首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Souss Basin in SW Morocco is filled by Pliocene–Quaternary fluvial, fluvio-lacustrine and aeolian sediments, representing an excellent archive of palaeohydrology, palaeoclimate and the effects of crustal deformation. In general these sediments indicate stream-dominated alluvial systems, influenced by fluctuations in climate (humidity/aridity). Lakes developed within the basin around the Pliocene–Pleistocene transition and persisted into the Early Pleistocene. During this early period, relatively humid conditions are indicated by the dominance of coarse-grained sedimentation in the upper reaches of fluvial systems, the existence of large lakes and the considerable sediment thicknesses in the centre of the basin. Uplift of the surrounding mountain ranges contributed to piedmont formation by providing large amounts of coarse-grained material that accumulated at the lowland margin. Climatic deterioration in the Middle Pleistocene was accompanied by progressively more irregular and disrupted fluvial regimes. These trends were evident in the Late Pleistocene and became clearer after the mid-Holocene, with aeolian activity becoming the dominant sedimentary agent. Differences between upstream and downstream depositional regimes became marked: while coarse-grained sedimentation has characterized the upper reaches of wadi catchments, fine-grained sedimentation has prevailed downstream. Hiatuses in sedimentation throughout the Pliocene and Quaternary are marked by palaeosol horizons interbedded within the sedimentary sequences, indicating alternate vegetated (stable) and unvegetated (unstable/active) phases (biostasy and ‘rhexistasy’).  相似文献   

3.
Late Cenozoic terrestrial deposits are widespread across the northern coastal regions of the Black Sea and the Sea of Azov and represent diverse fluvial, estuarine and deltaic environments. The dating and correlation of these deposits rely on stratigraphically-associated marine index beds, mammalian and molluscan faunas and magnetostratigraphy. In detail the geometries of these sediment bodies are extremely complex, typically varying between localities and representing many cycles of incision and aggradation. However, the overall disposition of the sediments reflects the transition from the uplifting sediment source region to the north and the subsiding depocentre in the interior of the Black Sea to the south. Since the Middle Miocene the area of the Paratethys/Black Sea depocentre has decreased significantly, but since the Middle Pliocene the hinge zone between uplift and subsidence has been located close to the modern coastline. A combination of regional and local differential crustal movements has given rise to the great variety of fluvial sediment bodies, to the erosion–aggradation cycles, different phases and river activity and to the various fluvial landforms that have all been important in landscape development in this region during the past 12 Ma. The fluvial erosion–accumulation cycles (during the upper Serravillian–Messinian, the Zanclean–late Gelasian, and the Pleistocene) and corresponding cycles of relief dissection and planation are reconstructed against a background of local sea-level changes and climatic variations determined from palaeobotanical data. The maximum fluvial incision occurred in the early Zanclean time with alluvial coastal plains, unique in this area, developing in the Gelasian. Increased climatic aridity during the Pleistocene caused a reduction of fluvial activity in comparison with the Late Miocene and Pliocene. The sea-level oscillations and Pleistocene glaciations affected fluvial processes in different ways. The most remarkable events were the substantial reduction of fluvial activity during the Messinian dessication in the Black Sea and drainage of the shelf, with intensive dissection, coeval with the Last Glaciation.  相似文献   

4.
Based on a grid of high resolution, single channel seismic lines, this paper addresses the Late Cenozoic evolution of the western Svalbard continental shelf. The seismic structure of the shelf includes at least 16 erosional unconformities, each representing a glacial advance. The evolution during the last approximately one million years has been divided into six main erosional and depositional phases. Differential margin subsidence around a hinge zone is an important controlling mechanism for the accumulation of the sedimentary wedge at the outer shelf. The most significant depositional change appears to be related to a general climatic shift, globally recorded to be centred around 1 Ma. At this level, corresponding to the Upper Regional Unconformity (URU) on the shelf, the depositional regime changed from net erosion to net deposition and shelf aggradation. Of major significance is probably a shift from thick, eroding glaciers with steep ice profiles, to low profile fast flowing ice streams maintained by an increased amount of interglacial and interstadial sediments. The relationship between climatic fluctuations, glacial dynamics and depositional regime is discussed.  相似文献   

