首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 832 毫秒
1.
本研究在太湖梅梁湾采集沉积柱,采用一种自制的毫米级柱状沉积物自动垂向分层切割装置对表层50 mm沉积物进行垂向切割(间隔2 mm),结合高通量测序技术分析沉积物中细菌群落的毫米级垂向分布;同时采用毫米级高分辨透析技术和薄膜扩散梯度技术(DGT)分析溶解态和DGT可获取态铵态氮(NH4+-N)、硝态氮(NO3--N)、Fe、P的垂向分布特征。结果显示,沉积物中细菌群落与溶解态和DGT可获取态氮铁磷浓度在垂向上呈现显著的异质性。细菌硝酸盐还原主要发生在-16~0 mm沉积物深度,这可能导致了溶解态和DGT可获取态NO3--N含量在该沉积物深度的明显减少。细菌铁还原主要分布在-32~-18 mm沉积物深度,细菌硫酸盐还原主要分布在-50~-34 mm的沉积物深度;细菌硫酸盐还原是导致沉积物溶解态和DGT可获取态铁磷浓度从-32 mm随沉积物的深度增加而显著增加的主要原因。本研究加深了对富营养化湖泊沉积物中细菌影响氮磷在垂向上迁移转化的认识。  相似文献   

2.
陶玲  彭亮  代梨梨  杨镇  陈思媛  可毅  李谷 《湖泊科学》2023,35(1):168-180
为探明稻虾轮作模式面源污染排放特征并合理评价该模式的环境可持续性,通过对江汉平原稻虾轮作模式小龙虾养殖排放尾水中总氮(TN)、总磷(TP)、COD和氨氮(NH3-N)浓度进行监测,对稻虾轮作模式稻田养殖小龙虾的排污系数进行了估算,并采用等标污染负荷法进行了主要污染物解析。运用能值分析方法对稻虾轮作模式进行了包含面源污染的能值评估,对比单季稻模式,对其可持续发展能力进行了定量评价。结果表明:江汉平原稻虾轮作模式小龙虾养殖排放尾水中TN、TP、COD和NH3-N的浓度范围分别为0.53~5.36、0.12~0.70、6.60~78.39和0.34~1.75 mg/L,TN、TP和COD平均排放浓度高于《地表水环境质量标准》(GB 3838-2002)Ⅲ类水质标准。等标污染负荷法分析结果表明TN的等标负荷比最高,是稻虾轮作模式面源污染控制的关键污染物。稻虾轮作模式小龙虾养殖排放尾水中TN、TP、COD和NH3-N的排污系数分别为2.994、0.458、35.132和1.405 kg/t,表明稻虾轮作模式面源污染排放系数较低,对...  相似文献   

3.
对长江中下游地区33个浅水性湖泊的氨态氮(NH3-N)、硝态氮(NO3-N)、亚硝氮(NO2-N)和氮磷比(TN/TP)在生长季节和非生长季节的变化进行了研究.各营养盐浓度之间均呈显著正相关,整体上生长季节的相关性较好.当TP>0.1 mg l-1时, 随TP浓度的升高,非生长季节氨态氮浓度增加较快, 硝态氮在生长季节呈增长趋势而在非生长季节有下降的趋势,这主要因为非生长季节超富营养湖泊中的溶氧和温度较生长季节低, 而硝化作用对溶氧和温度较敏感所致.当TP为0.035 mg·l-1~0.1 mg·l-1时,生长季节总氮和各种无机氮均低于非生长季节,浮游植物可能是关键的调控因子;当TP< 0.035mg·1-1时,各无机氮的浓度较低,且生长季节和非生长季节浮游植物与氨氮、亚硝氮呈著正相关,说明在低营养状态下氨氮和亚亚硝氮可能成为浮游植物的限制因子.此外,TN/TP比随TP浓度呈降低的趋势,生长季节总氮及各种无机氮的浓度明显低于非生长季节,说明氮(尤其是氨氮和硝太氮)在生长季节的降低是TN/TP低于非生长季节的现象在富营养、超富营养状态十分明显.由浮游植物和细菌的作用所导致氮的减少及沉积物磷的释放是生长季节TN/TP降低的重要原因,即生长季节氮磷比的降低是湖泊生态系统生命过程综合作用的结果.  相似文献   

