. The clay-based modeling approach described here provides a useful tool to predict ionic diffusion and sorption in argillaceous rocks.  相似文献   

14.
High-pressure equilibrium studies were conducted in piston-cylinder apparatus to determine rare earth element (REE) partitioning between garnet and H2O-vapor-saturated liquidus, from 20 kbar/980°C to 30 kbar/1060 °C. Ag capsules were employed to eliminate loss of Fe. Partition coefficients (KD's) were determinined with autoradiographic techniques employing beta-active isotopes of Ce, Sm, and Tm. Major elements in garnet were determined by microprobe analysis. Synthesis and reversal runs of 24 hr or greater duration were used to bracket values of KD's within analytical uncertainty.The KD values for all three REE are constant over the radiogenic concentration range of 1 to 350 ppm, suggesting that the high abundance of natural REE in the starting materials may suppress possible deviations from Henry's Law behavior reported in similar autoradiographic studies of synthetic systems with no natural REE. Changes in KD with increasing pressure and temperature at near-liquidus conditions suggest that the dominant control of KD is the average size of cations occupying the 8-fold sites in garnet. Specifically, the substitution of 8-fold Ca for Mg and Fe causes an increase in KD values greater than that attributable to the coincident effects of pressure and temperature. The inverse correlation of increasing KD with REE ionic radius supports the interpretation that the average size of the 8-fold cation controls the relative variation of KD among REE.These experimental KD values produce less relative fractionation in melts between light REE and heavy REE than do previous KD's derived from data on coexisting natural garnet phenocryst/rockmatrix pairs. Models for the derivation of orogenic andesites from partial melting of subducted basaltic eclogite are qualitatively improved by these new KD's. Existing calculations of KD values necessary for the viability of the eclogite fractionation are also in good agreement with these experimental KD values.  相似文献   

15.
The purpose of this study was to determine the effects of pH, ion type (salt and metal cations), ionic strength, cation valence, hydrated ionic radius, and solid concentration on the zeta potential of kaolinite and quartz powder in the presence of NaCl, KCl, CaCl2, CuCl2, BaCl2, and AlCl3 solutions. The kaolinite and quartz powder have no isoelectric point (iep) within the entire pH range (3 < pH < 11). In the presence of hydrolysable metal ions, kaolinite and quartz powder have two ieps. As the cationic valence increases, the zeta potential of kaolinite and quartz powder becomes less negative. Monovalent cation, K+, yields more negative zeta potential values than the divalent cation Ba2+. As concentration of solid increases, the zeta potential of the minerals becomes more positive under acidic conditions; however, under alkaline conditions as solid concentration increases the zeta potential becomes more negative. Hydrated ionic radius also affects the zeta potential; the larger the ion, the thicker the layer and the more negative zeta potential for both kaolinite and quartz powder.  相似文献   

16.
《Applied Geochemistry》2004,19(3):323-334
In the present study the distribution of TBT between solid and water phase as a function of several parameters was determined. Two types of clay minerals (Na-montmorillonite SWy and kaolinite KGa) and quartz sand were used as sorbents in conventional batch experiments. Sorption coefficients (Kd) followed the order montmorillonite (89 l/kg) > kaolinite (51 l/kg) > quartz (25 l/kg), while for sorption coefficients normalized to the surface area (Kd′) an opposite trend was observed, with the lowest value determined for montmorillonite (2.79 × 10−3 l/m2) and the highest for quartz sand (8.04 × 10−2 l/m2). The results demonstrate that numerous environmental parameters influence the adsorption process of TBT, such as solid/solution ratio, clay content and salinity. Another important factor governing TBT adsorption is pH, because it affects both the TBT species in the water phase as well as the surface properties of the mineral phase. The maximum of TBT adsorption onto clays was always around pH 6–7. According to the data, it is evident that the content of organic matter in the solid phase plays an important role on TBT adsorption, either as particulate organic matter (POM) or organic matter adsorbed to mineral particles (AOM). Experiments were carried out with well characterized organic matter and the results showed a linear increase of Kd from 51 up to 2700 l/kg upon the addition of 5% of particulate organic matter to pure phased kaolinite. TBT adsorption onto mineral surfaces, which were previously enriched with adsorbed organic matter, was investigated at different pH. The present study points to the importance of identifying and characterizing sorbents and envrionmental conditions, in order to predict and model TBT distribution in natural systems.  相似文献   