5.
The Meuse river system is located in the northeastern part of the Paris Basin, the Ardennes, and the Roer Valley Rift System (RVRS). The Meuse river system developed during the uplift of the Ardennes since the Eocene and it was affected by renewed rifting of the RVRS starting in the Late Oligocene. In response to the uplift of the Ardennes, the river system incised and a terrace sequence developed during the Plio–Pleistocene. The sediments generated by erosion in the catchment were transported into the RVRS and further to the north, into the Zuiderzee Basin and the North Sea Basin. Using a digital terrain model, the amount of eroded rock volume versus time for the Meuse catchment has been computed using the Paleogene and older planation surfaces and the fluvial terraces. Comparison of the amount of eroded material with the volume of sediment preserved in the RVRS for the early Middle Pleistocene shows that about 17.5% of the sediment volume transported into the RVRS remained there, the rest being transported further into the Zuiderzee Basin and the North Sea Basin. The Quaternary tectonic uplift of the Ardennes inferred from the incision history of the Meuse river system is characterized by a long-term uplift, on which a Middle Pleistocene acceleration is superimposed. The accelerated uplift is contemporaneous with an uplift event in the RVRS and in the neighbouring Eifel area, and with the onset of the youngest phase of volcanism in the Eifel area. The areal distribution of this uplift is characterized by a dome shape centered around the Eifel area.  相似文献   

6.
Towards a 4D topographic view of the Norwegian sea margin   总被引:1,自引:1,他引:0  
The present-day topography/bathymetry of the Norwegian mainland and passive margin is a product of complex interactions between large-scale tectonomagmatic and climatic processes that can be traced back in time to the Late Silurian Caledonian Orogeny. The isostatic balance of the crust and lithosphere was clearly influenced by orogenic thickening during the Caledonian Orogeny, but was soon affected by post-orogenic collapse including overprinting of the mountain root, and was subsequently affected by a number of discrete extensional events eventually leading to continental break-up in Early Eocene time. In the mid-Jurassic the land areas experienced deep erosion in the warm and humid climate, forming a regional paleic surface. Rift episodes in the Late Jurassic and Early Cretaceous, with differential uplift along major fault zones, led to more pronounced topographic contrasts during the Cretaceous, and thick sequences of clastic sediments accumulated in the subsiding basins on the shelf. Following renewed extension in the Late Cretaceous, a new paleic surface developed in the Paleocene. Following break-up the margin has largely subsided thermally, but several Cenozoic shortening events have generated positive contraction structures. On the western side of the on-shore drainage divide, deeper erosion took place along pre-existing weakness zones, creating the template of the present day valleys and fjords. In the Neogene the mainland and large portions of the Barents Sea were uplifted. It appears that this uplift permitted ice caps to nucleate and accumulate during the Late Pliocene northern hemisphere climatic deterioration. The Late Pliocene to Pleistocene glacial erosion caused huge sediment aprons to be shed on to the Norwegian Sea and Barents Sea margins. Upon removal of the ice load the landmass adjusted isostatically, and this still continues today.  相似文献   

