首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
K. J. Fraser  C. J. Hawkesworth   《Lithos》1992,28(3-6):327-345
Major, trace element and radiogenic isotope results are presented for a suite of hypabyssal kimberlites from a single pipe, at the Finsch Mine, South Africa. These are Group 2 kimberlites characterised by abundant phlogopite ± serpentine ± diopside; they are ultrabasic (SiO2 < 42 wt.%%) and ultrapotassic (K2O/Na2O > 6.9) igneous rocks, they exhibit a wide range in major element chemistry with SiO2 = 27.6−41.9 wt. % and MgO = 10.4−33.4 wt. %. (87Sr/86Sr)i=0.7089 to 0.7106, εNd is −6.2 to −9.7 and they have unradiogenic (207Pb/204Pb)i contents which ensure that they plot below the Pb-ore growth curve. They have high incompatible and compatible element contents, a striking positive array between Y and Nb which indicates that garnet was not involved in the within suite differentiation processes, and a negative trend between K/Nb and Nb contents which suggests that phlogopite was involved. In addition, some elements exhibit an unexpected order of relative incompatibility for different trace elements which suggests that the intra-kimberlite variations are not primarily due to variations in the degree of partial melting. The effects of fractional crystallization are difficult to establish because for the most part they have been masked by the entrainment of 50–60% mantle peridotite. Thus, the Finsch kimberlites are interpreted as mixtures of a melt component and entrained garnet peridotite, with no evidence for significant contamination with crustal material. The melt component was characterised by high incompatible element contents, which require both very small degrees of partial melting, and source regions with higher incompatible element contents than depleted or primitive mantle. Since the melt component was the principal source of incompatible elements in the kimberlite magma, the enriched Nd, Sr and Pb isotope ratios of the kimberlite are characteristic of the melt source region. The melt fractions were therefore derived from ancient, trace elements enriched portions of the upper mantle, most probably situated within the sub-continental mantle lithosphere, and different from the low 87Sr/86Sr garnet peridotite xenoliths found at Finsch. Within the sub-continental mantle lithosphere old, incompatible element enriched source regions for the kimberlite melt fraction are inferred to have been overlain by depleted mantle material which became entrained in the kimberlite magma.  相似文献   

2.
Using the ICP-MS method we have studied the isotope systematics of Sr and Nd as well as trace element composition of a representative collection of kimberlites and related rocks from the Siberian Platform. The summarized literature and our own data suggest that the kimberlites developed within the platform can be divided into several petrochemical and geochemical types, whose origin is related to different mantle sources. The petrochemical classification of kimberlites is based on persistent differences of their composition in mg# and in contents of indicator oxides such as FeOtot, TiO2, and K2O. The recognized geochemical types of kimberlites differ from one another in the level of concentration of incompatible elements as well as in their ratios.Most of isotope characteristics of kimberlites and related rocks of the Siberian Platform correspond to the earlier studied Type 1 basaltoid kimberlites from different provinces of the world: Points of isotopic compositions are in the field of primitive and weakly depleted mantle. An exception is one sample of the rocks from veins of the Ingashi field (Sayan area), which is characterized by the Sr and Nd isotopic composition corresponding to Type 2 micaceous kimberlites (orangeites).The most important feature of distribution of isotopic and trace-element compositions (incompatible elements) is their independence of the chemical rock composition. It is shown that the kimberlite formation is connected with, at least, two independent sources, fluid and melt, responsible for the trace-element and chemical compositions of the rock. It is supposed that, when rising through the heterogeneous lithosphere of the mantle, a powerful flow of an asthenosphere-derived fluid provoked the formation of local kimberlite chambers there. Thus, the partial melting of the lithosphere mantle led to the formation of contrasting petrochemical types of kimberlites, while the geochemical specialization of kimberlites is due to the mantle fluid of asthenosphere origin, which drastically dominated in the rare-metal balance of a hybrid magma of the chamber.  相似文献   

3.
Protogranular spinel-peridotite mantle xenoliths and their host sodic alkaline lavas of Cretaceous to Paleogene age occur at the same latitude ≈26°S in central eastern Paraguay and Andes. Na- alkaline lavas from both regions display similar geochemical features, differing mainly by higher Rb content of the Paraguayan samples. Sr, Nd, and Pb isotope ratios are also similar with predominant trends from depleted to enriched mantle components. The mantle xenoliths are divided into two main suites, i.e. relatively low in potassium and incompatible elements, and high in potassium and incompatible elements. The suite high in potassium occurs only in Paraguay. Compositions of both suites range from lherzolite to dunite indicating variable “melt extraction”. Clinopyroxenes from the xenoliths display variable trace element enrichment/depletion patterns compared with the pattern of average primitive mantle. Enrichment in LREE and Sr coupled with depletion of Nb, Ti and Zr in xenoliths from both areas are attributed to asthenospheric metasomatic fluids affecting the lithospheric mantle. Metasomatism is apparent in the sieve textures and glassy drops in clinopyroxenes, by glassy patches with associated primary carbonates in Paraguayan xenoliths. Trace element geochemistry and thermobarometric data indicate lack of interaction between xenoliths and host lavas, due to their rapid ascent. Sr and Nd isotope signatures of the Andean and Paraguayan xenoliths and host volcanic rocks plot mainly into the field of depleted mantle and show some compositional overlap. The Andean samples indicate a generally slightly more depleted mantle lithosphere. Pb isotope signatures in xenoliths and host volcanic rocks indicate the existence of a radiogenic Pb source (high U/Pb component in the source) in both areas. In spite of the distinct tectonic settings, generally compressive in the Central Andes (but extensional in a back-arc environment), and extensional in Eastern Paraguay (rifting environment in an intercratonic area), lavas and host xenoliths from both regions are similar in terms of geochemical and isotopic characteristics.  相似文献   

