首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 896 毫秒
1.
We present a methodology based on the ensemble Kalman filter (EnKF) and the level set method for the continuous model updating of geological facies with respect to production data. Geological facies are modeled using an implicit surface representation and conditioned to production data using the ensemble Kalman filter. The methodology is based on Gaussian random fields used to deform the facies boundaries. The Gaussian random fields are used as the model parameter vector to be updated sequentially within the EnKF when new measurements are available. We show the successful application of the methodology to two synthetic reservoir models.  相似文献   

2.
We present a methodology that allows conditioning the spatial distribution of geological and petrophysical properties of reservoir model realizations on available production data. The approach is fully consistent with modern concepts depicting natural reservoirs as composite media where the distribution of both lithological units (or facies) and associated attributes are modeled as stochastic processes of space. We represent the uncertain spatial distribution of the facies through a Markov mesh (MM) model, which allows describing complex and detailed facies geometries in a rigorous Bayesian framework. The latter is then embedded within a history matching workflow based on an iterative form of the ensemble Kalman filter (EnKF). We test the proposed methodology by way of a synthetic study characterized by the presence of two distinct facies. We analyze the accuracy and computational efficiency of our algorithm and its ability with respect to the standard EnKF to properly estimate model parameters and assess future reservoir production. We show the feasibility of integrating MM in a data assimilation scheme. Our methodology is conducive to a set of updated model realizations characterized by a realistic spatial distribution of facies and their log permeabilities. Model realizations updated through our proposed algorithm correctly capture the production dynamics.  相似文献   

3.

Data assimilation in reservoir modeling often involves model variables that are multimodal, such as porosity and permeability. Well established data assimilation methods such as ensemble Kalman filter and ensemble smoother approaches, are based on Gaussian assumptions that are not applicable to multimodal random variables. The selection ensemble smoother is introduced as an alternative to traditional ensemble methods. In the proposed method, the prior distribution of the model variables, for example the porosity field, is a selection-Gaussian distribution, which allows modeling of the multimodal behavior of the posterior ensemble. The proposed approach is applied for validation on a two-dimensional synthetic channelized reservoir. In the application, an unknown reservoir model of porosity and permeability is estimated from the measured data. Seismic and production data are assumed to be repeatedly measured in time and the reservoir model is updated every time new data are assimilated. The example shows that the selection ensemble Kalman model improves the characterisation of the bimodality of the model parameters compared to the results of the ensemble smoother.

  相似文献   

4.
In recent years, data assimilation techniques have been applied to an increasingly wider specter of problems. Monte Carlo variants of the Kalman filter, in particular, the ensemble Kalman filter (EnKF), have gained significant popularity. EnKF is used for a wide variety of applications, among them for updating reservoir simulation models. EnKF is a Monte Carlo method, and its reliability depends on the actual size of the sample. In applications, a moderately sized sample (40–100 members) is used for computational convenience. Problems due to the resulting Monte Carlo effects require a more thorough analysis of the EnKF. Earlier we presented a method for the assessment of the error emerging at the EnKF update step (Kovalenko et al., SIAM J Matrix Anal Appl, in press). A particular energy norm of the EnKF error after a single update step was studied. The energy norm used to assess the error is hard to interpret. In this paper, we derive the distribution of the Euclidean norm of the sampling error under the same assumptions as before, namely normality of the forecast distribution and negligibility of the observation error. The distribution depends on the ensemble size, the number and spatial arrangement of the observations, and the prior covariance. The distribution is used to study the error propagation in a single update step on several synthetic examples. The examples illustrate the changes in reliability of the EnKF, when the parameters governing the error distribution vary.  相似文献   

5.
In the past years, many applications of history-matching methods in general and ensemble Kalman filter in particular have been proposed, especially in order to estimate fields that provide uncertainty in the stochastic process defined by the dynamical system of hydrocarbon recovery. Such fields can be permeability fields or porosity fields, but can also fields defined by the rock type (facies fields). The estimation of the boundaries of the geologic facies with ensemble Kalman filter (EnKF) was made, in different papers, with the aid of Gaussian random fields, which were truncated using various schemes and introduced in a history-matching process. In this paper, we estimate, in the frame of the EnKF process, the locations of three facies types that occur into a reservoir domain, with the property that each two could have a contact. The geological simulation model is a form of the general truncated plurigaussian method. The difference with other approaches consists in how the truncation scheme is introduced and in the observation operator of the facies types at the well locations. The projection from the continuous space of the Gaussian fields into the discrete space of the facies fields is realized through in an intermediary space (space with probabilities). This space connects the observation operator of the facies types at the well locations with the geological simulation model. We will test the model using a 2D reservoir which is connected with the EnKF method as a data assimilation technique. We will use different geostatistical properties for the Gaussian fields and different levels of the uncertainty introduced in the model parameters and also in the construction of the Gaussian fields.  相似文献   

