首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A revised regular solution-type thermodynamic model for twelve-component silicate liquids in the system SiO2-TiO2-Al2O3-Fe2O3-Cr2O3-FeO-MgO-CaO-Na2O-K2O-P2O5-H2O is calibrated. The model is referenced to previously published standard state thermodynamic properties and is derived from a set of internally consistent thermodynamic models for solid solutions of the igneous rock forming minerals, including: (Mg,Fe2+,Ca)-olivines, (Na,Mg,Fe2+,Ca)M2 (Mg,Fe2+, Ti, Fe3+, Al)M1 (Fe3+, Al,Si)2 TETO6-pyroxenes, (Na,Ca,K)-feldspars, (Mg,Fe2+) (Fe3+, Al, Cr)2O4-(Mg,Fe2+)2 TiO4 spinels and (Fe2+, Mg, Mn2+)TiO3-Fe2O3 rhombohedral oxides. The calibration utilizes over 2,500 experimentally determined compositions of silicate liquids coexisting at known temperatures, pressures and oxygen fugacities with apatite ±feldspar ±leucite ±olivine ±pyroxene ±quartz ±rhombohedral oxides ±spinel ±whitlockite ±water. The model is applicable to natural magmatic compositions (both hydrous and anhydrous), ranging from potash ankaratrites to rhyolites, over the temperature (T) range 900°–1700°C and pressures (P) up to 4 GPa. The model is implemented as a software package (MELTS) which may be used to simulate igneous processes such as (1) equilibrium or fractional crystallization, (2) isothermal, isenthalpic or isochoric assimilation, and (3) degassing of volatiles. Phase equilibria are predicted using the MELTS package by specifying bulk composition of the system and either (1) T and P, (2) enthalpy (H) and P, (3) entropy (S) and P, or (4) T and volume (V). Phase relations in systems open to oxygen are determined by directly specifying the f o 2 or the T-P-f o 2 (or equivalently H-P-f o 2, S-P-f o 2, T-V-f o 2) evolution path. Calculations are performed by constrained minimization of the appropriate thermodynamic potential. Compositions and proportions of solids and liquids in the equilibrium assemblage are computed.  相似文献   

2.
Oxygen fugacity (fO2) conditions were determined for 29 peridotite xenoliths from the A154-North and A154-South kimberlites of the Diavik diamond mine using the newly developed flank method modified specifically for measuring Fe3+ in mantle-derived pyropic garnets. The results indicate that the garnet-bearing lithospheric mantle beneath the central Slave craton is vertically layered with respect to oxidation state. The shallow (<140 km), “ultra-depleted” layer is the most oxidized section of garnet-bearing subcratonic mantle thus far measured, up to one log unit more oxidizing relative to the FMQ buffer [Δlog fO2 (FMQ) + 1]. The lower, more fertile layer has fO2 conditions that extend down to Δlog fO2 (FMQ) − 3.8, consistent with xenolith suites from other localities worldwide. Based on trace element concentrations in garnets, two distinct metasomatic events affected the mantle lithosphere at Diavik. An oxidized fluid imparted sinusoidal chondrite-normalized REE patterns on garnets throughout the entire depth range sampled. In contrast, a reducing melt metasomatic event affected only the lower portion of the lithospheric mantle. The fO2 state of the Diavik mantle sample suggests that diamond formation occurred by reduction of carbonate by fluids arising from beneath the lithosphere.  相似文献   

3.
We have performed experiments to evaluate Au solubility in natural, water-saturated basaltic melts as a function of oxygen fugacity. Experiments were carried out at 1000 °C and 200 MPa, and oxygen fugacity was controlled at the fayalite-magnetite-quartz (FMQ) oxygen fugacity buffer and FMQ + 4. All experiments were saturated with a metal-chloride aqueous solution loaded initially as a 10 wt% NaCl eq. fluid. The stable phase assemblage at FMQ consists of basalt melt, olivine, clinopyroxene, a single-phase aqueous fluid, and metallic Au. The stable phase assemblage at FMQ + 4 consists of basalt melt, clinopyroxene, magnetite-spinel solid solution, a single-phase aqueous fluid, and metallic Au. Silicate glasses (i.e., quenched melt) and their contained crystalline material were analyzed by using both electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Measured Au concentrations in the quenched melt range from 4.8 μg g−1 to 0.64 μg g−1 at FMQ + 4, and 0.54 μg g−1 to 0.1 μg g−1 at FMQ. The measured solubility of Au in olivine and clinopyroxene was consistently below the LA-ICP-MS limit of detection (i.e., 0.1 μg g−1). These melt solubility data place important limitations on the dissolved Au content of water-saturated, Cl- and S-bearing basaltic liquids at geologically relevant fO2 values. The new data are compared to published, experimentally-determined values for Au solubility in dry and hydrous silicate liquids spanning the compositional range from basalt to rhyolite, and the effects of melt composition, oxygen fugacity, pressure and temperature are discussed.  相似文献   