4.
Minor magmatic intrusions of kimberlite, melilitite and cpx-melilitite occur in the southern part of the Kola Peninsula, Russia, on the Terskii Coast and near the town of Kandalaksha. They yield K-Ar ages of 382 ± 14 Ma and 365 ± 16 Ma, similar to the magmatic rocks from the Kola Alkaline Province. The Terskii Coast kimberlites have mineralogical and geochemical affinities with group 1 kimberlites, whereas the Kandalaksha monticellite kimberlite more closely resembles calcite kimberlites. The lower Al2O3 content in the Kola kimberlites indicates a strongly depleted harzburgitic source, while higher Al2O3 in the melilitites suggests a lherzolitic source. The Terskii Coast kimberlites are anomalously potassic and significantly enriched in P and Ba compared to other group 1 kimberlites. In contrast, the melilitites are sodic and are anomalously depleted in P compared to worldwide melilitites. Trace element patterns of the Kola kimberlites and melilitites indicate the presence of K- and P-rich phases in the mantle source. To account for the K-troughs shown by both magma types, a K-rich phase such as phlogopite is thought to be residual in their sources; however, the anomalous K-enrichment in the Terskii Coast kimberlites may indicate that an additional metasomatic K-rich phase (e.g. K-richterite and/or a complex K-Ba-phosphate) existed in the kimberlite source. The P-depletion in the melilitites may suggest that a phosphate phase such as apatite remained residual in the melilititic source. However, anomalous P-enrichment in the kimberlites cannot be explained by complete melting of the same phase because the kimberlites are a smaller degree melt; thus, it is most likely that another metasomatic phosphate mineral existed in the source of the kimberlites. The Kola kimberlites and melilitites are all strongly LREE-enriched but the kimberlites have a steeper REE pattern and are significantly more depleted in HREE, indicating a higher proportion of garnet in their source. Higher Nb/Y ratios and lower SiO2 values in the kimberlites indicate that they were a smaller degree partial melt than the melilitites. The presence of diamonds in the Terskii Coast kimberlites indicates a relatively deep origin, while the melilitites originated from shallower depth. The non-diamondiferous Kandalaksha monticellite kimberlite has lower abundances of all incompatible trace elements, suggesting a higher degree of partial melting and/or a less enriched and shallower source than the Terskii Coast kimberlites. The 87Sr/86Sri, 143Nd/144Ndi and Pb isotope compositions confirm that the Terskii Coast kimberlites have close affinities with group 1 kimberlites and were derived from an asthenospheric mantle source, while the Kandalaksha monticellite kimberlite and Terskii Coast melilitites were derived from lithospheric mantle. Impact of a Devonian asthenospheric mantle plume on the base of the Archaean-Proterozoic lithosphere of the Kola Peninsula caused widespread emplacement of kimberlites, melilitites, ultramafic lamprophyres and other more fractionated alkaline magmas. The nature of the mantle affected by metasomatism associated with the plume and, in particular, the depth of melting and the stability of the metasomatic phases, gave rise to the observed differences between kimberlites and the related melilitites and other magmas. Received: 3 March 1997 / Accepted: 7 October 1997  相似文献   

