首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Viscoelastic modelling reveals that the interaction of compressional-wave velocity Cp, compressional-wave quality factor Qp, shear-wave velocity Cs, shear-wave quality factor Qs and Poisson's ratio as a function of time intercept τ and ray parameter p, is complicated; however, distinct, potentially diagnostic behaviours are seen for different combinations of viscoelastic parameters. Synthetic seismograms for three viscoelastic reservoir models show that variations in the Poisson's ratio produce visible differences when compared to the corresponding elastic synthetic seismograms; these differences are attributable to interaction of the elastic parameters with Qp and Qs. When the P-wave acoustic impedance contrast is small, viscoelastic effects become more apparent and more useful for interpretation purposes. The corresponding amplitude and net phase spectra reveal significant differences between the elastic and the viscoelastic responses. When P-wave reflectivities are large, they tend to dominate the total response and to mask the Q reflectivity effects. The attenuation effects are manifested as an amplitude decay that increases with both time and ray parameter. The sensitivity of the computed seismic responses for various combinations of viscoelastic parameters suggests the opportunity for diagnostic interpretation of τ-p seismic data. The interpretation of the viscoelastic parameters can permit a better understanding of the rock types and pore fluid distribution existing in the subsurface.  相似文献   

5.
6.
本文根据三十七个不同深度地震P,S波特性的研究,发現我国东部地区的P,S波存在着明显的地区差异,这些差异可能与地幔构造的差异直接有关;并发現地幔低速层存庄的多种証据及低速层特性的地区差异。此外,对地幔中二个間断面存在的可能性亦进行了討論。  相似文献   

7.
8.
9.
This paper presents novel predictor–corrector time‐integration algorithms based on the Generalized‐α method to perform pseudo‐dynamic tests with substructuring. The implicit Generalized‐α algorithm was implemented in a predictor–one corrector form giving rise to the implicit IPC–ρ∞ method, able to avoid expensive iterative corrections in view of high‐speed applications. Moreover, the scheme embodies a secant stiffness formula that can closely approximate the actual stiffness of a structure. Also an explicit algorithm endowed with user‐controlled dissipation properties, the EPC–ρb method, was implemented. The resulting schemes were tested experimentally both on a two‐ and on a six‐degrees‐of‐freedom system, using substructuring. The tests indicated that the numerical strategies enhance the fidelity of the pseudo‐dynamic test results even in an environment characterized by considerable experimental errors. Moreover, the schemes were tested numerically on severe non‐linear substructured multiple‐degrees‐of‐freedom systems reproduced with the Bouc–Wen model, showing the reliability of the seismic tests under these conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
In soil‐structure interaction modeling of systems subjected to earthquake motions, it is classically assumed that the incoming wave field, produced by an earthquake, is unidimensional and vertically propagating. This work explores the validity of this assumption by performing earthquake soil‐structure interaction modeling, including explicit modeling of sources, seismic wave propagation, site, and structure. The domain reduction method is used to couple seismic (near‐field) simulations with local soil‐structure interaction response. The response of a generic nuclear power plant model computed using full earthquake soil‐structure interaction simulations is compared with the current state‐of‐the‐art method of deconvolving in depth the (simulated) free‐field motions, recorded at the site of interest, and assuming that the earthquake wave field is spatially unidimensional. Results show that the 1‐D wave‐field assumption does not hold in general. It is shown that the way in which full 3‐D analysis results differ from those which assume a 1‐D wave field is dependent on fault‐to‐site geometry and motion frequency content. It is argued that this is especially important for certain classes of soil‐structure systems of which nuclear power plants subjected to near‐field earthquakes are an example.  相似文献   

11.
12.
13.
Poecilia reticulata PETERS (guppy) and the green alga Monoraphidium griffithii were used for testing of different fluorotensides. After the representation of the methods of investigation and the definition of criteria of toxicity the obtained results of investigation are discussed. In general, the toxicity of the four investigated fluorotensides to algae was lower than to fish. The anionic fluorotenside CF3—(CF2)n—CFH—COONa was an exception. In tables and diagrams the results are summarized. Finally, for the condition of the receiving-water biocenosis class “2” the respective still permissible matter concentrations are proposed. They vary between 0.05 and 0.2 mg/1.  相似文献   