6.
The performance of the ensemble Kalman filter (EnKF) for continuous updating of facies location and boundaries in a reservoir model based on production and facies data for a 3D synthetic problem is presented. The occurrence of the different facies types is treated as a random process and the initial distribution was obtained by truncating a bi-Gaussian random field. Because facies data are highly non-Gaussian, re-parameterization was necessary in order to use the EnKF algorithm for data assimilation; two Gaussian random fields are updated in lieu of the static facies parameters. The problem of history matching applied to facies is difficult due to (1) constraints to facies observations at wells are occasionally violated when productions data are assimilated; (2) excessive reduction of variance seems to be a bigger problem with facies than with Gaussian random permeability and porosity fields; and (3) the relationship between facies variables and data is so highly non-linear that the final facies field does not always honor early production data well. Consequently three issues are investigated in this work. Is it possible to iteratively enforce facies constraints when updates due to production data have caused them to be violated? Can localization of adjustments be used for facies to prevent collapse of the variance during the data-assimilation period? Is a forecast from the final state better than a forecast from time zero using the final parameter fields?To investigate these issues, a 3D reservoir simulation model is coupled with the EnKF technique for data assimilation. One approach to enforcing the facies constraint is continuous iteration on all available data, which may lead to inconsistent model states, incorrect weighting of the production data and incorrect adjustment of the state vector. A sequential EnKF where the dynamic and static data are assimilated sequentially is presented and this approach seems to have solved the highlighted problems above. When the ensemble size is small compared to the number of independent data, the localized adjustment of the state vector is a very important technique that may be used to mitigate loss of rank in the ensemble. Implementing a distance-based localization of the facies adjustment appears to mitigate the problem of variance deficiency in the ensembles by ensuring that sufficient variability in the ensemble is maintained throughout the data assimilation period. Finally, when data are assimilated without localization, the prediction results appear to be independent of the starting point. When localization is applied, it is better to predict from the start using the final parameter field rather than continue from the final state.  相似文献   

7.
8.
The ensemble Kalman filter (EnKF) has become a popular method for history matching production and seismic data in petroleum reservoir models. However, it is known that EnKF may fail to give acceptable data matches especially for highly nonlinear problems. In this paper, we introduce a procedure to improve EnKF data matches based on assimilating the same data multiple times with the covariance matrix of the measurement errors multiplied by the number of data assimilations. We prove the equivalence between single and multiple data assimilations for the linear-Gaussian case and present computational evidence that multiple data assimilations can improve EnKF estimates for the nonlinear case. The proposed procedure was tested by assimilating time-lapse seismic data in two synthetic reservoir problems, and the results show significant improvements compared to the standard EnKF. In addition, we review the inversion schemes used in the EnKF analysis and present a rescaling procedure to avoid loss of information during the truncation of small singular values.  相似文献   

9.
Over the last years, the ensemble Kalman filter (EnKF) has become a very popular tool for history matching petroleum reservoirs. EnKF is an alternative to more traditional history matching techniques as it is computationally fast and easy to implement. Instead of seeking one best model estimate, EnKF is a Monte Carlo method that represents the solution with an ensemble of state vectors. Lately, several ensemble-based methods have been proposed to improve upon the solution produced by EnKF. In this paper, we compare EnKF with one of the most recently proposed methods, the adaptive Gaussian mixture filter (AGM), on a 2D synthetic reservoir and the Punq-S3 test case. AGM was introduced to loosen up the requirement of a Gaussian prior distribution as implicitly formulated in EnKF. By combining ideas from particle filters with EnKF, AGM extends the low-rank kernel particle Kalman filter. The simulation study shows that while both methods match the historical data well, AGM is better at preserving the geostatistics of the prior distribution. Further, AGM also produces estimated fields that have a higher empirical correlation with the reference field than the corresponding fields obtained with EnKF.  相似文献   

10.
11.
Reservoir management requires periodic updates of the simulation models using the production data available over time. Traditionally, validation of reservoir models with production data is done using a history matching process. Uncertainties in the data, as well as in the model, lead to a nonunique history matching inverse problem. It has been shown that the ensemble Kalman filter (EnKF) is an adequate method for predicting the dynamics of the reservoir. The EnKF is a sequential Monte-Carlo approach that uses an ensemble of reservoir models. For realistic, large-scale applications, the ensemble size needs to be kept small due to computational inefficiency. Consequently, the error space is not well covered (poor cross-correlation matrix approximations) and the updated parameter field becomes scattered and loses important geological features (for example, the contact between high- and low-permeability values). The prior geological knowledge present in the initial time is not found anymore in the final updated parameter. We propose a new approach to overcome some of the EnKF limitations. This paper shows the specifications and results of the ensemble multiscale filter (EnMSF) for automatic history matching. EnMSF replaces, at each update time, the prior sample covariance with a multiscale tree. The global dependence is preserved via the parent–child relation in the tree (nodes at the adjacent scales). After constructing the tree, the Kalman update is performed. The properties of the EnMSF are presented here with a 2D, two-phase (oil and water) small twin experiment, and the results are compared to the EnKF. The advantages of using EnMSF are localization in space and scale, adaptability to prior information, and efficiency in case many measurements are available. These advantages make the EnMSF a practical tool for many data assimilation problems.  相似文献   

