首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
西苕溪位于太湖流域中上游地区,其下游河床比降较小,且受太湖水位顶托以及东苕溪导流干扰,水位流量呈现复杂的绳套关系.随着经济发展,洪水灾害造成的损失日趋加剧,因此,探讨该河流的水位流量关系对于流域洪水预报与防洪减灾意义重大.本文结合校正因素法和落差指数法选取变量,采用系统差分模型的方法对西苕溪水位流量的绳套关系进行解算.结果表明,该模型实用性好、模拟精度高、适应性强,可为该地区的洪水预报提供良好的技术支撑,同时,该研究也为东部地区中小流域中下游水位流量关系的研究提供参考.  相似文献   

2.
沙市洪峰水位是长江荆江段防汛和分洪工程运用的依据。它一般是根据上游寸滩站洪峰水位(流量)连续推算宜昌水位(流量),再由宜昌站水位预报沙市洪峰水位。但宜昌站以下,长江进入平原湖区,并有区间支流清江(流域面积16,742平方公里)及沮漳河(流域面积7,216平方公里)汇入;枝城以下有松滋、太平两口分流入洞庭湖;而洞庭湖出流对沙市水位又有显著的回水顶托影响(见图1)。因此,宜昌~沙市段洪峰水位预报问题就变得比  相似文献   

3.
三峡工程蓄水水文特性变化浅析   总被引:6,自引:1,他引:5  
本文通过对"2007.07"长江上游洪水的还原计算,简要分析了三峡工程蓄水前后的水文特性变化,以及水库蓄水对下游荆江河段各站洪峰水位的影响.通过对建库前、135m蓄水以及156m蓄水3种条件下的洪水还原计算可见,随着三峡工程蓄水水位的升高,上游及区间洪水传播至坝址时洪量更加集中,洪峰加大,峰时提前,洪水传播时间大大缩短,洪水预报预见期也显著减少,预报难度加大.  相似文献   

4.
巢中根  李正最 《水文》2000,20(3):18-20
受洪水涨落和回水顶托影响的水位流量关系一般为复杂的时序型绳套曲线,通常可用落差指数法作单值化处理.但由于落差指数法需经反复试算,给电算带来不便.提出了落差指数直接解算的数学模型,并应用于长江中游螺山站的水位流量关系分析中.  相似文献   

5.
水库汛限水位动态控制的实现途径   总被引:11,自引:0,他引:11       下载免费PDF全文
水库汛限水位动态控制是洪水资源利用的主要方式之一,提高水库洪水预报精度和延长有效预见期是实现水库汛限水位动态控制的关键所在。针对水库实时防洪调度的特点和流程,概述了新一代天气雷达、气象卫星及相关应用系统的技术进展,评价了这一技术进展在水库实时防洪调度中的重要作用,据此提出了综合应用新技术改进水库洪水预报、洪水量级判断和蓄水时机选择的技术途径。在此基础上,以海河流域潘家口水库为例,综合论证了水库汛限水位的动态控制范围,提出了汛期蓄水的控制策略与调控方法。  相似文献   

6.
黄晓明 《地下水》2019,(1):164-166,186
洮河是黄河上游一条重要河流。岷县水文站是洮河中游控制站,担负着水文资料收集和为当地防汛提供水文情报预报的工作,同时对下游城市及河道水库有洪水预警预报责任。本文结合洮河上、中游流域特性,经过大量实测水文资料分析研究,根据上下游相应水位(流量)预报法建立了流量线性回归关系,由上游下巴沟水文站及区间入流得出关系式为Q岷县=Q上合+3. 91 Q多坝+41用于洮河岷县站洪水预报,经模型精度评定和实际作业预报,取得了令人满意的效果,具有较广的实用价值。  相似文献   