14.
This paper, the first of two, hypothesizes that: (1) the temporal variation of stream power of a river channel at a given station with varying discharge is accomplished by the temporal variation in channel form (flow depth and channel width) and hydraulic variables, including energy slope, flow velocity and friction; (2) the change in stream power is distributed among the changes in flow depth, channel width, flow velocity, slope, and friction, depending on the boundary conditions that the channels has to satisfy. The second hypothesis is a result of the principle of maximum entropy and the theory of minimum energy dissipation or its simplified minimum stream power. These two hypotheses lead to families of at‐a‐station hydraulic geometry relations. The conditions under which these families of relations can occur in the field are discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
16.
17.
The effective relative dielectric constant ?e, r and the effective conductivity σe have each been determined as a function of frequency in the range 1–3000 MHz at volumetric water contents of up to approximately 0.74 for clays, 0.83 for a peat and 0.56 for a silt. At frequencies above about 25 MHz (depending on soil type), ?e, rincreases with water content for all samples. However, at lower frequencies, ?e, ronly increases with water content as long as the wet density also increases, which is the case for water contents up to a critical value lying between 0.35 and 0.48. At higher water contents, ?e, rand the wet density decrease with increasing water content. Consequently, curves of ?e, rversus frequency for two wet samples with different water contents, at least one of them higher than the critical value, are seen to cross at about 25 MHz. Below the critical value the curve of the sample with the lower water content is below the other curve at all freqencies applied. At a given frequency, σe has a maximum as a function of water content. This is tentatively explained by assuming that σe is the sum of pore water conductivity (increasing with water content until all salts in the soil are dissolved into the water and then decreasing) and surface water conductivity (increasing with wet density and therefore increasing with water content up to the critical value and then decreasing). At frequencies higher than 1000 MHz, ?e, rdepends only weakly on salinity (which is represented by the measured conductivity). It shows an increasing dependence if the frequency is decreased towards 1 MHz. The highest values of ?e, rand σe, measured in this work, occur for a sample of wet, nearly saturated silt originating from a location below sea-level near to the Dead Sea, Israel: ?e, rdecreases continuously from a value of about 104 at 3 MHz to about 102 at 200 MHz, while σe rises from about 4 S/m to 5 S/m at these respective frequencies. The dependence of the wavelength on the loss-tangent is strong and the wavelength is considerably smaller than it would be in a dielectric. This is the only sample for which σe increases with water content, even if the latter is above its critical value. Therefore it is assumed that the pore water conductivity is greater than the surface water conductivity if the volumetric water content is lower than 0.564, the maximum value applied. The measurements give evidence for the presence of a relaxation at about 3 MHz for all samples examined.  相似文献   

18.
Anaerobically stabilized sludge from wastewater treatment is always a challenge from the environmental aspect of management. The agrarian environmental surroundings present a possibility for swift and efficient utilization of compost from anaerobically stabilized sludge in order to increase the quality of the biological product. With intensification of the composting procedure by means of the microbiological consortium Geocell‐1 (Cellvibrio sp., Pseudomonas fluorescens with the addition of micro‐ and macro‐elements), the results show that the compost obtained from stabilized sludge after inoculation is significantly improved in terms of moisture reduction (39–43%), while in the control compost, this value is significantly higher with 61%. The results of the pathogenic effect show a significant reduction in the number of fecal coliform (<1 × 103) and Enterococcus bacteria (<1 × 104) in the inoculated (treated) compost. With a slight decrease in the concentration of limiting factors such as As, Cd, Cu, a quality biological product can be achieved, which can be safely deposited on soil. The phytotoxicological germination test with white mustard (Sinapis alba) shows a higher number of sprouting plants with a mixture of treated compost and standard soil for flowers 1:1 and 1:4 compared to the control group.  相似文献   