5.
Here we present new data on the major and trace element compositions of silicate and oxide minerals from mantle xenoliths brought to the surface by the Carolina kimberlite, Pimenta Bueno Kimberlitic Field, which is located on the southwestern border of the Amazonian Craton. We also present Sr-Nd isotopic data of garnet xenocrysts and whole-rocks from the Carolina kimberlite. Mantle xenoliths are mainly clinopyroxenites and garnetites. Some of the clinopyroxenites were classified as GPP–PP–PKP (garnet-phlogopite peridotite, phlogopite-peridotite, phlogopite-K-richterite peridotite) suites, and two clinopyroxenites (eclogites) and two garnetites are relicts of an ancient subducted slab. Temperature and pressure estimates yield 855–1102 °C and 3.6–7.0 GPa, respectively. Clinopyroxenes are enriched in light rare earth elements (LREE) (LaN/YbN = 5–62; CeN/SmN = 1–3; where N = primitive mantle normalized values), they have high Ca/Al ratios (10–410), low to medium Ti/Eu ratios (742–2840), and low Zr/Hf ratios (13–26), which suggest they were formed by metasomatic reactions with CO2-rich silicate melts. Phlogopite with high TiO2 (>2.0 wt.%), Al2O3 (>12.0 wt.%), and FeOt (5.0–13.0 wt.%) resemble those found in the groundmass of kimberlites, lamproites and lamprophyres. Conversely, phlogopite with low TiO2 (<1.0 wt.%) and lower Al2O3 (<12.0 wt.%) are similar to those present in GPP-PP-PKP, and in MARID (mica-amphibole-rutile-ilmenite-diopside) and PIC (phlogopite-ilmenite-clinopyorxene) xenoliths. The GPP-PP-PKP suite of xenoliths, together with the clinopyroxene and phlogopite major and trace element signatures suggests that an intense proto-kimberlite melt metasomatism occurred in the deep cratonic lithosphere beneath the Amazonian Craton. The Sr-Nd isotopic ratios of pyrope xenocrysts (G3, G9 and G11) from the Carolina kimberlite are characterized by high 143Nd/144Nd (0.51287–0.51371) and εNd (+4.55 to +20.85) accompanied with enriched 87Sr/86Sr (0.70405–0.71098). These results suggest interaction with a proto-kimberlite melt compositionally similar with worldwide kimberlites. Based on Sr-Nd whole-rock compositions, the Carolina kimberlite has affinity with Group 1 kimberlites. The Sm-Nd isochron age calculated with selected eclogitic garnets yielded an age of 291.9 ± 5.4 Ma (2 σ), which represents the cooling age after the proto-kimberlite melt metasomatism. Therefore, we propose that the lithospheric mantle beneath the Amazonian Craton records the Paleozoic subduction with the attachment of an eclogitic slab into the cratonic mantle (garnetites and eclogites); with a later metasomatic event caused by proto-kimberlite melts shortly before the Carolina kimberlite erupted.  相似文献   

6.
Kimberlites with different diamond grades from the Zolotitsa, Verkhotina, and Kepina occurrences of the Zimny Bereg field (Arkangel’sk oblast) have been compared in order to ascertain geochemical criteria of their diamond resource potential. A new collection of 21 core samples taken within a depth interval of 207–940 m from nine boreholes drilled in the central and western portions of the high-grade diamond-bearing Grib kimberlite pipe was subjected to comprehensive petrographic and geochemical examination, including Sr, Nd, and Pb isotopes and trace elements determined with ICP-MS. The compositional variations in kimberlites are controlled by the structural types of rocks. Porphyritic kimberlite (PK) distinctly differs from autolithic kimberlite breccia (AKB). Autoliths (Av) and PK are enriched in Th, U, Nb, Ta, La, Ce, Pr, P, Nd, Sm, Eu, Ti, LREE, and MREE, whereas HREE contents are rather uniform in all types of kimberlites. No lateral zoning was observed in pipes pertaining to the same structural type. The composition of kimberlites in the Zimny Bereg field and their diamond resource potential are variable. In the series of the Zolotitsa, Verkhotina, and Kepina occurrences, the Ti content increases, the La/Yb ratio grows from 18–44 to 70–130, and the diamond grade diminishes in the Kepina occurrence. The variations in kimberlite compositions are considered in terms of the degree of partial melting in the mantle, the role of volatiles, etc. As follows from the variation in the Ce/Y ratio, kimberlites from the Zolotitsa occurrence were formed at a lower degree of partial melting in comparison with the Kepina occurrence. Products of different degrees of partial melting are recognized within the Grib pipe; Av were likely formed at a somewhat higher degree of melting than AKB. An appreciable isotopic heterogeneity of the mantle is recorded in variable Nd and Sr isotopic compositions of kimberlites. The Kepina kimberlites were derived from a source slightly depleted relative to CHUR (?Nd(t) reaches +4) and are close to kimberlites of group I in South Africa. Kimberlites from the Grib pipe with transitional Nd isotopic composition plotted near the Bulk Silicate Earth (BSE) value in the ?Nd(t)-?Sr(t) diagram adjoin the first group. The source of kimberlites of the Zolotitsa occurrence falls in the field of enriched mantle and is considered to be a product of interaction of an asthenospheric plume with the ancient enriched lithospheric mantle. Kimberlites depleted in Ti, Zr, and Th are related to a source formed as a result of a multistage process that included mantle metasomatism with participation of fluids. Devonian kimberlites derived from sources that involve crustal material (a shift of 206Pb/204Pb, minimums of Th, U, Nb, and Ta contents) are diamond-bearing both in the East European Platform (the Zolotitsa and Verkhotina occurrences) and in the Siberian Craton (the Nakyn field).  相似文献   

7.
Garnet peridotite xenoliths from the Sloan kimberlite (Colorado) are variably depleted in their major magmaphile (Ca, Al) element compositions with whole rock Re-depletion model ages generally consistent with this depletion occurring in the mid-Proterozoic. Unlike many lithospheric peridotites, the Sloan samples are also depleted in incompatible trace elements, as shown by the composition of separated garnet and clinopyroxene. Most of the Sloan peridotites have intermineral Sm–Nd and Lu–Hf isotope systematics consistent with this depletion occurring in the mid-Proterozoic, though the precise age of this event is poorly defined. Thus, when sampled by the Devonian Sloan kimberlite, the compositional characteristics of the lithospheric mantle in this area primarily reflected the initial melt extraction event that presumably is associated with crust formation in the Proterozoic—a relatively simple history that may also explain the cold geotherm measured for the Sloan xenoliths.

