首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An assessment of the utility of staurolite in U-Pb dating of metamorphism   总被引:1,自引:0,他引:1  
Pb isotope data, major and trace element compositions, fission track and synchrotron X-ray fluorescence analyses are presented for staurolites from nine pelitic schists in the continental United States to evaluate their potential use in U-Pb geochronology. Seven U-Pb analyses from Lanzirotti and Hanson (1995) are reexamined with respect to this additional data which was not available at the time. These data are then compared to 21 new U-Pb analyses of staurolite of varying composition from a variety of localities. The primary goals of this study are to: (1) evaluate the variability in U and Pb abundance and U/Pb ratio in staurolites of varying composition; (2) constrain how much of the measured U and Pb is derived from radiogenic solid inclusions such as monazite and zircon; (3) constrain how much of the measured U and Pb is derived from staurolite itself and evaluate any possible correlation of U and Pb abundance and U/Pb ratio to major element composition; (4) place preliminary constraints on closure temperature to Pb diffusion in staurolite; (5) evaluate how meaningful U-Pb ages can better be calculated for the low U/Pb ratio minerals. In the staurolite fractions analyzed U abundances range from 0.2 to 24.9 ppm, Pb from 0.13 to 2.41 ppm, the 238U/204Pb ratios vary from 135 to 9447, and the 206Pb/204Pb ratios from 23 to 623. For many of the fractions analyzed precise U-Pb ages can be calculated (±10 Ma or better) that appear to be consistent with available age constraints on the time of peak metamorphism. Mass balance calculations, fission track analysis, and synchrotron X-ray fluorescence trace element mapping show that although radiogenic inclusions are almost always present in large staurolite porphyroblasts, it is difficult for inclusions to account for the measured Pb isotopic compositions. It is also demonstrated that the U-Pb ages calculated for staurolites from Connecticut are at least 20 Ma older than nearby Rb-Sr muscovite and 40Ar-39Ar hornblende ages. This is consistent with staurolite having a closure temperature to U and Pb diffusion significantly higher than 500 °C. Received: 14 July 1995 / Accepted: 16 May 1997  相似文献   

2.
Zinc mineralization in Devonian carbonates of the Lennard Shelf, northern Canning Basin is similar in many respects to that of the Mississippi Valley‐type including estimated minimum temperatures of sulphide precipitation between 70 and 110°C. Apparent apatite fission track ages for Precambrian granitic basement and for detrital apatites in Devonian carbonates in and near Pb‐Zn mineralization generally range between 260 and 340 Ma, with Precambrian samples tending to have slightly older apatite fission track ages than the Devonian carbonates. These apparent ages are younger than the stratigraphic age of the material analysed, indicating that appreciable annealing of fission tracks in apatite has occurred in post‐Devonian times. Mean horizontal confined track lengths are 12–13 μm for most samples and preclude attaching any ‘event’ significance to the fission track ages. Studies of well sequences (Grevillea 1 and Kennedia 1) indicate a period of rapid uplift in the area during the Late Triassic/Early Jurassic. Assuming a constant geothermal gradient of 30°C/km, approximately 1.5 km of uplift and erosion is estimated. Immediate thermal effects related to Miocene lamproite intrusion into Precambrian basement appear to be restricted to within 200 m of the contact zone.

For outcropping Devonian carbonates, a thermal history is proposed involving burial in the Late Palaeozoic/Early Mesozoic, followed by uplift and cooling from peak temperatures around 70–80°C in mid‐Mesozoic times. With reference to this period of burial, Pb‐Zn occurrences represent thermal anomalies when reported fluid inclusion homogenization temperatures are compared with the estimated peak temperatures. However the possibility of a phase of higher temperatures during the Late Devonian/ Early Carboniferous is suggested by the apatite fission track results, in which case sulphide mineralization may reflect ambient regional temperatures if it formed at that time. The absence of enhanced annealing effects in detrital apatites proximal to Pb‐Zn deposits suggests that either sulphide mineralization preceded or accompanied peak regional temperatures suspected during the Late Devonian/Early Carboniferous, or that the mineralizing episodes were of too short a duration to significantly anneal fission tracks in apatite.  相似文献   