7.
以长江中下游防洪系统为对象,概述了在大型复杂防洪系统水沙运动数值模拟基础上,成功地将面向长江中下游防洪规划论证需求的水沙数学模型转化为面向长江防洪系统防汛方案评估需求的长江中下游实时洪水预报数学模型.为适应实时预报调度快速、准确评估的要求,提出了基于水动力学的循环滚动计算模式和实时校正模式.实现了水文学实时校正方法与水动力学数学模型的耦合,建立了基于水动力学的实时校正模式和分洪溃口洪水预报模式.通过长江中下游防汛期间的试运行,较好地解决了洪水预报误差校正和分洪溃口后洪水预报等关键难题,为防汛方案的制定和实时洪水调度方案优化提供了技术支撑,主要成果已应用于长江中下游防汛调度方案中.  相似文献   

8.
洪水期水位流量关系绳套曲线的直接拟合   总被引:7,自引:2,他引:5  
高兵役  李正最 《水文》1998,(5):26-29
受洪水涨落影响的水痊流量关系通常为时序型绳套曲线,现有的校正因数法在电算整编中存在一定的困难,通过对校正因数法公式的幂级数展开,提出了水位流量关系绳套曲线的计算机直接拟合数学方法,并对该法原理、步骤作了较详细的介绍。实例验证结果表明,该法能有效地模拟受洪水涨落影响的水位流量关系绳套曲线、且具有计算速度快,推流精度高等优点。  相似文献   

9.
沈倩娜  张霞 《水文》2021,41(2):80-85
2017年6月下旬到7月初,2019年7月上旬到中旬,湘江干流接连发生特大洪水。通过分析湘江流域多个测站的水文整编资料,结合部分实时信息,从降雨过程时空分布、干支流有关测站洪水水位流量过程、洪水组成、洪量、洪水传播时间与宣泄速度等方面,对2017年洪水与2019年洪水的暴雨洪水特征进行了对比分析。2017年洪水,湘潭站上游的衡山、衡阳、冷水滩站水位过程与流量过程对应呈双峰形状,而湘潭站水位过程没有出现双峰;2019年洪水,湘江干流上下游站点的水位过程与流量过程基本对应,均呈双峰形状;2017年洪水宣泄慢,2019年洪水宣泄极快。2017年洪水与2019年洪水流量过程与水位过程起伏不对应、洪水宣泄速度的差异主要是由于洞庭湖水位顶托因素影响导致。  相似文献   

10.
刘家法  朱崇珍  郭少芳 《地下水》2007,29(4):7-7,10
动态汛限水位控制是指水库在汛期,根据实时雨、水、墒情,利用暴雨、洪水预报成果,在不降低水库防洪标准,确保水库、上下游地区防洪安全的前提下,按照水库动态汛限水位控制方案确定的控制范围对汛限水位进行浮动的调度过程.结合防汛指挥系统建设,采取动态汛限水位,在保证安全的前提下尽可能多蓄水充分利用雨洪资源、发挥防洪与兴利的最佳结合效益.  相似文献   

11.
洞庭湖入汇对长江干流水位的顶托作用影响着荆江河段的水文情势变化,分析其变化特征对研究长江中下游防洪安全问题具有重要意义。为揭示汇流顶托作用的程度与影响范围,本文基于1990—2020年荆江河段水位流量关系与洞庭湖汇流比,提出洞庭湖入汇顶托程度的量化方法,构建计算顶托程度的随机森林回归模型,分析顶托程度主要影响因素的重要性。结果表明:(1)洞庭湖入汇顶托程度与汇流比呈显著正相关关系;顶托程度随干流流量增大而增加,2003—2020年枯水、中水和洪水流量级监利站水位受顶托程度平均为0.59、1.33和1.60 m;顶托最大影响范围随干流流量与汇流比增大向上游延伸。(2)随汇流比增大,在2020年干流枯水、中水和洪水流量级下,顶托最大影响范围的延伸区间分别为石首—沙市、石首—陈家湾和陈家湾—枝城;汇流比、荆江段累计冲刷深度、螺山水位及干流流量对顶托程度变化的重要性占比分别为28%、27%、25%和20%。(3)构建的顶托程度计算模型在不同流量级都能够较好地计算荆江河段水位的顶托程度并确定顶托影响范围。  相似文献   