The Williams and Homestead kimberlites erupted through the Wyoming Craton in the Eocene, near the end of the Laramide Orogeny, the major tectonomagmatic event responsible for the formation of the Rocky Mountains in the late Cretaceous–early Tertiary. Rhenium-depletion model ages for the Homestead peridotites are mostly Archean, consistent with their origin in the Archean lithospheric mantle of the Wyoming Craton. Both the Williams and Homestead peridotites, however, clearly show the consequences of metasomatism by incompatible-element-rich melts. Intermineral isotope systematics in both the Homestead and Williams peridotites are highly disturbed with the Sr and Nd isotopic compositions of the minerals being dominated by the metasomatic component. Some Homestead samples preserve an incompatible element depleted signature in their radiogenic Hf isotopic compositions. Sm–Nd tie lines for garnet and clinopyroxene separates from most Homestead samples provide Mesozoic or younger “ages” suggesting that the metasomatism occurred during the Laramide. Highly variable Rb–Sr and Lu–Hf mineral “ages” for these same samples suggest that the Homestead peridotites did not achieve intermineral equilibrium during this metasomatism. This indicates that the metasomatic overprint likely was introduced shortly before kimberlite eruption through interaction of the peridotites with the host kimberlite, or petrogenetically similar magmas, in the Wyoming Craton lithosphere.  相似文献   


8.
The petrology and geochemistry of some new occurrences of Mesoproterozoic diamondiferous hypabyssal-facies kimberlites from the Chigicherla, Wajrakarur-Lattavaram and Kalyandurg clusters of the Wajrakarur kimberlite field (WKF), Eastern Dharwar craton (EDC), southern India, are reported. The kimberlites contain two generations of olivine, and multiple groundmass phases including phlogopite, spinel, calcite, dolomite, apatite, perovskite, apatite and rare titanite, and xenocrysts of eclogitic garnet and picro-ilmenite. Since many of the silicate minerals in these kimberlites have been subjected to carbonisation and alteration, the compositions of the groundmass oxide minerals play a crucial role in their characterisation and in understanding melt compositions. While there is no evidence for significant crustal contamination in these kimberlites, some limited effects of ilmenite entrainment are evident in samples from the Kalyandurg cluster. Geochemical studies reveal that the WKF kimberlites are less differentiated and more primitive than those from the Narayanpet kimberlite field (NKF), Eastern Dharwar craton. Highly fractionated (La/Yb = 108–145) chondrite-normalised distribution patterns with La abundances of 500–1,000 × chondrite and low heavy rare earth elements (HREE) abundances of 5–10 × chondrite are characteristic of these rocks. Metasomatism by percolating melts from the convecting mantle, rather than by subduction-related processes, is inferred to have occurred in their source regions based on incompatible element signatures. While the majority of the Eastern Dharwar craton kimberlites are similar to the Group I kimberlites of southern Africa in terms of petrology, geochemistry and Sr–Nd isotope systematics, others show the geochemical traits of Group II kimberlites or an overlap between Group I and II kimberlites. Rare earth element (REE)-based semi-quantitative forward modelling of batch melting of southern African Group I and II kimberlite source compositions involving a metasomatised garnet lherzolite and very low degrees of partial melting demonstrate that (1) WKF and NKF kimberlites display a relatively far greater range in the degree of melting than those from the on-craton occurrences from southern Africa and are similar to that of world-wide melilitites, (2) different degrees of partial melting of a common source cannot account for the genesis of all the EDC kimberlites, (3) multiple and highly heterogeneous kimberlite sources involve in the sub-continental lithospheric mantle (SCLM) in the Eastern Dharwar craton and (4) WKF and NKF kimberlites generation is a resultant of complex interplay between the heterogeneous sources and their different degrees of partial melting. These observations are consistent with the recent results obtained from inversion modelling of REE concentrations from EDC kimberlites in that both the forward as wells as inverse melting models necessitate a dominantly lithospheric, and not asthenospheric, mantle source regions. The invading metasomatic (enriching) melts percolating from the convecting (asthenosphere) mantle impart an OIB-like isotopic signature to the final melt products.  相似文献   

9.
Thirty-seven samples from the Swartruggens and Star Group II kimberlite dyke swarms, emplaced through the Kaapvaal craton, have been analysed for their major and trace element and Sr, Nd and Hf isotope compositions. The samples are all MgO-rich (~12–35 wt%) with high Mg# (0.72–0.90) and Ni (~610–2700 ppm) contents. The kimberlites are strongly enriched in incompatible elements (Zr = 140–668 ppm; La = 124–300 ppm; Nb = 68–227 ppm; Ba = 1500–7000), and have high and variable chondrite normalised La/Yb ratios (Swartruggens = 94 ± 21; Star = 202 ± 36). 87Sr/86Sr (0.70718–0.71050) ratios are elevated, whereas εNd (−11.95 to −7.84) and 176Hf/177Hf ratios (0.282160–0.282564) are low. Inter- and intra-dyke compositional variation is significant, and there are systematic differences between the kimberlites found at the two localities. Intra-locality differences can largely be attributed to a combination of the effects of alteration, crustal contamination, macrocryst entrainment and phenocryst fractionation. There is some evidence for distinct parental magmas formed through variable and low degrees (0.5–2%) of partial melting, as illustrated by crossing rare earth element patterns. The Star kimberlites have derived from a less radiogenic source, with higher LREE enrichment than the Swartruggens kimberlites. Inferred primary magmas at each locality have high Mg# (~0.83), are Ni-rich (850–1220 ppm) and are strongly enriched in incompatible elements. Calculated mantle source compositions are strongly enriched in incompatible elements (La/Ybn ~ 10–50), but refractory in terms of Mg# and Ni contents. Incompatible element ratios such as Ba/Nb (>13.5), La/Nb (> 1.1) and Ce/Pb (< 22) are unlike those characteristic of Group I kimberlites or ocean island basalts, but indistinguishable from calc-alkaline magmas. Taken together with extremely low εNd and εHf, these compositional characteristics are used to argue for derivation of these Group II kimberlite magmas from the deep subcontinental lithospheric mantle, metasomatised during the Proterozoic by calc-alkaline fluids/melts.  相似文献   