3.
Recent work on fission track studies of meteorite samples to obtain cooling rates of metetorite parent bodies is reviewed. The cooling rates of chondrites are in excess of 1oK/106 yr. Fission track studies of phosphate grains in mesosiderites do not support the extremely slow cooling rates of 0°1oK/108 yr for these meteorites, inferred from metallographic studies. The accumulating evidence from fission track studies indicates a gross underestimation of the cooling rates of meteorites as determined by the metallographic techniques.  相似文献   

4.
Fission track annealing experiments for vermiculite mineral have been performed under optimised etching conditions and a correction curve translating track length reduction to track density reduction has been constructed. The blocking/closing temperature of the fission track system in the mineral has been calculated to be 125°±30° C. The corrected fission track age of vermiculite from Kasipatnam (Visakhapatnam), South India, has been calculated as 544±14 Ma. The activation energy and average uranium concentration of the mineral are 1.7 eV and 9.9×10?8 gg?1 respectively.  相似文献   

5.
Detrital zircon provenance studies that combine low‐temperature fission‐track and high‐temperature U–Pb single‐grain age dating are powerful in constraining sediment provenance by documenting the tectonothermal evolution of the sediment source(s). We apply these techniques to Miocene (12–6 Ma) sandstones of the Hengchun Peninsula, southern Taiwan, which, based on diametrically opposite palaeocurrents, have a controversial provenance. U–Pb grain ages range from the Miocene (8 Ma) to Archaean (2.5 Ga). Cretaceous thermal cooling is recorded by detrital zircon fission tracks at Loshui and Lilongshan. Permian fission‐track grain ages account for <33% of zircon ages from Loshui, while at Lilongshan, Jurassic/Triassic grain ages account for 33–66% of all zircon fission‐track ages. Minor (<12%) Miocene age components are detected in both formations. These new data suggest that the primary sources of these Miocene sediments were similar. A simple model is proposed invoking sediment reworking in this complex tectonic setting. Terra Nova, 00, 000–000, 2010  相似文献   

6.
Investigation of fossil charged-particle track densities in various mineral phases of three meteorites—Estherville, Nakhla and Odessa—coupled with U content determination, has led to the evaluation of various contributions to the total fossil track density, including those due to the spontaneous fission of 238U and 244Pu. A fission-track age for Estherville of around 4 × 109 yr is found, which is thought to reflect slow cooling of the parent body. A Pu track excess of (106 ± 9): 1 over the spontaneous fission of 238U is found in Odessa diopside, which is larger than may be allówed on a simple ‘continuous synthesis’ model for the production of heavy elements prior to solar system formation. Possible explanations for this value are discussed, including fractionation of Pu relative to U. No detectable U was found in Nakhla diopside, and a measurable contribution of track densities from the fission of superheavy elements is ruled out on the basis of track-length measurements and laboratory calibration with Fe ions.  相似文献   

7.
Anorthositic series apatites of the Duluth Complex, Minnesota, USA, have high spontaneous fission‐track densities of up to ~107 cm–2 and a homogeneous age of ~900 Ma, allowing high‐precision fission‐track dating based on LA–ICP–MS U analysis. Absolute fission‐track dating, track‐length measurement and chemical composition analysis were performed to evaluate a cooling history, which is essential for age reference materials. Preliminary inverse modelling for a sample with a shortened track‐length distribution yielded a monotonic cooling history from ~100°C at 925 Ma. The apatites incur an over‐etching problem when employing the commonly used etching protocol involving 5.5 M HNO3.  相似文献   

8.
We present a multi‐chronometric approach for reconstructing deep‐time thermal histories using southern Baffin Island as a case study. This continuous thermal history begins with the Palaeoproterozoic Trans‐Hudson Orogeny and is derived from inverse and forward models that integrate thermochronometers spanning some 500°C: new apatite U–Pb ages and K‐feldspar 40Ar/39Ar multi‐diffusion domain data, published (U–Th)/He zircon ages and new multi‐kinetic fission‐track results. Integration of data from a wider temperature range reduces ambiguities in thermal‐history modelling and permits us to constrain the timing of geological processes including, extended post‐orogenic cooling, enhanced later Proterozoic cooling, and then episodic burial and exhumation in the Palaeozoic–Mesozoic.  相似文献   