7.
Beach and shoreface sediments deposited in the more than 800-km long ice-dammed Lake Komi in northern European Russia have been investigated and dated. The lake flooded the lowland areas between the Barents–Kara Ice Sheet in the north and the continental drainage divide in the south. Shoreline facies have been dated by 18 optical stimulated luminescence (OSL) dates, most of which are closely grouped in the range 80–100 ka, with a mean of 88±3 ka. This implies that that the Barents–Kara Ice Sheet had its Late Pleistocene maximum extension during the Early Weichselian, probably in the cold interval (Rederstall) between the Brørup and Odderade interstadials of western Europe, correlated with marine isotope stage 5b. This is in strong contrast to the Scandinavian and North American ice sheets, which had their maxima in isotope stage 2, about 20 ka. Field and air photo interpretations suggest that Lake Komi was dammed by the ice advance, which formed the Harbei–Harmon–Sopkay Moraines. These has earlier been correlated with the Markhida moraine across the Pechora River Valley and its western extension. However, OSL dates on fluvial sediments below the Markhida moraine have yielded ages as young as 60 ka. This suggests that the Russian mainland was inundated by two major ice sheet advances from the Barents–Kara seas after the last interglacial: one during the Early Weichselian (about 90 ka) that dammed Lake Komi and one during the Middle Weichselian (about 60 ka). Normal fluvial drainage prevailed during the Late Weichselian, when the ice front was located offshore.  相似文献   

8.
A Late Noachian-aged alluvial fan complex within Harris Crater in far western Terra Tyrrhena, Mars, is comprised of two well-defined source regions and associated discrete depositional lobes. Three fan units were recognized based on common morphological characteristics, thermal properties and spectral signatures. Although the entire fan complex has been subjected to extensive erosional degradation, the preserved morphologies record episodic fan formation and indicate the type of flow processes that occurred; the bulk of the fan surface has morphology consistent with fluvial emplacement while one fan unit exhibits a rugged surface texture with boulders consistent with a debris flow. This transition from fluvial to late-stage debris flow(s) suggests a decline in available water and/or change in sediment supply. The thermal inertia values obtained for all three fan surface units (mean values ranged from 318 to 344 J m−2 K−1 s−1/2) are typical for coarse-grained and/or well-indurated materials on Mars, but subtle variations point to important distinctions. Variations in aeolian bedform coverage as well as the density of ridges (inferred inverted channels) and boulders contribute to these subtle fan thermophysical differences and likely reflect changes in the fan depositional mechanisms and variations in post-depositional modification histories. The majority of the alluvial fan surface has a spectral signature that is broadly similar to TES “Surface Type 2” (ST2), with some important exceptions at long wavelengths. However, a unique spectral component was identified in one of the fan units (unit 3), that likely reflects lithological differences from other fan materials. This spectral attribute of unit 3 matched locations within the western catchment providing confirmation of provenance and supporting the contention that sediment supply changed over time as the fan developed. Finally, we applied simple modeling to a well preserved subsection of the fan complex to quantify the developmental history. Using the computed eastern fan volume (32 km3), significant water, likely from precipitation, was involved in fan construction (>50 km3) and an extensive period of fan formation occurred over millennia or longer.  相似文献   

9.
The Pyoza River area in the Arkhangelsk district exposes sedimentary sequences suitable for study of the interaction between consecutive Valdaian ice sheets in Northern Russia. Lithostratigraphic investigations combined with luminescence dating have revealed new evidence on the Late Pleistocene history of the area. Overlying glacigenic deposits of the Moscowian (Saalian) glaciation marine deposits previously confined to three separate transgression phases have all been connected to the Mikulinian (Eemian) interglacial. Early Valdaian (E. Weichselian) proglacial, lacustrine and fluvial deposits indicate glaciation to the east or north and consequently glacier damming and meltwater run-off in the Pyoza area around 90–110 ka BP. Interstadial conditions with forest-steppe tundra vegetation and lacustrine and fluvial deposition prevailed at the end of the Early Valdaian around 75–95 ka BP. A terrestrial-based glaciation from easterly uplands reached the Pyoza area at the Early to Middle Valdaian transition around 65–75 ka BP and deposited glaciofluvial strata and subglacial till (Yolkino Till). During deglaciation, laterally extensive glaciolacustrine sediments were deposited in ice-dammed lakes in the early Middle Valdaian around 55–75 ka BP. The Barents–Kara Sea ice sheet deposited the Viryuga Till on the lower Pyoza from northerly directions. The ice sheet formed the Pyoza marginal moraines, which can be correlated with the Markhida moraines further east, and proglacial lacustrine deposition persisted in the area during the first part of the Middle Valdaian. Glacio-isostatic uplift caused erosion followed by pedogenesis and the formation of a deflation horizon in the Middle Valdaian. Widely dispersed periglacial river plains were formed during the Late Valdaian around 10–20 ka BP. Thus, the evidence of a terrestrial-based ice sheet from easterly uplands in the Pyoza area suggests that local piedmont glaciers situated in highlands such as the Timan Ridge or the Urals could have developed into larger, regionally confined ice sheets. Two phases of ice damming and development of proglacial lakes occurred during the Early and Middle Valdaian. The region did not experience glaciation during the Late Valdaian.  相似文献   

