首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The top-of-atmosphere reflectance measurements by advanced along-track scanning radiometer (AATSR), medium-resolution imaging spectrometer (MERIS), and scanning imaging absorption spectrometer for atmospheric chartography (SCIAMACHY) onboard ENVISAT have been compared for collocated scenes. The AATSR and MERIS observations were averaged to the scale of a SCIAMACHY ground scene (30 km times 60 km). The SCIAMACHY reflectances were averaged to account for much coarser spectral resolution of AATSR and MERIS observations. It was found that SCIAMACHY reflectances coincide with those of MERIS within 4% MERIS calibration error. This is also the case for AATSR reflectances, except at the wavelength of 0.865 mum, where SCIAMACHY gives, on average, 6% lower reflectances as compared to those of AATSR. They are 3% too low as compared to MERIS observations at this wavelength.  相似文献   

2.
A comparison of MODIS, NCEP, and TMI sea surface temperature datasets   总被引:1,自引:0,他引:1  
The monthly average sea surface temperature (SST) datasets of MODIS (Moderate Resolution Imaging Spectroradiometer), NCEP (National Center for Environmental Prediction) and TMI (Tropical Rainfall Measuring Mission (TRMM) Microwave Imager) are compared for the period March 2000 to June 2003. Large discrepancies (0.5 K->1 K) are found over extensive areas: the tropical Atlantic, tropical western Pacific, Bay of Bengal, Arabian Sea and the storm tracks. Many of these discrepancies are related to the biases inherent in the infrared and microwave retrieval methods. Probable causes for these biases include cirrus contamination, insufficient corrections for water vapor absorption and aerosol attenuation in infrared retrieval as well as uncertainty in surface emissivity in microwave retrieval. The SST difference patterns bear close resemblance to the patterns of distribution of aerosols, cirrus, atmospheric water vapor and surface wind speed at certain regions. Correlations between SST difference and aerosol optical depth, column water vapor and surface wind speed in some areas are high (>0.75). These biases have to be adjusted in order for the SST datasets to be more useful for climate studies.  相似文献   

3.
An advanced along-track scanning radiometer (AATSR) global multi-year aerosol retrieval algorithm is described. Over land, the AATSR dual-view (ADV) algorithm utilizes the measured top of the atmosphere (TOA) reflectance in both the nadir and forward views to decouple the contributions of the atmosphere and the surface to retrieve aerosol properties. Over ocean, the AATSR single-view (ASV) algorithm minimizes the discrepancy between the measured and modelled TOA reflectances in one of the views to retrieve the aerosol information using an ocean reflectance model. Necessary steps to process global, multi-year aerosol information are presented. These include cloud screening, the averaging of measured reflectance, and post-processing. Limitations of the algorithms are also discussed. The main product of the aerosol retrieval is the aerosol optical depth (AOD) at visible/near-infrared wavelengths. The retrieved AOD is validated using data from the surface-based AERONET and maritime aerosol network (MAN) sun photometer networks as references. The validation shows good agreement with the reference (r?=?0.85, RMSE?=?0.09 over land; r?=?0.83, RMSE?=?0.09 at coasts and r?=?0.96, RMSE?=?0.06 over open ocean). The results of the aerosol retrievals are presented for the full AATSR mission years 2002–2012 with seasonally averaged time series for selected regions.  相似文献   

4.
Detection of Mesoscale Eddy-Related Structures Through Iso-SST Patterns   总被引:1,自引:0,他引:1  
This letter, addressed to the analysis of remote sensing (RS) images of the sea-surface temperature (SST) off the Portugal coast, presents a novel approach to automatically detect and characterize mesoscale eddy-related structures. The complexity of this task is due to the dynamics of the investigated region, where upwelling currents and bathymetry effects produce countless and highly heterogeneous SST patterns, features of interest may have smooth boundaries, and edges associated to strong temperature gradients may not correspond to any eddy. All these limit the effectiveness of an image processing based on edge features (which can be successfully applied to automatically detect eddies in other oceanographic areas, for instance, close to the Gulf Stream). The proposed scheme exploits the iso-SST patterns associated to the eddy-related structure to code with a rule-based definition the process that allows for their visual identification. In practice, this enables revealing various morphological parameters of the eddy-related structure (i.e., the location, scale, symmetry, and rotation) and supports the exploitation of SST data allowing for annotating the RS image and benchmarking the subjectivity of the visual survey.  相似文献   