9.
The decay constant for spontaneous fission of natural uranium has been determined by accumulating fission fragment tracks in Lexan plastic held adjacent to uranium metal for one year. The value, 6.8 ± 0.6. 10−17 yr−1, is consistent with values most commonly used in fission track dating.  相似文献   

10.
相山铀矿田铀多金属成矿时代与成矿热历史   总被引:1,自引:1,他引:0  
林锦荣  胡志华  王勇剑  张松  陶意 《岩石学报》2019,35(9):2801-2816
相山铀矿田的铀多金属矿化主要可划分为碱性铀矿化、酸性铀矿化、铅锌银铜矿化和金矿化四种类型。通过沥青铀矿和矿化岩石U-Pb等时线、黄铁矿Rb-Sr等时线、绢云母~(40)Ar-~(39)Ar同位素年龄测定,结合铀多金属成矿特征研究,厘定了相山铀矿田铀多金属成矿时代,确定铀多金属矿化的成矿时序为:碱性铀矿化、铅锌银铜矿化、金矿化、酸性铀矿化。锆石裂变径迹研究表明,相山矿田铀多金属矿化样品的锆石裂变径迹峰值年龄与U-Pb、Rb-Sr和~(40)Ar-~(39)Ar同位素年龄一致性良好,裂变径迹年龄(峰值年龄)可以限定热液铀多金属成矿热事件时代。碱性铀成矿热事件的锆石裂变径迹峰值年龄为119. 8~125. 6Ma;金成矿热事件和铅锌银铜多金属成矿热事件的锆石裂变径迹峰值年龄为106. 1~113. 8Ma;酸性铀成矿热事件的锆石裂变径迹峰值年龄为86. 7~100. 0Ma;新发现一期锆石裂变径迹峰值年龄为66. 4~78. 6Ma的热事件,该期热事件可能为相山矿田最晚一期酸性铀成矿热事件。相山矿田66. 4~78. 6Ma的铀成矿热事件,与华南花岗岩型热液铀矿床的区域成矿热事件时代耦合,该发现对华南火山岩型铀矿成矿时代的重新认识,对火山岩型、花岗岩型铀矿床成矿统一性认识具有重要意义。  相似文献   

11.
Life spans and thermal evolution of hydrothermal systems are of fundamental metallogenic importance. We were able to establish the chronology and cooling history of the Zaldívar porphyry copper deposit (Northern Chile) by applying a combination of different isotopic dating methods in minerals with different closure temperatures, including 40Ar/39Ar geochronology and zircon fission track thermochronology, together with fluid inclusion thermometry and previous published U–Pb zircon geochronology. The hydrothermal mineralization in the Zaldívar deposit is genetically related to the Llamo Porphyry unit. Samples of igneous biotites from this intrusion yielded 40Ar/39Ar plateau ages between 35.5 ± 0.7 and 37.7 ± 0.4 Ma defining a weighted average of 36.6 ± 0.5 Ma (2σ). In contrast, one sample from the Zaldívar porphyry, one from the andesites, and two from the Llamo porphyry yielded considerably younger fission track ages of approximately 29 Ma with a weighted mean for all ages of 29.1 ± 1.7 Ma (2σ). Thermal and compositional constraints for the hydrothermal system in the Zaldívar deposit from fluid inclusions thermometry show that at least three fluid types broadly characterize two main hydrothermal episodes during the evolution of the deposit. The main mineralization and alteration event is characterized by high temperature (above 320°C) hypersaline fluids (salinity between 30 and 56 wt.% NaCl equivalents) coexisting with low-density gas-rich inclusions (salinity less than 17 wt.% NaCl equivalents) that homogenizing into the gas phase at temperatures above 350°C. The second episode corresponds to a low-temperature event which is characterized by liquid-rich fluid inclusions that homogenize into the liquid phase at temperatures ranging from 200°C to 300°C with salinities lower than 10 wt.% NaCl equivalents. The 40Ar/39Ar data (36.6 ± 0.5 Ma, weighted average) obtained from igneous biotites represent the minimum age for the last high-temperature (above 300°C) hydrothermal pulse. When compared with previously published U–Pb ages (38.7 ± 1.3 Ma) in zircons from the Llamo porphyry, a close temporal relationship between crystallization of the parental intrusion and the thermal collapse of the last high-temperature hydrothermal event is evident. Cooling took place from approximately 800°C (crystallization of the intrusive complex defined by zircon U–Pb ages) to below 300 ± 50°C (biotite 40Ar/39Ar closure temperature) within approximately 1.5 m.y. Because the thermal annealing of fission tracks in zircons occurs at temperatures of 240 ± 30°, the zircon fission track (ZFT) ages of 29.1 ± 1.7 Ma (2σ) mark the end of the thermal activity in the Zaldívar area, specifically the time when the whole area cooled below this temperature, well after the collapse of the main hydrothermal event in the Zaldívar porphyry copper deposit. This cooling age roughly coincides with the age defined for the emplacement of dacitic dikes at 31 ± 2.8 Ma (2σ) (published K–Ar whole rock), 5 km south of the Zaldívar deposit, in the Escondida area. This late magmatic pulse probably is responsible for high heat flow in the Zaldívar deposit as late as 29 Ma. There is no evidence that the low temperature hydrothermal pulse recognized by fluid inclusion studies is related to this thermal event. The zircon fission track cooling ages are interpreted to be related to the time lag required for complete relaxation of the perturbation of the isotherms in the geothermal field imposed by the intrusion of magmatic bodies, with or without any association with low temperature hydrothermal activity.  相似文献   