4.
The compatibility of vanadium (V) during mantle melting is a function of oxygen fugacity (fO2): at high fO2’s, V becomes more incompatible. The prospects and limitations of using the V content of peridotites as a proxy for paleo-fO2 at the time of melt extraction were investigated here by assessing the uncertainties in V measurements and the sensitivity of V as a function of degree of melt extracted and fO2. V-MgO and V-Al2O3 systematics were found to be sensitive to fO2 variations, but consideration of the uncertainties in measurements and model parameters indicates that V is sensitive only to relative fO2 differences greater than ∼2 log units. Post-Archean oceanic mantle peridotites, as represented by abyssal peridotites and obducted massif peridotites, have V-MgO and -Al2O3 systematics that can be modeled by 1.5 GPa melting between FMQ − 3 and FMQ − 1. This is consistent with fO2’s of the mantle source for mid-ocean ridge basalts (MORBs) as determined by the Fe3+ activity of peridotitic minerals and basaltic glasses. Some arc-related peridotites have slightly lower V for a given degree of melting than oceanic mantle peridotites, and can be modeled by 1.5 GPa melting at fO2’s as high as FMQ. However, the majority of arc-related peridotites have V-MgO systematics overlapping that of oceanic mantle peridotites, suggesting that although some arc mantle may melt under slightly oxidizing conditions, most arc mantle does not. The fact that thermobarometrically determined fO2’s in arc peridotites and lavas can be significantly higher than that inferred from V systematics, suggests that V retains a record of the fO2 during partial melting, whereas the activity of Fe3+ in arc peridotitic minerals and lavas reflect subsequent metasomatic overprints and magmatic differentiation/emplacement processes, respectively.Peridotites associated with middle to late Archean cratonic mantle are characterized by highly variable V-MgO systematics. Tanzanian cratonic peridotites have V systematics indistinguishable from post-Archean oceanic mantle and can be modeled by 3 GPa partial melting at ∼FMQ − 3. In contrast, many South African and Siberian cratonic peridotites have much lower V contents for a given degree of melting, suggesting at first glance that partial melting occurred at high fO2’s. More likely, however, their unusually low V contents for a given degree of melting may be artifacts of excess orthopyroxene, a feature that pervades many South African and Siberian peridotites but not the Tanzanian peridotites. This is indicated by the fact that the V contents of South African and Siberian peridotites are correlated with increases in SiO2 content, generating data arrays that cannot be modeled by partial melting but can instead be generated by the addition of orthopyroxene through processes unrelated to primary melt depletion. Correction for orthopyroxene addition suggests that the South African and Siberian peridotites have V-MgO systematics similar to those of Tanzanian peridotites. Thus, if the Tanzanian peridotites represent the original partial melting residues, and if the South African and Siberian peridotites have been modified by orthopyroxene addition, then there is no indication that Archean cratonic mantle formed under fO2’s significantly greater than that of modern oceanic mantle. Instead, the fO2’s inferred from the V systematics in these three cratonic peridotite suites are within range of modern oceanic mantle. This also suggests that the transition from a highly reducing mantle in equilibrium with a metallic core to the present oxidized state must have occurred by late Archean times.  相似文献   