19.
The paper by Slob and Ziolkowski (1993) is apparently a comment on my paper (Szaraniec 1984) on odd-depth structure. In fact the basic understanding of a seismogram is in question. The fundamental equation for an odd-depth model and its subsequent deconvolution is correct with no additional geological constraints. This is the essence of my reply which is contained in the following points.
  • 1 The discussion by Slob and Ziolkowski suffers from incoherence. On page 142 the Goupillaud (1961) paper is quoted: “… we must use a sampling rate at least double that… minimum interval…”. In the following analysis of such a postulated model Slob and Ziolkowski say that “… two constants are used in the model: Δt as sampling rate and 2Δt as two-way traveltime”. By reversing the Goupillaud postulation all the subsequent criticism becomes unreliable for the real Goupillaud postulation as well as the odd-depth model.
  • 2 Slob and Ziolkowski take into consideration what they call the total impulse response. This is over and above the demands of the fundamental property of an odd-depth model. Following a similar approach I take truncated data in the form of a source function, S(z), convolved with a synthetic seismogram (earth impulse response), R?(z), the free surface being included. The problem of data modelling is a crucial one and will be discussed in more detail below. By my reasoning, however, the function may be considered as a mathematical construction introduced purely to work out the fundamental property. In this connection there is no question of this construction having a physical meaning. It is implicit that in terms of system theory, K(z) stands for what is known as input impedance.
  • 3 Our understandings of data are divergent but Slob and Ziolkowski state erroneously that: “Szaraniec (1984) gives (21) as the total impulse response…”. This point was not made. This inappropriate statement is repeated and echoed throughout the paper making the discussion by Slob and Ziolkowski, as well as the corrections proposed in their Appendix A, ineffective. Thus, my equation (2) is quoted in the form which is in terms of the reflection response Gsc and holds true at least in mathematical terms. No wonder that “this identity is not valid for the total impulse response” (sic), which is denoted as G(z). None the less a substitution of G for Gsc is made in Appendix A, equation (A3). The equation numbers in my paper and in Appendix A are irrelevant, but (A3) is substituted for (32) (both numbers of equations from the authors’ paper). Afterwards, the mathematical incorrectness of the resulting equation is proved (which was already evident) and the final result (A16) is quite obviously different from my equation (2). However, the substitution in question is not my invention.
  • 4 With regard to the problem of data modelling, I consider a bi-directional ID seismic source located just below the earth's surface. The downgoing unit impulse response is accompanied by a reflected upgoing unit impulse and the earth response is now doubled. The total impulse response for this model is thus given by where (—r0) =— 1 stands for the surface reflection coefficient in an upward direction. Thus that is to say, the total response to a unit excitation is identical with the input impedance as it must be in system theory. The one-directional 1D seismic source model is in question. There must be a reaction to every action. When only the downgoing unit impulse of energy is considered, what about the compensation?
  • 5 In more realistic modelling, an early part of a total seismogram is unknown (absent) and the seismogram is seen in segments or through the windows. That is why in the usual approach, especially in dynamic deconvolution problems, synthetic data in the presence of the free surface are considered as an equivalent of the global reflection coefficient. It is implicit that model arises from a truncated total seismogram represented as a source function convolved with a truncated global reflection coefficient.
Validation or invalidation of the truncation procedure for a numerically specified model may be attempted in the frame of the odd-depth assumption. My equations (22) and (23) have been designed for investigating the absence or presence of truncated energy. The odd-depth formalism allows the possibility of reconstructing an earlier part of a seismogram (Szaraniec 1984), that is to say, a numerical recovery of unknown moments which are unlikely designed by Slob and Ziolkowski for the data.  相似文献   

20.
The last 2014‐16 El Niño event was among the three strongest episodes on record. El Niño considerably changes annual and seasonal precipitation across the tropics. Here, we present a unique stable isotope data set of daily precipitation collected in Costa Rica prior to, during, and after El Niño 2014‐16, in combination with Lagrangian moisture source and precipitation anomaly diagnostics. δ2H composition ranged from ‐129.4 to +18.1 (‰) while δ18O ranged from ‐17.3 to +1.0 (‰). No significant difference was observed among δ18O (P=0.186) and δ2H (P=0.664) mean annual compositions. However, mean annual d‐excess showed a significant decreasing trend (from +13.3 to +8.7 ‰) (P<0.001) with values ranging from +26.6 to ‐13.9 ‰ prior to and during the El Niño evolution. The latter decrease in d‐excess can be partly explained by an enhanced moisture flux convergence across the southeastern Caribbean Sea coupled with moisture transport from northern South America by means of an increased Caribbean Low Level Jet regime. During 2014‐15, precipitation deficit across the Pacific domain averaged 46% resulting in a very severe drought; while a 94% precipitation surplus was observed in the Caribbean domain. Understanding these regional moisture transport mechanisms during a strong El Niño event may contribute to a) better understanding of precipitation anomalies in the tropics and b) re‐evaluate past stable isotope interpretations of ENSO events in paleoclimatic archives within the Central America region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号