12.
13.
The performance of the Ensemble Kalman Filter method (EnKF) depends on the sample size compared to the dimension of the parameters space. In real applications insufficient sampling may result in spurious correlations which reduce the accuracy of the filter with a strong underestimation of the uncertainty. Covariance localization and inflation are common solutions to these problems. The Ensemble Square Root Filters (ESRF) is also better to estimate uncertainty with respect to the EnKF. In this work we propose a method that limits the consequences of sampling errors by means of a convenient generation of the initial ensemble. This regeneration is based on a Stationary Orthogonal-Base Representation (SOBR) obtained via a singular value decomposition of a stationary covariance matrix estimated from the ensemble. The technique is tested on a 2D single phase reservoir and compared with the other common techniques. The evaluation is based on a reference solution obtained with a very large ensemble (one million members) which remove the spurious correlations. The example gives evidence that the SOBR technique is a valid alternative to reduce the effect of sampling error. In addition, when the SOBR method is applied in combination with the ESRF and inflation, it gives the best performance in terms of uncertainty estimation and oil production forecast.  相似文献   

14.
Improving the Ensemble Estimate of the Kalman Gain by Bootstrap Sampling   总被引:1,自引:1,他引:0  
Using a small ensemble size in the ensemble Kalman filter methodology is efficient for updating numerical reservoir models but can result in poor updates following spurious correlations between observations and model variables. The most common approach for reducing the effect of spurious correlations on model updates is multiplication of the estimated covariance by a tapering function that eliminates all correlations beyond a prespecified distance. Distance-dependent tapering is not always appropriate, however. In this paper, we describe efficient methods for discriminating between the real and the spurious correlations in the Kalman gain matrix by using the bootstrap method to assess the confidence level of each element from the Kalman gain matrix. The new method is tested on a small linear problem, and on a water flooding reservoir history matching problem. For the water flooding example, a small ensemble size of 30 was used to compute the Kalman gain in both the screened EnKF and standard EnKF methods. The new method resulted in significantly smaller root mean squared errors of the estimated model parameters and greater variability in the final updated ensemble.  相似文献   

15.
An iterative ensemble Kalman filter for reservoir engineering applications   总被引:1,自引:0,他引:1  
The study has been focused on examining the usage and the applicability of ensemble Kalman filtering techniques to the history matching procedures. The ensemble Kalman filter (EnKF) is often applied nowadays to solving such a problem. Meanwhile, traditional EnKF requires assumption of the distribution’s normality. Besides, it is based on the linear update of the analysis equations. These facts may cause problems when filter is used in reservoir applications and result in sampling error. The situation becomes more problematic if the a priori information on the reservoir structure is poor and initial guess about the, e.g., permeability field is far from the actual one. The above circumstance explains a reason to perform some further research concerned with analyzing specific modification of the EnKF-based approach, namely, the iterative EnKF (IEnKF) scheme, which allows restarting the procedure with a new initial guess that is closer to the actual solution and, hence, requires less improvement by the algorithm while providing better estimation of the parameters. The paper presents some examples for which the IEnKF algorithm works better than traditional EnKF. The algorithms are compared while estimating the permeability field in relation to the two-phase, two-dimensional fluid flow model.  相似文献   

16.
Ensemble methods present a practical framework for parameter estimation, performance prediction, and uncertainty quantification in subsurface flow and transport modeling. In particular, the ensemble Kalman filter (EnKF) has received significant attention for its promising performance in calibrating heterogeneous subsurface flow models. Since an ensemble of model realizations is used to compute the statistical moments needed to perform the EnKF updates, large ensemble sizes are needed to provide accurate updates and uncertainty assessment. However, for realistic problems that involve large-scale models with computationally demanding flow simulation runs, the EnKF implementation is limited to small-sized ensembles. As a result, spurious numerical correlations can develop and lead to inaccurate EnKF updates, which tend to underestimate or even eliminate the ensemble spread. Ad hoc practical remedies, such as localization, local analysis, and covariance inflation schemes, have been developed and applied to reduce the effect of sampling errors due to small ensemble sizes. In this paper, a fast linear approximate forecast method is proposed as an alternative approach to enable the use of large ensemble sizes in operational settings to obtain more improved sample statistics and EnKF updates. The proposed method first clusters a large number of initial geologic model realizations into a small number of groups. A representative member from each group is used to run a full forward flow simulation. The flow predictions for the remaining realizations in each group are approximated by a linearization around the full simulation results of the representative model (centroid) of the respective cluster. The linearization can be performed using either adjoint-based or ensemble-based gradients. Results from several numerical experiments with two-phase and three-phase flow systems in this paper suggest that the proposed method can be applied to improve the EnKF performance in large-scale problems where the number of full simulation is constrained.  相似文献   