5.
Recrystallized globules representing former immiscible sulfide liquids are found in a variety of igneous environments. Relatively little is known about the physical properties and thermochemistry of sulfide liquids, despite their importance in igneous systems. This study presents results of a series of experiments designed to calibrate a thermodynamic model for sulfide liquids in the system O-S-Fe at one atmosphere pressure. Sulfide liquids were equilibrated under controlled oxygen and sulfur fugacities at temperatures between 1100 and 1350 ° C in equilibrium with a silica mineral and a silicate melt. Experiments were quenched in a high-speed double-roller “splat” quencher in order to assure that measured compositions were as close to equilibrium liquid values as possible. Sulfide liquids are not stable in equilibrium with a silica-saturated silicate melt at log10(f O2) > FMQ-1 at 1250 °C and log10(f S2)=−3. Iron content of the sulfide changes little with variations in oxygen and sulfur fugacity at a given temperature. Consequently, oxygen and sulfur contents are inversely correlated in these liquids. Sulfur is present entirely as sulfide. Iron appears to be present in both its ferric and ferrous states. Data from this study were combined with data compiled from the literature to calibrate an asymmetric regular solution thermodynamic mixing model for O-S-Fe liquids. This model reproduces miscibility gaps and data from this study quite well, but exhibits minor but systematic errors at the O-Fe binary. The observed inverse correlation between sulfur and oxygen is reflected in the predicted free-energy surface by a sharp energy valley running along a line of constant Fe content. Received: 10 April 1996 / Accepted: 15 November 1996  相似文献   

6.
This study provides an experimental calibration of the equilibrium constant for AuPdFe alloys with Fe-bearing silicate melts. The ideal metal capsules for H2O-bearing experiments are pure Au, because of its slow hydrogen diffusivity. However, above the melting point of Au, other materials must be used. The solution to this problem is to use AuPd alloy capsules. However, under most relevant fO2 conditions, this alloy absorbs Fe from the coexisting silicate melt, thus changing the bulk composition of the experimental charge. This study combines previous work on the Au–Pd, Pd–Fe, and Au–Fe binary systems to develop a ternary thermodynamic solution model for AuPdFe. This solution model is used with experiments to calculate an equilibrium reaction coefficient for the FeOmelt → Fealloy + 1/2O2 exchange reaction. Using a non-ideal ternary solution model, the fO2 conditions of hydrous, piston cylinder experiments can be estimated by analyzing the sample capsule alloy and the coexisting liquid composition.  相似文献   

7.
Synthetic spinel harzburgite and lherzolite assemblages were equilibrated between 1040 and 1300° C and 0.3 to 2.7 GPa, under controlled oxygen fugacity (f O 2). f O 2 was buffered with conventional and open double-capsule techniques, using the Fe−FeO, WC-WO2-C, Ni−NiO, and Fe3O4−Fe2O3 buffers, and graphite, olivine, and PdAg alloys as sample containers. Experiments were carried out in a piston-cylinder apparatus under fluid-excess conditions. Within the P-T-X range of the experiments, the redox ratio Fe3+/ΣFe in spinel is a linear function of f O 2 (0.02 at IW, 0.1 at WCO, 0.25 at NNO, and 0.75 at MH). It is independent of temperature at given Δlog(f O 2), but decreases slightly with increasing Cr content in spinel. The Fe3+/ΣFe ratio falls with increasing pressure at given Δlog(f O 2), consistent with a pressure correction based on partial molar volume data. At a specific temperature, degree of melting and bulk composition, the Cr/(Cr+Al) ratio of a spinel rises with increasing f O 2. A linear least-squares fit to the experimental data gives the semi-empirical oxygen barometer in terms of divergence from the fayalite-magnetite-quartz (FMQ) buffer:
  相似文献   