12.
The existence of the Cretaceous-Tertiary (K/T) boundary in the non-marine succession is expected at Jiayin in the Heilongjiang River area, China. Zircons from a tuff sample from the Baishantou Member of Wuyun Formation in Jiayin were analyzed by the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb dating and fission-track dating methods. Ages of 64.1±0.7 Ma (U-Pb) and 61.7±1.8 Ma (fission-track dating) were obtained, which allow re-evaluation of a previously reported late Maastrichian age for the tuff layer that was in conflict with the paleontological evidence. These results confirm the Danian age of the section in agreement with the paleontological evidence.  相似文献   

13.
Apatite incorporates variable and significant amounts of halogens (mainly F and Cl) in its crystal structure, which can be used to determine the initial F and Cl concentrations of magmas. The amount of chlorine in the apatite lattice also exerts an important compositional control on the degree of fission‐track annealing. Chlorine measurements in apatite have conventionally required electron probe microanalysis (EPMA). Laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) is increasingly used in apatite fission‐track dating to determine U concentrations and also in simultaneous U‐Pb dating and trace element measurements of apatite. Apatite Cl measurements by ICP‐MS would remove the need for EPMA but the high (12.97 eV) first ionisation potential makes analysis challenging. Apatite Cl data were acquired using two analytical set‐ups: a Resonetics M‐50 193 nm ArF Excimer laser coupled to an Agilent 7700× quadrupole ICP‐MS (using a 26 μm spot with an 8 Hz repetition rate) and a Photon Machines Analyte Excite 193 nm ArF Excimer laser coupled to a Thermo Scientific iCAP Qc (using a 30 μm spot with a 4 Hz repetition rate). Chlorine concentrations were determined by LA‐ICP‐MS (1140 analyses in total) for nineteen apatite occurrences, and there is a comprehensive EPMA Cl and F data set for 13 of the apatite samples. The apatite sample suite includes different compositions representative of the range likely to be encountered in natural apatites, along with extreme variants including two end‐member chlorapatites. Between twenty‐six and thirty‐nine isotopes were determined in each apatite sample corresponding to a typical analytical protocol for integrated apatite fission track (U and Cl contents) and U‐Pb dating, along with REE and trace element measurements. 35Cl backgrounds (present mainly in the argon gas) were ~ 45–65 kcps in the first set‐up and ~ 4 kcps in the second set‐up. 35Cl background‐corrected signals ranged from ~ 0 cps in end‐member fluorapatite to up to ~ 90 kcps in end‐member chlorapatite. Use of a collision cell in both analytical set‐ups decreased the low mass sensitivity by approximately an order of magnitude without improving the 35Cl signal‐to‐background ratio. A minor Ca isotope was used as the internal standard to correct for drift in instrument sensitivity and variations in ablation volume during sessions. The 35Cl/43Ca values for each apatite (10–20 analyses each) when plotted against the EPMA Cl concentrations yield excellently constrained calibration relationships, demonstrating the suitability of the analytical protocol and that routine apatite Cl measurements by ICP‐MS are achievable.  相似文献   