10.
The 174 km diameter Terby impact crater (28.0°S-74.1°E) located on the northern rim of the Hellas basin displays anomalous inner morphology, including a flat floor and light-toned layered deposits. An analysis of these deposits was performed using multiple datasets from Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter missions, with visible images for interpretation, near-infrared data for mineralogical mapping, and topography for geometry. The geometry of layered deposits was consistent with that of sediments that settled mainly in a sub-aqueous environment, during the Noachian period as determined by crater counts. To the north, the thickest sediments displayed sequences for fan deltas, as identified by 100 m to 1 km long clinoforms, as defined by horizontal beds passing to foreset beds dipping by 6-10° toward the center of the Terby crater. The identification of distinct sub-aqueous fan sequences, separated by unconformities and local wedges, showed the accumulation of sediments from prograding/onlapping depositional sequences, due to lake level and sediment supply variations. The mineralogy of several layers with hydrated minerals, including Fe/Mg phyllosilicates, supports this type of sedimentary environment. The volume of fan sediments was estimated as >5000 km3 (a large amount considering classical martian fan deltas such as Eberswalde (6 km3)) and requires sustained liquid water activity. Such a large sedimentary deposition in Terby crater is characteristic of the Noachian/Phyllosian period during which the environment favored the formation of phyllosilicates. The latter were detected by spectral data in the layered deposits of Terby crater in three distinct layer sequences. During the Hesperian period, the sediments experienced strong erosion, possibly enhanced by more acidic conditions, forming the current morphology with three mesas and closed depressions. Small fluvial valleys and alluvial fans formed subsequently, attesting to late fluvial processes dated as late Early to early Late Hesperian. After this late fluvial episode, the Terby impact crater was submitted to aeolian processes and permanent cold conditions with viscous flow features. Therefore, the Terby crater displays, in a single location, geologic features that characterize the three main periods of time on Mars, with the presence of one of the thickest sub-aqueous fan deposits reported on Mars. The filling of Terby impact crater is thus one potential “reference geologic cross-section” for Mars stratigraphy.  相似文献   

11.
The western Barents Sea continental margin, between 74° and 77°N, comprises 7–8 km post-Paleocene sediments. The margin sediments have been divided into four seismic sequences dated by seismic correlation to adjacent areas. This chronostratigraphy shows that the uppermost three sequences are of glacial origin, deposited during the last 2.3 m.y. A huge sedimentary wedge, the Storfjorden Fan, was deposited in front of the Storfjorden Trough between 2.3 and 0.44 Ma, whereas during the last 0.44 m.y. a more evenly distribution pattern is observed. The outbuilding of the fan is related to the onset of the northern hemisphere glaciations causing intense glacial erosion of predominantly consolidated rocks. Seismic facies interpretations indicates that the fan outbuilding was connected to large-scale mass movements. Within the uppermost part of the glacial sequence parallel and continuous reflectors and locally disturbed pattern on the upper slope are associated with downslope change in facies. Volumetric calculations, based on velocity studies and isopach maps, have been used to quantify Cenozoic erosion, sediment yield, sedimentation and erosion rates. Approximately 3300 m of post-Paleocene erosion is calculated within the drainage area of the Storfjorden Fan, of which about 1700 m was eroded in late Pliocene-Pleistocene times giving an average denudation rate of 0.63 mm/yr.  相似文献   