4.
风浪扰动下湖滨带悬浮物和营养盐响应特征   总被引:1,自引:0,他引:1  
为研究风浪扰动下沉积物起悬过程中悬浮物浓度的分布特征和水体营养盐时空分布状况,以太湖西北湖滨带为例,选择代表4种不同生境的6个点位进行了连续12 d的野外观测.利用高精度分层同步采样装置,采用重量法计算悬浮量,并对悬浮过程中总磷(TP)、总氮(TN)、铵态氮(NH_4~+-N)和硝态氮(NO_3~--N)浓度进行分析.结果表明:风速是引起太湖西北湖滨带水体悬浮物增加的主要因素,沉积物悬浮的临界风速为3.6 m/s.各点位悬浮物浓度的均值差异明显,表现为:无植被区植被区河口区湖心区.太湖西北湖滨带水体氮、磷浓度日变化幅度较大,TN浓度为1.82~4.96 mg/L,TP浓度为0.10~1.47 mg/L.NH_4~+-N和NO_3~--N浓度分别在0.09~2.83和1.05~3.69 mg/L之间波动.近岸无植被区水柱的总悬浮量与风速的相关性最好,相关系数达到0.722;而远岸湖心区与风速的相关系数仅为0.039.悬浮物浓度除了受风情(风向和风速)的影响外,同样受水深、地形特征和水生植被的影响.  相似文献   

5.
金沙江下游梯级水库对氮、磷营养盐的滞留效应   总被引:1,自引:0,他引:1  
氮、磷是水域重要的营养或污染物质,大型水库修建将对江河氮、磷物质的输运产生重要影响.以金沙江华弹、向家坝水文站2006-2016年实测水质资料为依据,通过建立污染物浓度与流量比值(TN/Q、TP/Q)与含沙量(S)的关系式,对金沙江下游溪洛渡、向家坝梯级水库蓄水前后进出库总氮(TN)、总磷(TP)浓度及通量的变化特征进行研究.结果表明:(1)华弹站不受蓄水影响,TN和TP浓度在0.38~1.41和0.01~0.73 mg/L之间变化,向家坝站蓄水前TN和TP浓度在0.32~1.33和0.03~0.42 mg/L之间变化,蓄水后在0.35~1.29和0.01~0.05 mg/L之间变化,蓄水后TN浓度较蓄水前略有升高,但TP浓度较蓄水前约降低75%;(2)蓄水前华弹站TN浓度与向家坝站基本接近,TP浓度总体低于向家坝站,蓄水后华弹站TN浓度低于向家坝站,TP浓度明显高于向家坝站;(3)金沙江TN以硝态氮(NO3--N)为主,占TN浓度的67.3%~91.8%;(4)两站的TN浓度随流量和含沙量变化较小,TP浓度与流量和含沙量均呈正相关关系;(5)华弹站TN、TP年通量在48357~135827和4720~14163 t之间变化,年均值分别为90337和8932 t,向家坝站蓄水前后TN年通量在64232~130966和71675~149647 t之间变化,蓄水后通量总体高于蓄水前,TP年通量在8851~18624和3131~7300 t之间变化,蓄水后通量远低于蓄水前;(6)水库蓄水对出库TN浓度与通量无明显影响,但TP浓度与通量较蓄水前明显降低,其中通量年均滞留率约为67.0%.  相似文献   

6.
为掌握滇池流域花卉大棚种植区的非点源污染特征,提高和改善滇池水环境质量,本研究选取呈贡县斗南村花卉大棚种植区作为研究对象,在实测降雨径流数据的基础上,通过建立Storm Water Management Model模型分别对全年连续降雨条件下和典型设计降雨条件下的降雨径流水质、水量进行了模拟.研究结果表明:1)模型的流量、化学需氧量(COD_(Cr))、悬浮物(SS)、总氮(TN)和总磷(TP)的Nash-Sutcliffe效率系数分别为0.858、0.835、0.803、0.712和0.752,能够较好地模拟研究区域的水质、水量变化.2)研究区域的平均径流系数为0.59,CODCr、SS、TN和TP的单位面积负荷率分别为118.34、82.90、54.64和5.46 kg/(hm~2·a),TN和TP是主要控制的污染物.3)各污染物浓度峰值的出现时间均早于流量峰值出现的时间,因此对滇池东岸花卉大棚种植区应进行污染物尤其是TP、TN浓度与流量错峰控制.  相似文献   