14.
Zircon fission track dating and track length analysis in the high‐grade part of the Asemigawa region of the Sanbagawa belt demonstrates a simple cooling history passing through the partial annealing zone at 63.2 ± 5.8 (2 σ) Ma. Combining this age with previous results of phengite and amphibole K–Ar and 40Ar/39Ar dating gives a cooling rate of between 6 and 13 °C Myr?1, which can be converted to a maximum exhumation rate of 0.7 mm year?1 using the known shape of the P–T path. This is an order of magnitude lower than the early part of the exhumation history. In contrast, zircon fission track analyses in the low‐grade Oboke region show that this area has undergone a complex thermal history probably related to post‐orogenic secondary reheating younger than c. 30 Ma. This event may correlate with the widespread igneous activity in south‐west Japan around 15 Ma. The age of subduction‐related metamorphism in the Oboke area is probably considerably older than the generally accepted range of 77–70 Ma.  相似文献   

15.
The Late Tertiary shallow subduction of the Cocos ridge under the Caribbean plate controlled the evolution of the Cordillera de Talamanca in southeast Costa Rica, which is a mountain range that consists mainly of granitoids formed in a volcanic arc setting. Fission track thermochronology using zircon and apatite, as well as 40Ar–39Ar and Rb–Sr age data of amphibole and biotite in granitoid rocks constrain the thermal history of the Cordillera de Talamanca and the age of onset of subduction of the Cocos ridge. Shallow intrusion of granitoid melts resulted in fast and isobaric cooling. A weighted mean zircon fission track age (13 analyses) and Rb–Sr biotite ages of about 10 Ma suggest rapid cooling and give minimum ages for granitoid emplacement. In some cases 40Ar–39Ar and Rb–Sr apparent ages of amphibole and biotite are younger than the zircon fission track ages, which can be attributed to partial resetting by hydrothermal alteration. Apatite fission track ages range from 4.8 to 1.7 Ma but show no correlation with the 3090-m elevation span over which they were sampled. The apatite ages seem to indicate rapid exhumation caused by tectonic and isostatic processes. The combination of the apatite fission track ages with subduction parameters of the Cocos plate such as subduction angle, plate convergence rate and distance of the Cordillera de Talamanca to the trench implies that the Cocos ridge entered the Middle America Trench between 5.5 and 3.5 Ma.  相似文献   

16.
Considerable attention has been paid in recent years to the study of geothermal history by using spontaneous fission tracks of 238U recorded in minerals.Apatite and zircon were used for fission track study in this paper because apatitie has been widely used as a natural geothermometer(Wang Shicheng et al., 1994) to reveal the thermal evolution of sedimentary rocks based on its low annealing temperature of fission tracks and zircon is characterized by a closing temperature above 700℃,The samples were collected from ferruginous,siliceous slate wall rock at the upper levels of the orebody and Nb-REE-Fe ores from deep tunnels.The age and thermal evolution of the orebody were discussed in terms of fission track characters and their length variations observed in the coexisting apatite and zircon in the same specimen.  相似文献   