12.
We report the first occurrence of moldavites in Poland. This discovery confirms the hypothesis that moldavites could have been distributed up to 500 km from the Ries crater in Germany. The tektites were reworked from Middle Miocene sediments and redeposited in Late Miocene (Pannonian) fluvial deposits of the Gozdnicka Formation in Lower Silesia. The Polish moldavites are represented by nine (<8 mm) fragments with a total of 0.471 g. The lack of the autochthonous tektites indicates that tektites investigated here had to be redeposited in a fluvial environment, probably from the Lusatian area. The chemical composition of the Polish moldavites plots in the same area with those from other localities.  相似文献   

13.
Seven regionally correlatable reflectors, named R7 (oldest) to R1, have been identified in the Upper Cenozoic sedimentary succession along the western continental margin of Svalbard and the Barents Sea. Regional seismic profiles have been used to correlate between submarine fans that comprise major depocentres in this region. Glacial sediment thicknesses reach up to 3 seconds two-way time, corresponding to 3.5–4 km. Despite limited chronostratigraphic control, ages have been assigned to the major sequence boundaries based on ties both to exploration wells and to shallow boreholes, and by paleoenvironmental interpretations and correlations with other regions. Lateral and vertical variations in seismic facies, between stratified and chaotic with slump structures, have major implications for the interpretation of the depositional regime along the margin. The main phases of erosion and deposition at different segments of the margin are discussed in the paper, which also provides a regional seismic stratigraphic framework for two complementary papers in the present volume. Reflector R7 marks the onset of extensive continental shelf glaciations, but whereas the outer Svalbard shelf has been heavily and frequently glaciated since R7 time, this did not occur, or occurred to a much less extent, until R5 time in the southern Barents Sea. The present study provides the background for a quantification of the late Cenozoic glacial erosion of Svalbard and the Barents Sea. The rates of erosion and deposition exhibit large temporal and spatial variations reflecting the importance of glacial processes in the Late Cenozoic development of this nearly 1000 km long margin.  相似文献   

14.
Paleoceanographic changes since the Late Weichselian have been studied in three sediment cores raised from shelf depressions along a north–south transect across the central Barents Sea. AMS radiocarbon dating offers a resolution of several hundred years for the Holocene. The results of lithological and micropaleontological study reveal the response of the Barents Sea to global climatic changes and Atlantic water inflow. Four evolutionary stages were distinguished. The older sediments are moraine deposits. The destruction of the Barents Sea ice sheet during the beginning of the deglaciation in response to climate warming and sea level rise resulted in proximal glaciomarine sedimentation. Then, the retreat of the glacier front to archipelagoes during the main phase of deglaciation caused meltwater discharge and restricted iceberg calving. Fine-grained distal glaciomarine sediments were deposited from periodic near-bottom nepheloid flows and the area was almost permanently covered with sea ice. The dramatic change in paleoenvironment occurred near the Pleistocene/Holocene boundary when normal marine conditions ultimately established resulting in a sharp increase of biological productivity. This event was diachronous and started prior to 10 14C ka BP in the southern and about 9.2 14C ka in the northern Barents Sea. Variations in sediment supply, paleoproductivity, sea-ice conditions, and Atlantic water inflow controlled paleoenvironmental changes during the Holocene.  相似文献   