10.
The Late Cretaceous (ca. 100 Ma) diamondiferous Fort à la Corne (FALC) kimberlite field in the Saskatchewan (Sask) craton, Canada, is one of the largest known kimberlite fields on Earth comprising essentially pyroclastic kimberlites. Despite its discovery more than two decades ago, petrological, geochemical and petrogenetic aspects of the kimberlites in this field are largely unknown. We present here the first detailed petrological and geochemical data combined with reconnaissance Nd isotope data on drill-hole samples of five major kimberlite bodies. Petrography of the studied samples reveals that they are loosely packed, clast-supported and variably sorted, and characterised by the presence of juvenile lapilli, crystals of olivine, xenocrystal garnet (peridotitic as well as eclogitic paragenesis) and Mg-ilmenite. Interclast material is made of serpentine, phlogopite, spinel, carbonate, perovskite and rutile. The mineral compositions, whole-rock geochemistry and Nd isotopic composition (Nd: + 0.62 to − 0.37) are indistinguishable from those known from archetypal hypabyssal kimberlites. Appreciably lower bulk-rock CaO (mostly < 5 wt%) and higher La/Sm ratios (12–15; resembling those of orangeites) are a characteristic feature of these rocks. Their geochemical composition excludes any effects of significant crustal and mantle contamination/assimilation. The fractionation trends displayed suggest a primary kimberlite melt composition indistinguishable from global estimates of primary kimberlite melt, and highlight the dominance of a kimberlite magma component in the pyroclastic variants. The lack of Nb-Ta-Ti anomalies precludes any significant role of subduction-related melts/fluids in the metasomatism of the FALC kimberlite mantle source region. Their incompatible trace elements (e.g., Nb/U) have OIB-type affinities whereas the Nd isotope composition indicates a near-chondritic to slightly depleted Nd isotope composition. The Neoproterozoic (~ 0.6–0.7 Ga) depleted mantle (TDM) Nd model ages coincide with the emplacement age (ca. 673 Ma) of the Amon kimberlite sills (Baffin Island, Rae craton, Canada) and have been related to upwelling protokimberlite melts during the break-up of the Rodinia supercontinent and its separation from Laurentia (North American cratonic shield). REE inversion modelling for the FALC kimberlites as well as for the Jericho (ca. 173 Ma) and Snap Lake (ca. 537 Ma) kimberlites from the neighbouring Slave craton, Canada, indicate all of their source regions to have been extensively depleted (~ 24%) before being subjected to metasomatic enrichment (1.3–2.2%) and subsequent small-degree partial melting. These findings are similar to those previously obtained on Mesozoic kimberlites (Kaapvaal craton, southern Africa) and Mesoproterozoic kimberlites (Dharwar craton, southern India). The striking similarity in the genesis of kimberlites emplaced over broad geological time and across different supercontinents of Laurentia, Gondwanaland and Rodinia, highlights the dominant petrogenetic role of the sub-continental lithosphere. The emplacement of the FALC kimberlites can be explained both by the extensive subduction system in western North America that was established at ca. 150 Ma as well as by far-field effects of the opening of the North Atlantic ocean during the Late Cretaceous.  相似文献   

11.
《International Geology Review》2012,54(14):1768-1785
ABSTRACT

We analysed whole-rock major and trace elements and Sr-Nd-Pb-Hf isotopes of the late Cenozoic volcanic rocks in the Leizhou Peninsula, South China to investigate their mantle source characteristics. These volcanic rocks, collected from Jiujiang, Tianyang and Huoju areas of the Leizhou Peninsula, are characterized by incompatible element enrichment but variable isotopic depletion. The volcanic rocks from Jiujiang and Tianyang show prominent primitive-mantle-normalized positive Nb, Ta and Sr anomalies and depleted Sr-Nd-Pb-Hf isotope compositions, whereas those from Huoju show slight positive to negative Nb and Ta anomalies, a prominent positive Pb anomaly, and more enriched Sr-Nd-Pb-Hf isotope compositions. Two types of mantle metasomatism are required to explain the geochemical characteristics of these rocks. The Jiujiang and Tianyang samples were largely derived from a mantle source metasomatized recently by a low-F melt. Such low-F melt is generated within the asthenospheric mantle, which is enriched in volatiles and incompatible elements with positive Sr anomaly and depleted Sr-Nd-Pb-Hf isotope compositions. The Huoju samples were largely derived from a mantle source metasomatized by recycled upper continental crust material. These two types of mantle metasomatism beneath the Leizhou Peninsula are consistent with trace element characteristics of mantle mineralogy (e.g. clinopyroxene vs. amphibole), which reflects source evolution in space and time (e.g. tectonic setting change).  相似文献   