12.
汤成友  项祖伟  缪韧  舒栋才 《水文》2007,27(5):36-38,51
水箱模型用于实时洪水作业预报的具体成果尚不多,本文研究的目的在于将水箱模型用于大尺度流域实时洪水预报。本文介绍了应用水箱模型建立实时洪水预报模型的方法。按照河段流量传播时间将寸滩以上干、支流划分为若干子河段,各子河段按照计算时段长分成若干单元河段,各单元河段区间降雨径流预报采用水箱模型.河道流量演算采用连续马斯京根法。河系预报模型精度在85%以上,能够满足实时洪水预报的要求。  相似文献   

13.
汛限水位是综合利用水库运行和调度的重要参数之一,也是协调防洪和兴利矛盾的焦点所在。现行的汛限水位过多地考虑了小概率洪水事件,不能充分挖掘水库汛期的兴利效益,因此,采用动态汛限水位进行调度,对综合利用水库的运行具有重要的理论意义和实用价值。根据三峡水库围堰发电期的调度规程,建立预报预泄调度模型,采用宜昌站1882-2001年汛期实测日流量资料,实现了考虑预报信息的动态汛限水位洪水调度模拟;提出了多目标风险指标体系;计算了9种动态汛限水位方案下的风险指标值,通过综合评价模型对各方案进行比较和优选,得到了相对合理的动态汛限水位方案。  相似文献   

14.
三峡水库汛期控制水位及运用条件   总被引:2,自引:2,他引:2       下载免费PDF全文
王俊  郭生练 《水科学进展》1990,31(4):473-480
随着长江上游梯级水库的陆续建成投运,三峡水库的水文情势和功能需求与设计条件相比发生了显著变化,仍维持固定的汛限水位运行已不能适应新形势需求。本文通过辨析三峡水库设计阶段汛限水位的设置条件,挖掘流域洪水特性和洪水遭遇规律,论证三峡水库汛期运行水位动态控制的可行性。结果表明:① 三峡水库设计推求的汛限水位145 m的适用条件是应对流域性大洪水,而流域性洪水发生概率小且特征明显,可以通过水文水情分析提前预判。② 根据流域洪水类型、洪水分期和遭遇规律,预判发生区域性大洪水时,三峡水库6月初至梅雨期结束汛限水位按145 m设置,从梅雨期结束后逐渐提高水位,8月20日后过渡到155 m。③ 在考虑上游水库群联合调度和气象水文预报的配合下,正常年份三峡水库汛期运行水位可在155 m上下浮动,并考虑提前蓄水。④ 三峡水库汛期运行水位动态控制,不会增加防洪风险和库区淤积风险,对中下游江湖关系和水文情势有利,可显著提高发电、航运、生态保护和供水等综合利用效益。  相似文献   

15.
王俊  郭生练 《水科学进展》2020,31(4):473-480
随着长江上游梯级水库的陆续建成投运,三峡水库的水文情势和功能需求与设计条件相比发生了显著变化,仍维持固定的汛限水位运行已不能适应新形势需求。本文通过辨析三峡水库设计阶段汛限水位的设置条件,挖掘流域洪水特性和洪水遭遇规律,论证三峡水库汛期运行水位动态控制的可行性。结果表明:①三峡水库设计推求的汛限水位145 m的适用条件是应对流域性大洪水,而流域性洪水发生概率小且特征明显,可以通过水文水情分析提前预判。②根据流域洪水类型、洪水分期和遭遇规律,预判发生区域性大洪水时,三峡水库6月初至梅雨期结束汛限水位按145 m设置,从梅雨期结束后逐渐提高水位,8月20日后过渡到155 m。③在考虑上游水库群联合调度和气象水文预报的配合下,正常年份三峡水库汛期运行水位可在155 m上下浮动,并考虑提前蓄水。④三峡水库汛期运行水位动态控制,不会增加防洪风险和库区淤积风险,对中下游江湖关系和水文情势有利,可显著提高发电、航运、生态保护和供水等综合利用效益。  相似文献   