15.
Rapidly-flowing sectors of an ice sheet (ice streams) can play an important role in abrupt climate change through the delivery of icebergs and meltwater and the subsequent disruption of ocean thermohaline circulation (e.g., the North Atlantic's Heinrich events). Recently, several cores have been raised from the Arctic Ocean which document the existence of massive ice export events during the Late Pleistocene and whose provenance has been linked to source regions in the Canadian Arctic Archipelago. In this paper, satellite imagery is used to map glacial geomorphology in the vicinity of Victoria Island, Banks Island and Prince of Wales Island (Canadian Arctic) in order to reconstruct ice flow patterns in the highly complex glacial landscape. A total of 88 discrete flow-sets are mapped and of these, 13 exhibit the characteristic geomorphology of palaeo-ice streams (i.e., parallel patterns of large, highly elongated mega-scale glacial lineations forming a convergent flow pattern with abrupt lateral margins). Previous studies by other workers and cross-cutting relationships indicate that the majority of these ice streams are relatively young and operated during or immediately prior to deglaciation. Our new mapping, however, documents a large (> 700 km long; 110 km wide) and relatively old ice stream imprint centred in M'Clintock Channel and converging into Viscount Melville Sound. A trough mouth fan located on the continental shelf suggests that it extended along M'Clure Strait and was grounded at the shelf edge. The location of the M'Clure Strait Ice Stream exactly matches the source area of 4 (possibly 5) major ice export events recorded in core PS1230 raised from Fram Strait, the major ice exit for the Arctic Ocean. These ice export events occur at 12.9, 15.6, 22 and 29.8 ka (14C yr BP) and we argue that they record vigorous episodes of activity of the M'Clure Strait Ice Stream. The timing of these events is remarkably similar to the North Atlantic's Heinrich events and we take this as evidence that the M'Clure Strait Ice Stream was also activated around the same time. This may hold important implications for the cause of the North Atlantic's Heinrich events and hints at the possibility of a pan-ice sheet response.  相似文献   

16.
Climate change during the Last Glacial is considered as a major forcing factor of fluvial system changes. A continuous succession of fluvial sediments, reflecting adaptations to climate change from the Weichselian Middle Pleniglacial (oxygen isotope stage 3) onwards, occurs in lowland river basins in the Netherlands.A comparison of the Pleniglacial and Late Glacial fluvial record in the Netherlands shows that climatic oscillations of similar magnitude did not produce changes in the fluvial sedimentary system of equal magnitude. The Late Glacial fluvial system proves to be highly sensitive to climate change. By contrast, many of the rapid climate changes that have occurred during oxygen isotope stage 3, according to the Greenland ice core record, are not detectable in the fluvial sediments. This can be explained by differences in the impact of the climate variations on drainage basin vegetation. During the Late Glacial, the tree line repeatedly shifted through the Netherlands, whereas the area remained within the tundra zone during the Middle Pleniglacial. Precipitation variations and permafrost aggradation and degradation have played a secondary role.The Weichselian fluvial succession in the Netherlands demonstrates that detection of a change in the fluvial sedimentary system and relating this change to climate change is subject to methodological limitations. The climatic significance of changes in the fluvial record should be carefully evaluated, as well as their chronology. The possibility that climate did not influence the fluvial system should always be considered as a null hypothesis in studies on fluvial successions.  相似文献   

17.
The Jameson Land basin in East Greenland comprises a well exposed succession of Upper Paleozoic–Mesozoic sediments. During Middle Devonian–Early Permian rifting, 13 km of continental clastics were deposited. In latest Paleozoic to Mesozoic times, 4 km of sediments accumulated during regional subsidence. In the Early Paleocene, during North Atlantic break-up, the basin was covered by a thick volcanic pile. Subsequently, uplift and erosion took place over the whole region. The volcanic cover was completely removed from Jameson Land and erosion cut deeply into the underlying sediments. To assess the exploration potential of Jameson Land, a basin modelling study with 21 1D pseudo-wells was carried out based on all seismic and surface data available. In addition to the calculation of hydrocarbon generation in space and time, the basin modelling provided an opportunity to study the magnitude and timing of uplift and erosion. Basin modelling constrained by apatite fission track data has made it possible to determine a consistent uplift and erosion history of the area. Tectonic backstripping based on a simple Airy type isostatic model has been used to separate the tectonic uplift from the actual uplift. The combined basin modelling and backstripping study has led to the following conclusions: (1) the thickness of the Cretaceous succession varied from 1.3 km in the south to 0.3 km in the north; (2) the volcanic rocks formed a wedge with a thickness of >2 km in the south thinning to <0.1 km in the north; (3) the subsequent erosion of 2–3 km is in response to tectonic uplift with a magnitude of 1 km, and the calculated tectonic uplift shows increasing values to the north. The erosion rate generally accelerated from Late Paleocene up to the present time.  相似文献   