7.
陈小锋  王润竹  陈静  朱诗雅 《湖泊科学》2023,35(5):1604-1612
铁氨氧化(Feammox)是近年来发现的一种新型的厌氧氨氧化耦合三价铁[Fe(Ⅲ)]还原的脱氮途径,该途径对于水生态系统中的氮素自净可能有着重要的作用。但是相对于废水处理和农田土壤,目前自然水体中Feammox相关的研究相对甚少。为此,本研究采集太湖不同区域沉积物进行厌氧培养,并借助同位素技术和分子生物学等手段,对沉积物中铁、氮循环相关细菌、Feammox影响因素以及潜在速率等进行了探究。厌氧培养过程中,亚铁[Fe(Ⅱ)]和各形态氮的浓度以及沉积物形态和颜色的变化,表明沉积物中发生了Feammox反应,并且硝酸盐(NO3-)是铵(NH4+)氧化的重要产物之一。不同氨氮(NH4+-N)添加量的厌氧培养实验表明,NH4+可以促进Fe(Ⅲ)的还原,但过量的NH4+可能会产生抑制效应。不同Fe(Ⅲ)添加量的各处理中,NH4+-N浓度的...  相似文献   

8.
夏季滇池和入滇河流氮、磷污染特征   总被引:6,自引:1,他引:5  
为探讨滇池入湖河流水体营养盐空间分布特征及其对滇池水体富营养化的影响,2014年7月采集了入滇4类典型河流(城市纳污型河流、城乡结合型河流、农田型河流、村镇型河流)及滇池水样,分析其氮、磷浓度.结果表明:4条入湖河流总氮(TN)、总磷(TP)、硝态氮和氨氮污染均较严重;河流水体中TN、TP平均浓度大小为:农田型河流(大河)村镇型河流(柴河)城乡结合型河流(宝象河)城市纳污型河流(盘龙江),其中农田型河流(大河)水体TN、TP污染最为严重;在夏季,4条入湖河流水体中TN、TP浓度从上游向下游增加趋势比较明显,表明氮、磷沿河流不断富集;氮磷比分析表明,夏季河流输入氮、磷营养盐有利于藻类的生长,并且滇池浮游植物生长主要受TN浓度限制;夏季滇池南部入湖河流水体的TN、TP浓度高于北部入湖河流,该特征与滇池水体中TN、TP污染分布状况相反,推测滇池北部富营养化的主要影响因素是内源释放.因此,在今后的滇池水体富营养化研究中,应对滇池内源释放进行深入研究.  相似文献   

9.
水库建设改变了河流水文情势及物质迁移转化过程,从而影响水环境质量。为探究梯级筑坝影响下河流氮、磷的空间分布特征及其形成机制,以澜沧江为研究对象,于2016年和2021年分别开展了沿程水环境监测,对比分析水体中氮、磷及其形态浓度在水库建成前后的变化及沿程分布特征,探究氮、磷变化及其沿程分布的主控因子和影响机制。结果表明:由于河流建库蓄水淹没的土地释放大量土壤有机氮,新建水库段(2021年)水体总氮(TN)浓度相比于建库前(2016年)显著上升;由于建库后水流流速减缓而促进颗粒态磷沉降,水体总磷(TP)浓度显著下降。此外,河流建库蓄水后原自然河道的水环境特征改变且利于沉积物磷的释放,筑坝后水体磷酸盐(PO43--P)占生物可利用磷(Bio-P)的比例显著上升。受沿程土地利用的影响,从上游到下游水体TN浓度总体上逐渐升高,而水体TP浓度由于水库的截留效应逐渐降低。筑坝增加的水力停留时间为水库氮、磷转化提供了有利条件,主要表现为溶解性无机氮以硝态氮为主转变为以氨氮为主;同时,Bio-P中PO43--P的占比...  相似文献   