17.
Sorption of Ni(II) onto chlorite surfaces was studied as a function of pH (5–10), ionic strength (0.01–0.5 M) and Ni concentration (10−8–10−6 M) in an Ar atmosphere using batch sorption with radioactive 63Ni as tracer. Such studies are important since Ni(II) is one of the major activation products in spent nuclear fuel and sorption data on minerals such as chlorite are lacking. The sorption of Ni(II) onto chlorite was dependent on pH but not ionic strength, which indicates that the process primarily comprises sorption by surface complexation. The maximum sorption was at pH ∼ 8 (Kd = ∼10−3 cm3/g). Desorption studies over a period of 1–2 weeks involving replacement of the aqueous solution indicated a low degree of desorption. The acid–base properties of the chlorite mineral were determined by titration and described using a non-electrostatic surface complexation model in FITEQL. A 2-pK NEM model and three surface complexes, Chl_OHNi2+, Chl_OHNi(OH)+ and Chl_OHNi(OH)2, gave the best fit to the sorption results using FITEQL. The high Kd values and low degree of desorption observed indicate that under expected groundwater conditions, a large fraction of Ni(II) that is potentially leachable from spent nuclear fuel may be prevented from migrating by sorption onto chlorite surfaces.  相似文献   

18.
19.
The sorption of ferrous iron to a clay mineral, nontronite (NAu-2, a ferruginous smectite), was investigated under strictly anoxic conditions as a function of pH (3-10), Fe2+ concentration (0.01-50 mM), equilibration time (1-35 days), and ionic strength (0.01-0.5 M NaClO4). The surface properties of NAu-2 were independently characterized to determine its fixed charge and amphoteric site density in order to interpret the Fe2+ sorption data. Fe2+ sorption to NAu-2 was strongly dependent on pH and ionic strength, reflecting the coupled effects of Fe2+ sorption through ion exchange and surface complexation reactions. Fe2+ sorption to NAu-2 increased with increasing pH from pH 2.5 to 4.5, remained constant from pH 4.5 to 7.0, increased again with further increase of pH from pH 7.0 to 8.5, and reached a maximum above pH 8.5. The Fe2+ sorption below pH 7.0 increased with decreasing ionic strength. The differences of Fe2+ sorption at different ionic strengths, however, diminished with increasing equilibration time. The Fe2+ sorption from pH 4.5 to 7.0 increased with increasing equilibration time up to 35 days and showed stronger kinetic behavior in higher ionic strength solutions. The kinetic uptake of Fe2+ onto NAu-2 is consistent with a surface precipitation mechanism although our measurements were not able to identify secondary precipitates. An equilibrium model that integrates ion exchange, surface complexation and aqueous speciation reactions reasonably well describes the Fe2+ sorption data as a function of pH, ionic strength, and Fe2+ concentration measured at 24 h of equilibration. Model calculations show that the species Fe(OH)+ was required to describe Fe2+ sorption above pH 8.0 satisfactorily. Overall, this study demonstrated that Fe2+ sorption to NAu-2 is affected by complex equilibrium and kinetic processes, likely caused by surface precipitation reactions.  相似文献   

20.
We have studied the hydrolytic behavior of Y3 + and trivalent ions of rare earth elements in aqueous solutions at 25 ºC. The stepwise stability constants of hydroxide complexes were measured by spectrophotometry, using m-cresol purple and 1-(2-pyridylazo)-2-naphthol as pH indicators at an ionic strength no more than 0.0005. The results showed that at pH ranging between 6.0 and 11.0 in freshly prepared solutions of REE trichlorides, lanthanides are presented as Ln3 +, Ln(OH)2 +, Ln(OH)2, and Ln(OH)3. The plots of the formation constants of + 0 monohydroxo complexes of 4f n ions M3 + versus atomic number Z deviate from smooth ones and consist of four convex curves. This phenomenon is also observed in normalized spectra of REE concentrations in natural objects and is known as the tetrad effect. The obtained data give an insight into the relationship between REE complex formation and REE fractionation in geochemical processes and can be used for physicochemical modeling of geochemical systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号