5.
针对均值漂移模式的几种粗差定位与定值方法,在显著水平和检验功效下,推出最小可探测偏差(minimal detectable bias,MDB)的计算公式。通过数值分析比较,得出观测值独立等精度时,几种方法的MDB的计算结果相同;独立不等精度时,数据探测法、拟准检定法和部分最小二乘法的MDB结果相同,而多维粗差同时定位与定值法略大于其他方法;相关观测情形下,拟准检定法和部分最小二乘法的MDB结果相同,数据探测法的MDB结果最小,多维粗差的同时定位和定值法的MDB结果最大。  相似文献   

6.
7.
Sea surface temperature (SST) retrieved from Advanced Very High Resolution Radiometer (AVHRR) onboard National Oceanic and Atmospheric Administration (NOAA) polar orbiting environmental satellites were validated in the East/Japan Sea (EJS) using surface drifter measurements as ground truths from 2005 to 2010. Overall, the root-mean-square (rms) errors of multichannel SSTs (MCSSTs) and non-linear SSTs (NLSSTs) using global SST coefficients were approximately 0.85°C and 0.80°C, respectively. An analysis of the SST errors (satellite – drifter) revealed a dependence on the amount of atmospheric moisture. In addition, satellite-derived SSTs tended to be related to wind speeds, particularly during the night. The SST errors also demonstrated diurnal variations with relatively higher rms from 0.80°C to 1.00°C during the night than the day, with a small rms of about 0.50°C. Bias also exhibited reasonable diurnal differences, showing small biases during the daytime. Although a satellite zenith angle has been considered in the global SST coefficients, its effect on the SST errors still remained in case of the EJS. Given the diverse use of SST data, the continuous validation and understanding of the characteristic errors of satellite SSTs should be conducted based on extensive in-situ temperature measurements in the global ocean as well as local seas.  相似文献   

8.
乔晶  陈武 《测绘学报》2016,45(Z2):116-131
卫星自主定轨是提高全球卫星导航系统(GNSS)可靠性、稳健性、完整性和生存能力的重要保证。新一代的北斗卫星已可以进行星间链路测距,从而达到提高卫星全球跟踪能力以及实现整个卫星导航系统的自主定轨。然而由于卫星运行会受到多种摄动力的影响,如果不能对这些摄动力进行精密的改正,在没有地面或其他天体提供绝对约束的条件下,导航系统会随着自主定轨时间的延长出现星座整体旋转。卫星所受摄动力分为保守力和非保守力两部分:对于保守力,如地球非球形摄动、潮汐摄动、太阳月球和其他三体引力,现在已有的力学模型可以很精确地进行改正;而非保守力(如太阳光压摄动),则难以用精确的模型进行改正,因此成为影响卫星定轨精度的主要因素。星载加速度计可以高精度地测量非保守力,并已成功应用于重力卫星(CHAMP、GRACE、GOCE)的重力场反演与大气研究中。本文研究主要探讨采用星上加速度计提高北斗卫星自主定轨精度和延长自主定轨时长的可行性。利用模拟的卫星轨道和星间链路数据,以及现有的星载加速度计误差模型,对北斗卫星系统分别使用星间链路数据和星间链路与加速度计组合数据,进行自主定轨与精度评定。计算结果表明,使用星间链路与星载加速度计数据进行自主定轨,较单纯使用星间链路数据精度具有明显改进。在模拟的星间测距观测数据具有0.33m随机噪声以及分米级系统误差,自主定轨两个月的情况下,联合使用加速度计数据的自主定轨IGSO和MEO卫星精度为分米级,而仅使用星间链路数据的定轨精度约为3~6m,比使用加速度计精度低一个量级。  相似文献   

9.
精密单点定位的可靠性研究   总被引:3,自引:0,他引:3  
从传统最小二乘的可靠性理论出发,推导了卡尔曼滤波观测方程和预计状态向量的可靠性理论,并与传统多余观测分量的可靠性进行比较。结果表明,两种方案的观测方程的内部可靠性不仅与观测值的精度有关,还与卫星几何结构和卫星高度角有关。卡尔曼滤波的预计状态向量的内部可靠性比观测方程的内部可靠性更易受卫星几何结构的影响。虽然两种方案的外部可靠性在收敛之后都在mm级,但伪距的收敛速度要快于载波相位。  相似文献   