10.
亚热带地区典型水库流域氮、磷湿沉降及入湖贡献率估算   总被引:1,自引:0,他引:1  
为了探究汤浦水库流域氮、磷湿沉降对水库水体营养的贡献率,本研究对2014 2015年的汤浦水库流域4个采样点的雨水及3条溪流进行样品收集,测定其中磷和不同形态氮的质量浓度,分析汤浦水库流域大气湿沉降中氮、磷营养盐的分布特征,并估算氮、磷营养盐湿沉降对汤浦水库入库负荷的贡献率.结果表明:湿沉降中总氮(TN)平均浓度为1.02±0.58 mg/L,氨氮、硝态氮和有机氮浓度占TN浓度的比例分别为60.65%、34.07%和5.28%;总磷(TP)平均浓度为0.033±0.028 mg/L.4个采样点湿沉降中氮、磷浓度均表现为冬春季(少雨季)高、夏秋季(多雨季)低.空间上,王化点位的各形态氮和总磷浓度显著高于其他3个采样点.TN和TP年均湿沉降通量约为18.15和0.62 kg/(hm~2·a),年均沉降总量为834.94和28.39 t;库区TN和TP水面湿沉降量为24.14和0.82 t,直接贡献率占河流输入的1.77%和3.07%.湿沉降来源的氮、磷营养盐随河流输入的间接贡献率为8.3%和4.6%.综上所述,氮、磷湿沉降是水库外源营养的重要输入部分,深入掌握其时空分布特征及入库贡献率是进一步加强流域管理和减轻水库外源营养输入的重要前提.  相似文献   

11.
环太湖江苏段入湖河道污染物通量与湖区水质的响应关系   总被引:1,自引:1,他引:0  
基于2008-2018年环太湖江苏段入湖河道污染物通量及湖区水质数据,从时空变化及相关关系两个方面探讨了入湖污染物通量与湖区水质的响应关系,并分析了污染物进入湖体影响水质的主要因子.结果表明:太湖污染减排已见成效,氨氮、总氮、高锰酸盐指数和化学需氧量入湖污染物通量整体呈下降趋势,年均下降率分别为8.0%、2.0%、1.6%和2.2%,湖体氨氮和总氮时间格局响应较好,年均下降率分别为2.1%和2.3%.湖体氨氮、总氮、总磷、高锰酸盐指数和化学需氧量与入湖污染物通量整体由西北部、西部湖区向东南部、东部湖区递减,空间格局上响应基本一致.全湖区年尺度总氮、氨氮浓度与入湖河道污染物通量分别呈显著正相关、极显著正相关关系;影响湖区总氮、氨氮的主要因子为入湖河道的总氮、氨氮浓度,其次为入湖河道浓度与原湖区水质差值,因此亟需加强入湖河道水质浓度的控制.  相似文献   

12.
根据2007-2014年淀山湖湖体每月高锰酸盐指数(CODMn)、氨氮(NH3-N)、总氮(TN)和总磷(TP)等水质资料和青浦区气象局月平均气温、降水量和日照时数等气象资料,运用数理统计方法和特征值比较法分析淀山湖湖体CODMn、NH3-N、TN和TP等水质资料变化规律及温度、降水和日照时数等对水质的影响.结果表明:(1)气象条件影响淀山湖湖体水质.平均气温、日照时数影响NH3-N、TN和TP浓度,表现在平均气温高、日照时数多,NH3-N、TN浓度降低,相反平均气温低、日照时数少,NH3-N、TN浓度升高;平均气温高,也会使TP浓度上升,平均气温低,TP浓度降低.降水对水体中CODMn、NH3-N和TN等浓度有稀释作用,降水量多的月份其浓度偏低,相反降水量少的月份其浓度偏高.(2)受气象条件影响,CODMn、NH3-N、TN和TP有季节变化.CODMn浓度4-9月较高,10月翌年3月较低;NH3-N、TN浓度最高值出现在2-4月前后,最低值出现在7-10月;TP浓度最高值出现在7-8月,最低值出现在10月翌年5月.(3)淀山湖CODMn、NH3-N、TN和TP浓度呈下降趋势.  相似文献   