17.
The isotopic analyses of rare earth elements (REE), Pb and U in several kinds of minerals from the clay and black shale layers above the Bangombé natural reactor, Gabon, were performed using a sensitive high-resolution microprobe (SHRIMP) to investigate the migration and retardation processes of fission products released from the reactor. REE isotopic data of the secondary minerals found in clays and black shales show that most of fission products were effectively trapped in the clays and not distributed into the black shales over the clays, which reveals that the clays play an important role in preventing fission products from spreading.Zircon crystals in the clays heterogeneously contain high-U regions (up to 28.3 wt%) with normal 235U/238U ratios (=0.00725) and significant amounts of fissiogenic REE, which suggest the occurrence of significant chemical fractionation between REE and U during the dissolution of reactor uraninite and the recrystallization of secondary U minerals. The Pb data suggest that galena grains in the clays were also formed by the mixing of the two components during a recent alteration event, and that a significant amount of Pb was derived from 2.05-Ga-old original uraninite rather than reactor uraninite. The U-Pb systematics of zircon provide chronological information on the old igneous activity associated with the basement rock formation at 2.8 Ga and geochemical evidence of the incomplete mixing of independent Pb and U sources. This result is consistent with previous chronological results in this area.  相似文献   

18.
锆石裂变径迹年龄和逐层蒸发法铅年龄测定对比研究   总被引:1,自引:0,他引:1  
王璐  刘顺生 《地球学报》1994,15(Z1):226-231
本文阐述了颗粒锆石裂变径迹法及双带源逐层蒸发法的方法原理,对取自美国菲什(Fish)峡谷凝灰岩中的锆石裂变径迹年龄国际标准样及取自香港花岗岩中锆石的两种年龄结果进行了对比,并分析了它们年龄差异的原因,认为铅年龄代表锆石的结晶年龄,而裂变径迹表观年龄代表岩体的冷却年龄或最后一次热事件的年代。开展不同方法的对比研究,可以得到更多的信息,以期更好地探讨研究区的演化历史。  相似文献   

19.
New thermochronological analyses of granites from the Malay Peninsula record the region’s thermal history during the Late Mesozoic and Cenozoic. 40Ar/39Ar and (U–Th–Sm)/He analyses are combined with existing fission track data to provide a comprehensive set of temperature and time data. Fully and partially reset K-feldspar and biotite mica 40Ar/39Ar analyses indicate a significant period of thermal perturbation between ∼100 and ∼90 Ma, and a second lesser perturbation between ∼51 and ∼43 Ma. Zircon (U–Th–Sm)/He analyses and existing fission track data indicate exhumation of the Malay Peninsula in the Cretaceous, and renewed, localised exhumation in the early Paleogene. Apatite (U–Th–Sm)/He and fission track data indicate rapid exhumation of the region in the Late Eocene and Oligocene. Late Cretaceous tectonism is linked to the reversal of a regional dynamic topographic low following the cessation of subduction along the Sundaland margin in the Late Cretaceous, causing regional uplift and exhumation and the addition of significant heat into the crust via mantle upwelling. Early Paleogene exhumation may reflect the continuation of Cretaceous tectonism or a discrete phase of Paleocene exhumation linked to localised transpressional tectonics. Eocene tectonism is coincident with major subsidence offshore of the Malay Peninsula, interpreted to reflect regional block faulting in response to north–south compression driven by the resumption of subduction along the southern margin of Sundaland in the Eocene.  相似文献   

20.
Polished sections of 5 enstatite chondrites have been irradiated with 30 MeV 4He ions to produce the alpha-radioactive nuclei 211At and 210Po from 209Bi and 208Pb, respectively. The distribution of alpha activity can be mapped, using cellulose nitrate as an alpha track detector, to give the corresponding Bi or Pb distributions in the meteorite. No strong localization of Bi or 208Pb was found; relatively uniform track distributions were observed. In particular, metal or sulfide grains are not enriched in Bi or Pb (relative to bulk), which is in agreement with the predictions of nebular condensation calculations. While the track distributions appear uniform, the results of detailed, track-by-track mappings of the Bi detectors indicate that the Bi is not totally randomly distributed; the statistical fluctuations in the observed track density are different for the cases where the Bi is totally randomly distributed and where the Bi is localized in point sources. Assuming that the Bi in a given sample is localized in identical point sources which are uniformly distributed throughout the sample, the observed relative population densities of clusters (‘stars’) of small numbers of tracks (2–5) corresponds to Bi being localized, with ~90% in grains with about 10?16g-Bi (~3 × 105Biatoms), and with ~10% in 4 × 10?14 g-Bi sources. If these are elemental Bi, as predicted theoretically, they are ~ 102 Å and 103 Å in size, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号