8.
The apparent equilibrium constant for the exchange of Fe and Ni between coexisting olivine and sulfide liquid (KD = (XNiS/XFeS)liquid/(XNiSi12O2/XFeSi12O2)olivine; Xi = mole fraction) has been measured at controlled oxygen and sulfur fugacities (fO2 = 10−8.1 to 10−10 and fS2 = 10−0.9 to 10−1.7) over the temperature range 1200 to 1385°C, with 5 to 37 wt% Ni and 7 to 18 wt% Cu in the sulfide liquid. At log fO2 of −8.7 ± 0.1, and log fS2 of −0.9 to −1.7, KD is relatively insensitive to sulfur fugacity, but comparison with previous results shows that KD increases at very low sulfur fugacities. KD values show an increase with the nickel content of the sulfide liquid, but this effect is more complex than found previously, and is greatest at log fO2 of −8.1, lessens with decreasing fO2, and KD becomes independent of melt Ni content at log fO2 ≤ −9.5. The origin of this variation in KD with fO2 and fS2 is most likely the result of nonideal mixing of Fe and Ni species in the sulfide liquid. Such behavior causes activity coefficients to change with either melt oxygen content or metal/sulfur ratio, effects that are well documented for metal-rich sulfide melts.Application of these experimental results to natural samples shows that the relatively large dispersion that exists in KD values from different olivine + sulfide-saturated rock suites can be interpreted as arising from variations in fO2, fS2, and the nickel content of the sulfide liquid. Estimates of fO2 based on KD and sulfide melt composition in natural samples yields a range from fayalite-magnetite-quartz (FMQ)-1 to FMQ-2 or lower, which is in good agreement with previous values determined for oceanic basalts that use glass ferric/ferrous ratios. Anomalously high KD values recorded in some suites, such as Disko Island, probably reflect low fS2 during sulfide saturation, which is consistent with indications of low fO2 for those samples. It is concluded that the variation in KD values from natural samples reflects olivine-sulfide melt equilibrium at conditions within the T-fO2-fS2 range of terrestrial mafic magmas.  相似文献   

9.
The reaction chloritoid (ctd)=almandine (alm)+diaspore+H2O (CAD) has been reversed using Fe3+-free synthetic chloritoid and almandine, under fO2 conditions of the solid oxygen buffer Fe/FeO (CADWI), and using partially oxidized synthetic minerals under fO2 conditions of the solid oxygen buffer Ni/NiO (CADNNO). Experiments have been conducted between 550 and 700°C, 25 and 45 kbar. The equilibrium pressure and temperature conditions are strongly dependent on the fO2 conditions (CADNNO lies some-what 50°C higher than CADWI). This can be explained by a decrease in aH2O for experiments conducted on the Fe/FeO buffer, and a decrease in actd and aalm (through incorporation of ferric iron preferentially in chloritoid) for experiments conducted on the Ni/NiO buffer. The H2O activity has been calculated using the MRK equation of state, and the values obtained checked against the shift of the equilibrium diaspore=corundum+H2O bracketed on the Fe/FeO buffer and under unbuffered fO2 conditions. For fO2 buffered by the assemblage Fe/FeO, aH2O increases with pressure from about 0.85 at 600°C, 12 kbar to about 0.9 at 605°C, 25 kbar and 1 above 28 kbar. For fO2 buffered by the assemblage Ni/NiO, aH2O=1. The aH2O decrease from Ni/NiO to Fe/FeO is, however, too small to be entirely responsible for the temperature shift between CADNNO and CADWI. In consequence, the amount of ferric iron in almandine and chloritoid growing in the CADNNO experiments must be significant and change along the CADNNO, precluding calculation of the thermodynamic properties of chloritoid from this reaction. Our experimental data obtained on the Fe/FeO buffer are combined, using a thermodynamic analysis, with Ganguly's (1969) reversal of the reaction chloritoid=almandine+corundum +H2O (CAC) on the same oxygen buffer. Experimental brackets are mutually consistent and allow extraction of the thermodynamic parameters H o f,ctd and S octd. Our thermodynamic data are compared with others, generally calculated using Ganguly's bracketing of CACNNO. The agreement between the different data sets is relatively good at low pressure, but becomes rapidly very poor toward high pressure conditions. Using our thermodynamic data for chloritoid and KD=(Fe3+/Al)ctd/(Fe3+/Al)alm estimated from natural assemblages, we have calculated the composition of chloritoid and almandine growing from CADNNO and CACNNO. The Fe3+ content in chloritoid and almandine increases with pressure, from less than 0.038 per FeAl2SiO5(OH)2 formula unit at 10 kbar to at least 0.2 per formula unit above 30 kbar. This implies that chloritoid and almandine do contain Fe3+ in most natural assemblages. The reliability of our results compared to natural systems and thermodynamic data for Mg-chloritoid is tested by comparing the equilibrium conditions for the reaction chloritoid+quartz=garnet (gt)+kyanite+H2O (CQGK), calculated for intermediate Fe–Mg chloritoid and garnet compositions, from the system FASH and from the system MASH. For 0.65<(XFe)gt<0.8, CQKG calculated from FASH and MASH overlap for KD=(Mg/Fe)ctd/(Mg/Fe)gt=2. This is in good agreement with the KD values reported from chloritoid+garnet+quartz+kyanite natural assemblages.  相似文献   