13.
为研究太湖流经不同类型缓冲带的入湖河流水体氮污染特征,于2011年9 12月连续对流经4种不同类型缓冲带入湖河流沿程共32个样点进行采样,分析各样点的氮浓度及变化趋势.结果表明,流经农田型缓冲带入湖河流中总氮浓度由缓冲带外进入缓冲带内不断减小,到入湖河口处有轻微上升;流经养殖塘型、村落型缓冲带入湖河流中总氮浓度由缓冲带外进入缓冲带内变化不大,到接近入湖河口时浓度显著升高;流经生态型缓冲带入湖河流中各氮元素形态沿程不断降低.在流经4种类型湖泊缓冲带入湖河流中,流经农田型、养殖塘型和生态型缓冲带的入湖河流以硝态氮为氮元素的主要存在形态,而流经村落型缓冲带的入湖河流中硝态氮和铵态氮同为氮元素的主要存在形态.总氮浓度、铵态氮浓度与缓冲带类型均呈极显著正相关关系,外源污染排入对流经缓冲带的入湖河流中氮元素总量及形态产生较大影响.流经生态型缓冲带入湖河流净化效果最佳,总氮、硝态氮和铵态氮浓度削减率分别为60%、53%和61%.  相似文献   

14.
基于洱海水生态特征的流域最大日负荷总量控制   总被引:1,自引:1,他引:0  
基于洱海水生态历史数据及现状资料,采用概率密度分布曲线法及水生生物基准相结合的方式计算洱海总氮(TN)、总磷(TP)、高锰酸盐指数(COD_(Mn))和氨氮(NH_3-N)的控制目标,目标值分别为0.36、0.026、4和0.28 mg/L.再根据该水质目标,得到洱海的最大日负荷(TMDL)总量.TMDL总量采用线性规划法计算,其中污染物响应系数矩阵通过MIKE 21二维水质模型计算所得.安全容余(MOS)则通过一阶误差分析法确定.经过一系列的计算,最终确定洱海的TMDL总量控制计划.计算结果表明,洱海TN、TP、COD_(Mn)和NH_3-N的TMDL总量分别为2005.989、149.671、19258.844和1348.119 kg/d,其MOS所占比例分别为6.152%、5.570%、4.380%和5.021%,表明洱海农业面源污染为该流域主要的污染形式,其允许最大排放量约占全部允许排放量的90%左右.  相似文献   

15.
新安江对千岛湖外源输入总量的贡献分析(2006-2016年)   总被引:2,自引:0,他引:2  
运用新安江模型,计算了千岛湖25条主要入湖河流在2006-2016年间的入湖流量,结合同时期入湖河道的逐月水质监测数据,分析了最大入流新安江的营养盐——总氮(TN)、总磷(TP)、氨氮(NH3-N)和高锰酸盐指数(CODMn)总量输入在该时段内的年际变化和季节变化规律,研究了新安江营养盐输入总量变化与新安江水质水量、黄山市人口、GDP和土地利用的关系,探讨了影响新安江营养盐总量的关键影响因素及其对千岛湖水质的影响.结果表明,研究时段内新安江多年平均年入湖水量占千岛湖多年平均年入湖水量的51.4%,占25条主要河流年总入流量的67.3%,新安江CODMn、TP、TN、NH3-N多年平均的输入总量分别为11458.4、214.9、7649.2和756.5 t/a,分别占千岛湖年总负荷的50.7%、34.3%、63.7%和48.4%.各指标的年入湖总量在统计期间均呈上升趋势,且春、夏两季高于秋、冬两季.相关性分析表明,黄山市GDP与新安江CODMn、TN和TP入湖总量呈显著正相关关系,农业面源污染对新安江TN输入总量有显著影响.作为千岛湖最大的入湖河流,新安江营养盐(TP、TN、NH3-N)的输入能显著影响千岛湖的生态系统健康.  相似文献   