12.
韩江伟  熊小林  朱照宇 《岩石学报》2009,25(12):3208-3220
对雷琼地区21个晚新生代玄武岩样品的主量、微量元素和Sr、Nd、Pb同位素分别用湿化学法、ICP-MS和MC-ICPMS进行了测定.这些玄武岩主要为石英拉斑玄武岩,其次为橄榄拉斑玄武岩和碱性玄武岩.大多数样品的微量元素和同位素成分与洋岛玄武岩(OIBs)相似,而且随着SiO_2不饱和度增加,不相容元素含量也增加.除R4-1可能受到地壳混染外,其他样品相对均一的Nd同位素(ε_(Nd)=2.5-6.0)以及变化明显但范围有限的Sr同位素(0.703106~0.704481),可能继承了地幔源区的特征.~(87)Sr/~(86)Sr与~(206)Pb/~(204)Pb的正相关和~(143)Nd/~(144)Nd与~(206)Pb/~(204)Pb的负相关特征暗示DM(软流圈地幔)与EM2(岩石圈地幔)的混合.地幔捕虏体的同位素特征暗示EM2成分不可能存在于尖晶石橄榄岩地幔,而La/Yb和Sm/Yb系统表明岩浆由石榴石橄榄岩部分熔融产生,这意味着EM2成分可能存在于石榴石橄榄岩地幔.雷琼地区玄武岩的地球化学变化可以用软流圈地幔为主的熔体加入不同比例石榴石橄榄岩地幔不同程度熔融产生的熔体来解释:碱性玄武岩和橄榄拉斑玄武岩是软流圈熔体与石榴石橄榄岩地幔较低程度(7%~9%)熔融体混合,而石英拉斑玄武岩是软流圈熔体与石榴石橄榄岩地幔较高程度(10%~20%)熔融体的混合.  相似文献   

13.
Eighteen Cenozoic melilitite samples from Spain, France, West Germany and Czechoslovakia have been analyzed for major and trace elements (including REE) together with their Sr and Nd isotopic compositions. Leaching experiments produced significant shifts of their87Sr/86Sr ratio indicative of a contamination by a crustal component. Most samples fall within the Sr-Nd mantle array with ?Nd values in the 1.5–6 range. These values are considered as minimum for the melilitite mantle source hence demonstrating its time integrated LRE depletion. The Ni and Cr contents of the samples are typical of primary magmas and exclude extensive crystallization of olivine and pyroxene in a closed system. However, the chemical relationships suggest that dilution of the liquids by mafic minerals of the conduits during their ascent has been important. The REE patterns show some variations which are interpreted by this dilution effect. Once normalized to Yb they are closely similar and perfectly distinguishable from those of alkali basalts and kimberlites. All of these rocks have Ce/Yb ratios which are high but distinctive for each rock type: 40 to 200 times the chondritic ratio for kimberlites, 20 to 30 for melilitites, 8 to 15 for alkali basalts. As contamination is likely to have modified somewhat the isotopic characteristics of most of these rocks, there is no overwhelming evidence that their source is chemically different. The Ba and Rb contents together with the REE patterns of the melilitites would constrain the degree of melting to be very small (<0.2%). The calculation of batch melting and steady zone refining models suggests that kimberlites, melilitites and alkali basalts may have been derived by equilibration of deep melts with different upper mantle levels characterized by decreasing garnet/clinopyroxene ratios. The strongly incompatible elements are enriched in the melt during its ascent by leaching of the wall rocks. For the steady zone refining model, the degree of melting concept loses its significance and the difficult requirement of extracting small liquid fractions from a molten source disappears. Within the frame of this model, the preenrichment of the kimberlite, melilitite and alkali basalts source in incompatible elements by metasomatic fluids is no longer necessary.  相似文献   

14.
The two world’s largest complexes of highly alkaline nepheline syenites and related rare metal loparite and eudialyte deposits, the Khibina and Lovozero massifs, occur in the central part of the Kola Peninsula. We measured for the first time in situ the trace element concentrations and the Sr, Nd and Hf isotope ratios by LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometer) in loparite, eudialyte an in some other pegmatitic minerals. The results are in aggreement with the whole rock Sr and Nd isotope which suggests the formation of these superlarge rare metal deposits in a magmatic closed system. The initial Hf, Sr, Nd isotope ratios are similar to the isotopic signatures of OIB indicating depleted mantle as a source. This leads to the suggestion that the origin of these gigantic alkaline intrusions is connected to a deep seated mantle source—possibly to a lower mantle plume. The required combination of a depleted mantle and high rare metal enrichment in the source can be explained by the input of incompatible elements by metasomatising melts/fluids into the zones of alkaline magma generation shortly before the partial melting event (to avoid ingrowth of radiogenic isotopes). The minerals belovite and pyrochlore from the pegmatites are abnormally high in 87Sr /86Sr ratios. This may be explained by closed system isotope evolution as a result of a significant increase in Rb/Sr during the evolution of the peralkaline magma.  相似文献   