10.
This letter investigates the synergy between the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) and the Advanced Along Track Scanning Radiometer (AATSR) onboard the ENVISAT platform for reflectance calibration purposes. This calibration study was mainly performed over a portion of a hurricane corresponding to fully cloudy SCIAMACHY and AATSR pixels. Results show that SCIAMACHY underestimates the top-of-atmosphere (TOA) reflectance by up to 23% (at 870 nm) as compared to AATSR for a nadir viewing geometry. Specifically, considering AATSR calibration as accurate, which is confirmed by comparison with the Medium Resolution Imaging Spectrometer, the SCIAMACHY TOA reflectances should be multiplied by 1.21, 1.19, 1.23, and 1.10 for wavelengths at 550, 670, 870, and 1600 nm, respectively, ahead of satellite retrieval schemes based on the measurements of TOA reflectance  相似文献   

11.
Global cloud-top height statistics of marine-boundary-layer clouds are derived from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Level 2 aerosol and cloud layer products. The boundary-layer lapse rate in the northeast region of the Pacific Ocean is investigated using sea surface temperature (SST) data from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E), cloud-top temperature data from the Moderate Resolution Imaging Spectroradiometer (MODIS), and cloud-top height data from CALIPSO. Based on the lapse rate derived from the combined CALIPSO/MODIS/AMSR-E measurements, cloud-top heights in regions within CALIPSO tracks are derived from AMSR SST and MODIS cloud temperature to test the validity of this approach. For homogeneous low-level clouds, the results agree with the cloud-top height from the collocated CALIPSO cloud-top height measurements. These results suggest that the database of derived lapse rates from the combined measurements can be applied to study cloud-top height climate statistics using the MODIS and AMSR data when CALIPSO observations are not available.   相似文献   

12.
Comparison of present SST gravity field models   总被引:2,自引:1,他引:1  
IntroductionSince 2000 , with the launch of CHAMP satellite,several series of high-accuracy and high-resolutionstatic Earth’s gravityfield models have been createdbased on aboundent SST data. With these models ,the research in solid geophysics ,oceangraphy,andgeodesy can be promoted greatly[1].In this paper ,the SSTgravity models’accura-cyin various frequently domainis studied.First-ly,the difference among these models is compu-ted and compared,and then their accuracyis an-alyzed. Fina…  相似文献   

13.
全球导航卫星系统多系统融合定位是未来无人驾驶等智能应用的关键基础设施,无人驾驶等智能应用经常需要面对城市等复杂环境,由于受到建筑物的遮挡与多路径的影响,观测值出现误差的概率也在不断增加,因此分析多系统融合定位可靠性并进行粗差的探测识别,确保定位结果准确可靠具有重要意义。基于可靠性理论与假设检验粗差探测方法,采用MGEX(multi-GNSS experiment)测站数据进行可靠性评估与粗差探测实验。实验结果表明,BDS(BeiDou navigation satellite system)/GPS(global positioning system)组合下,双频IF(ionospheric-free)组合定位解算的最小可探测粗差与最大不可探测粗差对定位的影响值较单BDS解算分别下降了7.105 m、22.368 m,双系统较单系统可靠性提升明显。BDS/GPS组合下,双频IF组合定位解算的最小可探测粗差与最大不可探测粗差对定位的影响向量较单频解算结果下降了4.105 m、1.621 m,双频数据较单频数据的可靠性更优。基于可靠性评估结果开展了模拟粗差探测实验,结果表明,双频观测值包含...  相似文献   

14.
Use of GPS tracking data from different dual-frequency receiver types (cross-correlating vs. codeless) has revealed satellite-dependent biases in pseudorange observables P1 (Y-code) and C1 (C/A, Clear Acquisition code). These biases can have a direct effect on clock estimates, carrier phase bias fixing, and other parameters estimated in GPS data processing. A set of satellite-specific compensatory pseudorange offsets is calculated, and each is applied to a wee of daily global network analyses in which satlellite, receiver, atmospheric, and Earth rotation parameters are estimated. Results from these analyses are then compared to those from corresponding baseline cases in which no biases were applied. There is also some evidence that suggests that the pseudorange biases differ even among codeless receiver models. Hence, a second set of offsets is computed on a different basis, and compared with the baseline model in a similar manner. A preliminary examination of C1-P1 variations over time is presented. Finally, recommendations are made for the use of the calculated offsets, and consideration is given to a future dissemination of updates to these values as necessary. ? 2001 John Wiley & Sons, Inc.  相似文献   

15.
2013年,中国发射了首颗进行全球导航卫星系统(global navigation satellite system,GNSS)无线电掩星观测的气象卫星FY-3C,其掩星数据产品已由国家卫星气象中心(national satellite meteorological center,NSMC)发布.基于FY-3C附加相位...  相似文献   