16.
池塘养殖是农业源污染的重要来源之一,尤其在水网密布、渔业发达的太湖流域,控制池塘养殖过程中氮、磷、化学需氧量等污染物的排放,对于减轻水体富营养化程度、恢复水质健康、维持地区社会经济可持续发展具有重要意义.基于野外采样、入户调查、遥感解译等多种手段,结合GIS软件技术,对太湖流域池塘养殖污染物的排放进行了估算.结果表明,20142015年太湖流域总氮、硝态氮、铵态氮、总磷、可溶性磷、COD Cr的年排放量分别为6.1×10^6、1.1×10^6、1.7×10^6、1.3×10^5、1.1×10^5和8.0×10^7 kg.其中鱼类池塘养殖排放系数分别为69.5、12.4、20.1、1.6、1.3和919.8 kg/hm 2;虾类池塘排放系数分别为3.0、0.5、0.9、0.07、0.06和39.3 kg/hm^2;蟹类池塘排放系数分别为6.4、1.2、1.9、0.2、0.1和84.9 kg/hm^2.太湖流域池塘养殖各类污染物排放分布特征为位于太湖西北部、南部和东北部的大部分地区池塘养殖污染物排放较高,位于太湖东部和太湖西南部的池塘养殖污染物排放较低.池塘养殖业发达、饲料肥料投入高、养殖密度大等是造成该流域池塘养殖污染物排放较高的主要原因.针对太湖流域池塘养殖减排治理,建议推行合理的池塘污染治理管理政策与策略,综合考虑饲料利用率与投放量、养殖面积、养殖密度、养殖生物生态混养,以及一些科学养殖管理措施和净化养殖废水的技术措施等.  相似文献   

17.
三峡大坝上下游水质时空变化特征   总被引:6,自引:2,他引:4  
为探索三峡大坝上下游(坝上99.9 km、坝下63.0 km、全长162.9 km)水质时空变化特征,运用主成分分析和方差分析对2016年近坝段水质时空变化特征进行了分析.主成分分析表明,水文因子流量(Q)、气温(T)、水位(Z)和水质因子(水温(WT)、pH、电导率(EC)、溶解氧(DO)、悬浮物(SS)、高锰酸盐指数(CODMn)、硫酸盐(SO42-)、氟化物(F-)、总硬度(T-Hard)、硝态氮(NO3--N)、总氮(TN)和硒(Se))的变化主导着研究区域水质变化;各采样点主成分得分和双因素方差分析结果显示研究区域水质因子时间变化主要呈现出季节和不同水库运行时期的差异.消落期(2-5月),T-Hard、F-、SO42-和EC是影响河流水质变化的主导因子;汛期(7-8月),Q、SS、CODMn、NO3--N、TN和Se是影响河流水质变化的主导因子;T和WT主导着汛末(9月)河流水质变化,并引起了DO等理化特性的变化;高水位运行期(12月),Cl-是影响河流水质变化的主导因子.现阶段,DO、有机污染物(CODMn)、无机盐(SO42-和F-)、营养盐类(NO3--N和TN)、类金属元素(Se)和水体的矿化程度(T-Hard)的变化主导着区域水质的变化,是三峡大坝近坝段水域水质的控制因子.方差分析表明,河流的理化特性(DO、pH和SS)、营养盐组分构成(NH3-N和NO3--N)、无机盐类(EC和Cl-)、石油类有机污染物及粪大肠菌群(FC)等指标在坝上与坝下断面存在显著性差异.气温、水温、降雨、含沙量的季节性影响因素和水库调度运行模式是影响近坝段水质时间差异的主要因子;空间差异主要受城区污染排放和三峡水库调度引起的坝上和坝下水文和水动力学条件差异影响.因此控制研究区域因人类活动等造成的外源性污染,并针对不同类污染物质的季节变化特征实施合理的水库运行方式是近坝段水质提升的关键.  相似文献   