15.
汪方跃  高山  牛宝贵  张宏 《地学前缘》2007,14(2):98-108
华北克拉通罕见年龄界于120~100Ma的火山岩。承德盆地大北沟组火山岩下部主要由柱状节理橄榄玄武岩组成,中上部主要由安山岩组成。对紧邻玄武岩的上覆安山岩的火山锆石U-PbLA-ICPMS定年结果表明,形成年龄为(113.6±0.87)Ma,代表了该套火山岩的喷发年龄,表明它们形成于早白垩世晚期。对3件玄武岩样品的分析结果表明,它们亏损高场强元素(Nb、Ta、Zr、Hf),初始87Sr/86Sr同位素比值为0.7059,εNd(114Ma)为-11.04,具有富集型岩石圈地幔的特征。但该套玄武岩的主量和微量元素特征则介于华北克拉通中生代年龄>120Ma具古老富集型地幔特征的玄武岩和年龄<100Ma具亏损软流圈性质的玄武岩之间,表明113.6Ma时华北克拉通岩石圈地幔在元素组成方面已具有由富集地幔向亏损型软流圈地幔转变的特征。大北沟组玄武岩的地球化学特征表明,114Ma时华北克拉通岩石圈地幔已减薄。  相似文献   

16.
We have obtained major and trace element data for a suite of rocks emplaced over an area of 45,000 km2 in the Eastern Goldfields Province (EGP), Yilgarn Craton, that are petrographically and mineralogically described as kimberlites, melnoites and carbonatites. Kimberlites dominate the rock types found in the west whereas carbonatites and melnoites are common in the east. Compatible element data from the carbonatites and melnoites tend to lie along trends that imply silicate–carbonate fractionation. The kimberlites exhibit a much greater amount of compatible element scatter as a result of the variable contribution from continental lithospheric mantle (CLM). When compared to southern African kimberlites, the EGP kimberlites have consistently lower MgO and Os concentrations at comparable Ni concentrations. The opposite is true for Ti–Ni variation where the EGP kimberlites have higher Ti than the southern African kimberlites at comparable Ni concentrations. These data are interpreted to suggest that the CLM beneath the province was either melt metasomatised some time prior to kimberlite emplacement, or that the EGP CLM is less refractory (melt depleted) than the Kaaapvaal CLM.

In contrast, the incompatible element ratios and initial Nd values are constant throughout the entire rock suite. Carbonate C and O isotope data show a broad positive correlation, consistent with magmatic-hydrothermal trends found in many carbonatite complexes. These incompatible element and isotope data link all of the rocks within the province to the same mantle source that was similar to modern-day mantle plume sources.

Re–Os data for the various samples, including oxide minerals from all of the petrographic types, xenocryst-poor kimberlites and melnoites yield a precise Re–Os isochron of 2025±10 Ma and an initial γOs of 5.3±3.1 (MSWD=5.8). These data support the conclusion based on incompatible element, stable isotope and Sm–Nd isotope data that the rocks are comagmatic.

Initial Os isotopic compositions and Re/Os ratios for the xenocryst-rich kimberlites are also correlated. However, the correlation does not pass through the calculated initial γOs and Re/Os of the isochron. The Re–Os data show that the incompatible element-enriched melt exhibited very little control on the Re–Os variations of the xenocryst-rich kimberlites.

Correlations between deep mantle seismic velocities, petrology and whole-rock compatible element geochemistry suggest that the rheology and history of the EGP CLM played a significant role in determining the petrographic characteristics of the magmas that were ultimately emplaced into the EGP crust.  相似文献   


17.

New results of Rb–Sr and Sm–Nd isotope analyses have been obtained on samples of deformed peridotite xenoliths collected from the Udachnaya kimberlite pipe (Yakutia). The data obtained imply two main stages of metasomatic alteration of the lithospheric mantle base matter in the central part of the Siberian Craton. Elevated ratios of Sr isotopes may be considered as evidence of an ancient stage of metasomatic enrichment by a carbonatite melt. The acquired Nd isotope composition together with the geochemistry of the deformed peridotite xenoliths suggests that the second stage of metasomatic alteration took place shortly before formation of the kimberlite melt. The metasomatic agent of this stage had a silicate character and arrived from an asthenosphere source, common for the normal OIB type (PREMA) and the Group-I kimberlite.