16.
河道洪水实时概率预报模型与应用   总被引:2,自引:0,他引:2       下载免费PDF全文
通过数据同化方法合理地将实时水文观测数据融入到洪水预报模型中,可提高洪水预报模型的实时性和精确度。选取沿程断面流量、水位和糙率系数作为代表水流状态的基本粒子,以监测断面实测水位数据作为观测信息,建立了基于粒子滤波数据同化算法的河道洪水实时概率预报模型。模型应用于黄河中下游河道洪水预报计算的结果表明,采用粒子滤波方法同化观测水位后,不仅可以直接校正水位,同时也可以有效地校正流量和糙率,为未来时刻模型预报计算提供更准确的水流初始条件和糙率取值区间,进而有效地提高模型预报结果的精度,给出合理的概率预报区间。不同预报期的预报结果表明,随着预报期的增长,同化效果减弱,模型预报结果的精度会有所降低,水位概率预报结果受粒子间糙率不同的影响不确定性增加,而流量概率预报结果受给定模型边界条件的影响不确定性降低。所提出模型可以有效同化真实水位观测数据,适合应用于实际的洪水预报工作中。  相似文献   

17.
论单值化与特征线法   总被引:3,自引:0,他引:3  
一、前言洪水期间,河道的水流属不稳定流,即流量、流速和过水面积随空间和时间而变化,以式表之为:Q=Q(L,t)、V=V(L,t)、A=A(L,t)。就固定地点而言,也就是水位流量关系成绳套形。在山丘区,河道坡降陡峻,水位流量关系的绳套狭窄,尚没有超过流速仪  相似文献   

18.
受洪水涨落影响下稳定水位流量关系直接计算   总被引:4,自引:1,他引:3  
根据洪水涨落影响下的同水位涨落水面流量公式,推导出计算稳定流量Q0的数字表达式,并论述了表达式中未知量S1/S2(同水位涨落水时附加比降的比值)计算的方法原理。从而可根据实测洪水绳套和水位过程直接计算稳定的水位流量关系曲线。  相似文献   

19.
长江流域“2012·07”暴雨洪水分析   总被引:1,自引:1,他引:0       下载免费PDF全文
尹志杰  刘晓音  张海燕 《水文》2014,34(5):81-87
2012年7月,长江流域先后出现4次强降雨过程,发生了4次洪水,其中朱沱江段水位超过历史实测最高记录,寸滩江段发生1981年以来最大洪水,三峡水库出现建库以来最大入库洪峰;长江上游干流宜宾至寸滩江段全线超过保证水位,中游干流石首至螺山江段及洞庭湖全线超过警戒水位。在调控"2012·07"洪水过程中,三峡水库有效降低荆江江段最高水位超过2m,洪湖江段超过1m,避免了长江荆江江段出现接近保证水位的高水位,缩短了长江中下游超警江段240km,大大减轻了中下游的防洪压力。  相似文献   

20.
为准确预测和有效应对“揭河底”冲刷险情,通过大量挖掘相关水文站1950年以来的原始测验资料,结合概化模型试验,对“揭河底”冲刷期河道断面形态调整过程及洪水位变化情况进行了深入研究。结果表明,“揭河底”冲刷期河道形态调整具有明显的规律性。从过程看,一般可分为4个阶段,即“揭河底”前的一般冲刷阶段、河底高程基本不变阶段、胶泥块揭起河床快速下降阶段和“揭河底”后期持续冲刷阶段及回淤阶段。“揭河底”洪水与非“揭河底”洪水在水位表现上差别较大,非“揭河底”洪水水位流量关系曲线较为平缓,洪水前后水位变化过程呈明显的逆时针绳套;“揭河底”洪水水位流量关系曲线较为陡峭,水位变化过程呈明显的顺时针绳套,“揭河底”发生的瞬时,水位有一个明显的升高和快速下降过程。从流态看,水面紊动剧烈的地方位于发生“揭河底”位置的下游,这也是本次研究的一个重大发现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号