18.
研究鄱阳湖入、出湖污染物通量是加强鄱阳湖及长江水功能区限制纳污红线管理的前提,是建立鄱阳湖水质预测模型的基础.基于2008-2012年鄱阳湖8条主要入湖河流、出湖口的逐月水量、水质同步监测资料,根据污染源特征优选算法,计算总磷(TP)、氨氮(NH3-N)、高锰酸盐指数(CODMn)的入、出湖污染物通量,并分析时空变化特征及影响因素.结果表明:(1)出湖口和乐安河入湖口断面的NH3-N、TP及昌江入湖口断面的TP,以点源污染为主,采用每月瞬时通量作为月平均通量的算法更准确;其余以非点源污染为主,采用瞬时污染物浓度与月平均流量之积来计算月平均通量更准确.(2)2008-2012年CODMn、NH3-N和TP年平均人湖通量分别为304398、53063和9175 t,年平均出湖通量分别为367436、45814和8452t.8条入湖河流每年的入湖水量、CODMn通量和个别年份的NH3-N、TP通量小于出湖,这主要是因为未计算区间产流及相应排污和采砂引起的内源污染.(3)入、出湖污染物通量在年际间主要受水量影响而呈现W型波动变化趋势,CODMn、NH3-N、TP入湖通量及CODMn出湖通量均集中在汛期,NH3-N、TP出湖通量则是冬季较多(低水位下湿地植被净化作用受限).入湖TP、NH3-N、CODMn通量主要来自赣江、信江、乐安河,而NH3-N、TP浓度最高的是乐安河、信江.  相似文献   

19.
研究城市径流水质变化及初期冲刷效应对控制与治理城市径流污染具有重要指导意义.对塘西河上游6次降雨径流水质水量进行监测分析,计算次降雨径流平均浓度(EMC)和单位面积次降雨径流污染负荷(EPL),作M(V)曲线图研究初期冲刷现象.结果表明:降雨径流中悬浮物(SS)、化学需氧量(CODCr)和总磷(TP)的EMC值相对较大;SS的EMC值波动最为显著;总氮(TN)、TP、COD_(Cr)、SS间的EMC值均呈正相关;TN的EMC值与降雨量呈负相关性.各污染物EPL值与各降雨特征间均呈正相关性,经估算2015年研究区在6-8月共有10.38 tTN、2.29 tTP、1022.43 t SS、161.70 t CODCr和5.18 t NH_3-N随降雨径流排入巢湖;降雨量和雨前干期是城市径流污染的主要影响因素;以FF5050为初期冲刷效应判别依据,5种污染物均有初期冲刷效应出现,冲刷程度表现为SSCODCrTPTNNH_3-N;各水质指标的初期冲刷强度与降雨特征之间无相关性;雨型对初期冲刷现象影响较大;当降雨强度达1.36 mm/h即有径流汇集流出时开始截流,截流时间取440 min,截取的最大径流量取224319.14 m~3.  相似文献   

20.
The changes of NH3-N, NO3-N, NO2-N and TN/TP were studied during growth and non-growth season in 33 subtropical shallow lakes in the middle and lower reaches of the Yangtze River. There were significant positive correlations among all nutrient concentrations, and the correlations were better in growth season than in non-growth season. When TP>0.1 mgL?1, NH3-N increased sharply in non-growth season with increasing TP, and NO3-N increased in growth season but decreased in non-growth season with TP. These might be attributed to lower dissolved oxygen and low temperature in non-growth season of the hypereutrophic lakes, since nitrification is more sensitive to dissolved oxygen and temperature than antinitrification. When 0.1 mgL?1>TP>0.035 mgL?1, TN and all kinds of inorganic nitrogen were lower in growth season than in non-growth season, and phytoplankton might be the vital regulating factor. When TP<0.035 mgL?1, inorganic nitrogen concentrations were relatively low and NH3-N, NO2-N had significant correlations with phytoplankton, indicating that NH3-N and NO2-N might be limiting factors to phytoplankton. In addition, TN/TP went down with decline in TP concentration, and TN and inorganic nitrogen concentrations were obviously lower in growth season than in non-growth season, suggesting that decreasing nitrogen (especially NH3-N and NO3-N) was an important reason for the decreasing TN/TP in growth season. The ranges of TN/TP were closely related to trophic level in both growth and non-growth seasons, and it is apparent that in the eutrophic and hypertrophic state the TN/TP ratio was obviously lower in growth season than in non-growth season. The changes of the TN/TP ratio were closely correlated with trophic levels, and both declines of TN in the water column and TP release from the sediment were important factors for the decline of the TN/TP ratio in growth season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号