17.
Ensemble Kalman filtering with shrinkage regression techniques   总被引:1,自引:0,他引:1  
The classical ensemble Kalman filter (EnKF) is known to underestimate the prediction uncertainty. This can potentially lead to low forecast precision and an ensemble collapsing into a single realisation. In this paper, we present alternative EnKF updating schemes based on shrinkage methods known from multivariate linear regression. These methods reduce the effects caused by collinear ensemble members and have the same computational properties as the fastest EnKF algorithms previously suggested. In addition, the importance of model selection and validation for prediction purposes is investigated, and a model selection scheme based on cross-validation is introduced. The classical EnKF scheme is compared with the suggested procedures on two-toy examples and one synthetic reservoir case study. Significant improvements are seen, both in terms of forecast precision and prediction uncertainty estimates.  相似文献   

18.
This paper proposes an augmented Lagrangian method for production optimization in which the cost function to be maximized is defined as an augmented Lagrangian function consisting of the net present value (NPV) and all the equality and inequality constraints except the bound constraints. The bound constraints are dealt with using a trust-region gradient projection method. The paper also presents a way to eliminate the need to convert the inequality constraints to equality constraints with slack variables in the augmented Lagrangian function, which greatly reduces the size of the optimization problem when the number of inequality constraints is large. The proposed method is tested in the context of closed-loop reservoir management benchmark problem based on the Brugge reservoir setup by TNO. In the test, we used the ensemble Kalman filter (EnKF) with covariance localization for data assimilation. Production optimization is done on the updated ensemble mean model from EnKF. The production optimization resulted in a substantial increase in the NPV for the expected reservoir life compared to the base case with reactive control.  相似文献   

19.
Reservoir simulation models are used both in the development of new fields and in developed fields where production forecasts are needed for investment decisions. When simulating a reservoir, one must account for the physical and chemical processes taking place in the subsurface. Rock and fluid properties are crucial when describing the flow in porous media. In this paper, the authors are concerned with estimating the permeability field of a reservoir. The problem of estimating model parameters such as permeability is often referred to as a history-matching problem in reservoir engineering. Currently, one of the most widely used methodologies which address the history-matching problem is the ensemble Kalman filter (EnKF). EnKF is a Monte Carlo implementation of the Bayesian update problem. Nevertheless, the EnKF methodology has certain limitations that encourage the search for an alternative method.For this reason, a new approach based on graphical models is proposed and studied. In particular, the graphical model chosen for this purpose is a dynamic non-parametric Bayesian network (NPBN). This is the first attempt to approach a history-matching problem in reservoir simulation using a NPBN-based method. A two-phase, two-dimensional flow model was implemented for a synthetic reservoir simulation exercise, and initial results are shown. The methods’ performances are evaluated and compared. This paper features a completely novel approach to history matching and constitutes only the first part (part I) of a more detailed investigation. For these reasons (novelty and incompleteness), many questions are left open and a number of recommendations are formulated, to be investigated in part II of the same paper.  相似文献   

20.
We present a parallel framework for history matching and uncertainty characterization based on the Kalman filter update equation for the application of reservoir simulation. The main advantages of ensemble-based data assimilation methods are that they can handle large-scale numerical models with a high degree of nonlinearity and large amount of data, making them perfectly suited for coupling with a reservoir simulator. However, the sequential implementation is computationally expensive as the methods require relatively high number of reservoir simulation runs. Therefore, the main focus of this work is to develop a parallel data assimilation framework with minimum changes into the reservoir simulator source code. In this framework, multiple concurrent realizations are computed on several partitions of a parallel machine. These realizations are further subdivided among different processors, and communication is performed at data assimilation times. Although this parallel framework is general and can be used for different ensemble techniques, we discuss the methodology and compare results of two algorithms, the ensemble Kalman filter (EnKF) and the ensemble smoother (ES). Computational results show that the absolute runtime is greatly reduced using a parallel implementation versus a serial one. In particular, a parallel efficiency of about 35 % is obtained for the EnKF, and an efficiency of more than 50 % is obtained for the ES.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号