  相似文献   

18.
Basanites and nephelinites from the Tertiary Rhön area (Germany), which are part of the Central European Volcanic Province (CEVP), have high MgO, Ni and Cr contents and prominent garnet signatures indicating that they represent near-primary magmas formed by melting of a CO2-bearing peridotitic mantle source at high pressure. The Pb and Hf isotope (and previously published Nd and Sr isotope) ratios of the Rhön lavas are rather uniform, whereas the Os isotope composition is highly variable. For the most primitive basanites, Pb, Os and Hf isotope compositions fall within the range of enriched MORB and some OIB. Other basanites and nephelinites with low Os concentrations have distinctly more radiogenic Os (187Os/188Os: 0.160–0.469) isotope compositions, which are inferred to originate from crustal contamination. The samples with the highest Os concentrations have the lowest Os isotope ratios (187Os/188Os(23 Ma): 0.132–0.135), and likely remain unaffected by crustal contamination. Together with their fairly depleted Sr, Nd and Hf isotope ratios, the isotopic composition of the Rhön lavas suggests derivation from an asthenospheric mantle source. Prominent negative K and Rb anomalies, however, argue for melting amphibole or phlogopite-bearing sources, which can only be stable in the cold lithosphere. We therefore propose that asthenospheric melts precipitated at the asthenosphere-lithosphere thermal boundary as veins in the lithospheric mantle and were remelted or incorporated after only short storage times (about 10–100 million years) by ascending asthenospheric melts. Due to the short residence time incorporation of the vein material imposes the prominent phlogopite/amphibole signature of the Rhön alkaline basalts but does not lead to a shift in the isotopic signatures. Melting of the lithospheric mantle cannot strictly be excluded, but has to be subordinate due to the lack of the respective isotope signatures, in good agreement with the fairly thin lithosphere observed in the Rhön area. The fairly radiogenic Pb isotope signatures are expected to originate from melting of enriched, low melting temperature portions incorporated in the depleted upper (asthenospheric) mantle and therefore do not require upwelling of deep-seated mantle sources for the Rhön or many other continental alkaline lavas with similar Pb isotope signatures.  相似文献   

19.
South Korea separates two mantle source domains for Late Cenozoic intraplate volcanism in East Asia: depleted mid-ocean-ridge basalt (MORB) mantle-enriched mantle type 1 (DMM-EM1) in the north and DMM-EM2 in the south. We determined geochemical compositions, including Sr, Nd, Pb, and Hf isotopes for the Jeongok trachybasalts (∼0.51 to 0.15 Ma K–Ar ages) from northernmost South Korea, to better constrain the origin and distribution of the enriched mantle components. The Jeongok basalts exhibit light rare earth element (LREE)-enriched patterns ([La/Yb]N = 9.2–11.6). The (La/Yb)N ratios are lower than that of typical oceanic island basalt (OIB). On a primitive mantle-normalized incompatible element plot, the Jeongok samples show OIB-like enrichment in highly incompatible elements. However, they are depleted in moderately incompatible elements (e.g., La, Nd, Zr, Hf, etc.) compared with the OIB and exhibit positive anomalies in K and Pb. These anomalies are also prime characteristics of the Wudalianchi basalts, extreme EM1 end-member volcanics in northeast China. We have compared the geochemistry of the Jeongok basalts with those of available Late Cenozoic intraplate volcanic rocks from East Asia (from north to south, Wudalianchi, Mt. Baekdu and Baengnyeong for DMM-EM1, and Jeju for DMM-EM2). The mantle source for the Jeongok volcanics contains an EM1 component. The contribution of the EM1 component to East Asian volcanism increases toward the north, from Baengnyeong through Jeongok to Mt. Baekdu and finally to Wudalianchi. Modeling of trace element data suggests that the Jeongok basalts may have been generated by mixing of a Wudalianchi-like melt (EM1 end-member) and a melt that originated from a depleted mantle source, with some addition of the lithospheric mantle beneath the Jeongok area. In Nd–Hf isotope space, the most enriched EM1-component-bearing Jeongok sample shows elevation of 176Hf/177Hf at a given 143Nd/144Nd compared with OIB. Recycled pelagic sediments may explain the EM1-end-member component of northeastern Asian volcanism, possibly from the mantle transition zone.  相似文献   

20.
During the late Mesozoic, an unusually broad range of alkalic magma compositions was erupted along the southern border of the São Francisco craton of Brazil. This magmatic activity includes carbonatite, kimberlite, lamprophyre, lamproite, syenite and the largest known example of extrusive kamafugite, the Mata da Corda formation. To determine the nature of the sources of this magmatism, and their geochemical history, an Os isotope study along with major and trace element and Sr, Nd and Pb isotope analyses of kimberlitic, lamproitic and kamafugitic rocks from the Alto Paranaíba province of Brazil was undertaken. This complements recent geochemical and isotopic studies of these magmas. The Os isotope data for Alto Paranaíba samples point to a peridotitic lithospheric mantle source for the kimberlites and lamproites that was variably depleted in Re, presumably by melt removal at some time between the late Archean and mid-Proterozoic. These lithospheric peridotites experienced LIL-element enrichment by fluid/melt metasomatism at roughly 1 Ga, most likely during mobile belt formation along the western border of the São Francisco craton. Kamafugitic samples have very radiogenic Os, suggestive of mafic (e.g. pyroxenite, websterite, eclogite) source materials that again appear to have been stabilized in the lithospheric mantle of Brazil in the mid to late Proterozoic. The Os isotope evidence for lithospheric sources for the Alto Paranaíba activity, coupled with Sr, Nd and Pb isotopic characteristics that overlap those of the Walvis Ridge hot-spot trace indicate that the EM1 component in South Atlantic ocean island basalts most likely represents the influence of delaminated Brazilian lithospheric mantle mixed into mantle circulation beneath the South Atlantic and is not related to the plume(s) commonly associated with this ocean island magmatism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号