18.
We reassessed two drill cores of the Bunte Breccia deposits of the Ries crater, Germany. The objectives of our study were the documentation of evidence for water in the Bunte Breccia, the evaluation of how that water influenced the emplacement processes, and from which preimpact water reservoir it was derived. The Bunte Breccia in both cores can be structured into a basal layer composed mainly of local substrate material, overlain by texturally and compositionally diverse, crater‐derived breccia units. The basal layer is composed of the youngest sediments (Tertiary clays and Upper Jurassic limestone) and has a razor‐sharp boundary to the upper breccia units, which are composed of older rocks of Upper Jurassic to Upper Triassic age. Sparse material exchange occurred between the basal layer and the rest of the Bunte Breccia. Fluids predominantly came from the Tertiary and the Upper Triassic sandstone formation. In the basal layer, Tertiary clays were subjected to intense, ductile deformation, indicating saturation with water. This suggests that water was mixed into the matrix, creating a fluidized basal layer with a strong shear localization. In the upper units, Upper Triassic sandstones are intensely deformed by granular flow. The texture requires that the rocks were disaggregated into granular sand. Vaporization of pore water probably aided fragmentation of these rocks. In the Otting core, hot suevite (T > 600 °C) covered the Bunte Breccia shortly after its emplacement. Vertically oriented gas escape pipes in suevite partly emanate directly at the contact to the Bunte Breccia. They indicate that the Bunte Breccia contained a substantial amount of water in the upper part that was vaporized and escaped through these vents.  相似文献   

19.
A complex history of Cenozoic vertical movements in the Faroe region has been revealed from interpretation of geophysical and geological data, mainly offshore reflection seismic data, side-scan images, shallow cores, and onshore mapping. The history comprises several phases of tectonic disturbances observed at different scales. On the eastern margin of the Faroe Platform a late Eocene–early Oligocene phase of doming of the Faroe Platform has caused a postdepositional tilting of Eocene strata along the southern margin of the platform; a mid-Miocene phase of compressional tectonics is evidenced on seismic transects as gentle anticlines and associated reverse faults; and possible Pliocene uplift of the Faroe Islands is indicated by a progradational wedge of sediments deposited on the eastern Faroe Platform. At the continental margin/slope north of the Faroe Platform, reflection seismic data imaging the postbasalt sedimentary strata indicate three distinct tectonic events phases in the Eocene–Oligocene, Miocene and Pliocene, respectively. In contrast to the Faroe Platform the Faroe–Shetland Channel was characterised by more or less continuous subsidence dominated throughout the Cenozoic. During the Eocene, sediments deposited in the Faroe–Shetland Channel was mostly derived from a source area on the British shelf.  相似文献   

20.
Abstract— The 45-km diameter Montagnais impact structure, Nova Scotia, Canada, is characterized by a positive, circular 8 mGal gravity anomaly associated with its central uplift. The negative gravity anomaly, which is expected for a complex crater of this size, is not observed within the structure, and magnetic data lack any well-defined, crater-related signature. The absence of a negative gravity anomaly implies that no low-density zone generally related to fracturing and brecciation exists. Since Montagnais appears well preserved, this zone has not been removed by erosion. Its formation may have been impeded due to the lack of competency in the target rocks. The crater was formed in a shallow marine environment where the lack of strength in the unconsolidated sediments may have prevented the preservation of voids and fractures that cause a negative gravity anomaly as observed over other impact craters. Additionally, the efficient absorption of impact energy by unconsolidated target material may have inhibited fracture/void development. Although the gravity signature of impact craters formed on land is well known, structures occurring in unconsolidated target material, such as continental shelf environments, constitute another signature that should also be recognized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号