16.
A new technique to identify mixed-phase clouds but also clouds with supercooled water droplets using satellite measurements is proposed. The technique is based on measurements of the backscattered solar light at wavelengths 1.55 and 1.67 /spl mu/m in combination with cloud brightness temperature measurements at 12 /spl mu/m. For the first time, the concept of the phase index-temperature correlation plot (the P-T diagram) is introduced in the cloud remote sensing. Retrievals of cloud temperature and cloud phase index are performed using data from the Advanced Along Track Scanning Radiometer (AATSR) and Scaning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) both onboard the Envisat platform.  相似文献   

17.
Taking the main land of Europe as the region to be studied, the potential of the new satellite gravity technique: satellite-to-satellite tracking (SST) and improving the accuracy of regional gravity field model with the SST models are investigated. The drawbacks of these models are discussed. With GPM98C as the reference, the gravity anomaly residuals of several other models, the latest SST global gravity field models (EIGEN series and GGM series), were computed and compared. The results of the comparison show that in the selected region, some systematic errors with periodical properties exist in the EIGEN and GGM's S series models in the high degree and order. Some information that was not shown in the classic gravity models is detected in the low and middle degree and order of EIGEN and GGM's S series models. At last, the effective maximum degrees and orders of SST models are suggested.  相似文献   

18.
The determination of local geoid models has traditionally been carried out on land and at sea using gravity anomaly and satellite altimetry data, while it will be aided by the data expected from satellite missions such as those from the Gravity field and steady-state ocean circulation explorer (GOCE). To assess the performance of heterogeneous data combination to local geoid determination, simulated data for the central Mediterranean Sea are analyzed. These data include marine and land gravity anomalies, altimetric sea surface heights, and GOCE observations processed with the space-wise approach. A spectral analysis of the aforementioned data shows their complementary character. GOCE data cover long wavelengths and account for the lack of such information from gravity anomalies. This is exploited for the estimation of local covariance function models, where it is seen that models computed with GOCE data and gravity anomaly empirical covariance functions perform better than models computed without GOCE data. The geoid is estimated by different data combinations and the results show that GOCE data improve the solutions for areas covered poorly with other data types, while also accounting for any long wavelength errors of the adopted reference model that exist even when the ground gravity data are dense. At sea, the altimetric data provide the dominant geoid information. However, the geoid accuracy is sensitive to orbit calibration errors and unmodeled sea surface topography (SST) effects. If such effects are present, the combination of GOCE and gravity anomaly data can improve the geoid accuracy. The present work also presents results from simulations for the recovery of the stationary SST, which show that the combination of geoid heights obtained from a spherical harmonic geopotential model derived from GOCE with satellite altimetry data can provide SST models with some centimeters of error. However, combining data from GOCE with gravity anomalies in a collocation approach can result in the estimation of a higher resolution geoid, more suitable for high resolution mean dynamic SST modeling. Such simulations can be performed toward the development and evaluation of SST recovery methods.  相似文献   

19.
FY-3C微波成像仪海面温度产品算法及精度检验   总被引:2,自引:2,他引:0  
海洋表面温度(SST)是海洋学和气候学一个十分重要的物理因子,而卫星被动微波遥感能够穿透云层,实现全天候、大范围观测,因此利用中国FY-3C微波成像仪(MWRI)反演SST具有重要意义。FY-3C MWRI SST产品采用统计算法,首先利用MWRI降水和海冰产品剔除含降水和海冰的像元,之后选择时空间隔0.2 h和0.2°离海岸100 km以外的FY-3C MWRI观测亮温与浮标观测值进行匹配,再将全球在空间上分为4个纬度带,时间上分为12个月,并分升轨和降轨,分别建立浮标海温观测结果和MWRI亮温之间的统计关系,实现对SST的估算。将|估算海温-30年月平均海温|≥2.5 K的像元标识为51,发现这些像元基本分布在陆地边缘地区及大风速地区,剔除标识为51的像元后的精度验证结果表明:与全球浮标资料相比,FY-3C MWRI SST轨道产品升轨精度为–0.02±1.22 K,降轨精度为–0.15±1.28 K;与全球分析场日平均海温OISST相比,FY-3C MWRI SST日产品升轨精度为0.00±1.03 K,降轨精度为–0.09±1.08 K。微波辐射计的性能及其定位定标精度、上游卫星产品(降水检测和海冰检测)的精度、陆地的干扰及高风速对微波信号的影响均会造成SST估算误差,如何改进算法中风速大于12 m/s时的估算精度是下一步的工作重点。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号