10.
The Khaluta carbonatite complex comprizes fenites, alkaline syenites and shonkinites, and calcite and dolomite carbonatites. Textural and compositional criteria, melt inclusions, geochemical and isotopic data, and comparisons with relevant experimental systems show that the complex formed by liquid immiscibility of a carbonate-saturated parental silicate melt. Mineral and stable isotope geothermometers and melt inclusion measurements for the silicate rocks and carbonatite all give temperatures of crystallization of 915–1,000°C and 890–470°C, respectively. Melt inclusions containing sulphate minerals, and sulphate-rich minerals, most notably apatite and monazite, occur in all of the lithologies in the Khaluta complex. All lithologies, from fenites through shonkinites and syenites to calcite and dolomite carbonatites, and to hydrothermal mineralisation are further characterized by high Ba and Sr activity, as well as that of SO3 with formation of the sulphate minerals baryte, celestine and baryte-celestine. Thus, the characteristic features of the Khaluta parental melt were elevated concentrations of SO3, Ba and Sr. In addition to the presence of SO3, calculated fO2 for magnetites indicate a high oxygen fugacity and that Fe+3>Fe+2 in the Khaluta parental melt. Our findings suggest that the mantle source for Khaluta carbonatite and associated rocks, as well as for other carbonatites of the West Transbaikalia carbonatite province, were SO3-rich and characterized by high oxygen fugacity.  相似文献   

11.
The redox ratio of iron is used as an indicator of solution properties of silicate liquids in the system (SiO–Al2O3–K2O–FeO–Fe2O3–P2O5). Glasses containing 80–85 mol% SiO2 with 1 mol% Fe2O3 and compositions covering a range of K2O/Al2O3 were synthesized at 1400°C in air (fixed fO2). Variations in the ratio FeO/FeO1.5 resulting from the addition of P2O5 are used to determine the solution behavior of phosphorus and its interactions with other cations in the silicate melt. In 80 mol% SiO2 peralkaline melts the redox ratio, expressed as FeO/FeO1.5, is unchanged relative to the reference curve with the addition of 3 mol% P2O5. Yet, the iron redox ratio in the 85 mol% SiO2 potassium aluminosilicate melts is decreased relative to phosphorus-free liquids even for small amounts of P2O5 (0.5 mol%). The redox ratio in peraluminous melts is decreased relative to phosphorus- free liquids at P2O5 concentrations of 3 mol%. In peraluminous liquids, complexing of both Fe+3–O–P+5 and Al+3–O–P+5 occur. The activity coefficient of Fe+3 is decreased because more ferric iron can be accommodated than in phosphorus-free liquids. In peralkaline melts, there is no evidence that P+5 is removing K+ from either Al+3 or Fe+3 species. In chargebalanced melts with 3 mol% Fe2O3 and very high P2O5 concentrations, phosphorus removes K+ from K–O–Fe+3 complexes resulting in a redox increase. P2O5 should be accommodated easily in peraluminous rhyolitic liquids and phosphate saturation may be suppressed relative to metaluminous rhyolites. In peralkaline melts, phosphate solubility may increase as a result of phosphorus complexing with alkalis. The complexing stoichiometry may be variable, however, and the relative influence of peralkalinity versus temperature on phosphate solubility in rhyolitic melts deserves greater attention.  相似文献   

12.
The Fe3+/ΣFe ratio of 104 MORB glasses from the Pacific, the Atlantic, the Indian, and the Red Sea spreading centers have been determined using wet chemical Fe2+ analyses and electron microprobe FeOtotal measurements. The data provide a new estimate for the MORB oxygen fugacity (fO2) of 0.41 ± 0.43 (1sigma, N = 100) log units below the fayalite-magnetite-quartz buffer (FMQ), equivalent to a Fe3+/ΣFe = 0.12 ± 0.02 (1sigma, N = 104). This new fO2 estimate is 0.8 log units more oxidized than the average fO2 proposed by Christie et al. (1986) (FMQ-1.20 ± 0.44; Fe3+/ΣFe = 0.07 ± 0.01; N = 87). This slight difference may be related in part to the 3.5% underestimation of the Fe2+ concentration determined by Christie et al. (1986) compared with this study. MORB oxygen fugacity does not display any significant difference between the three main oceanic domains, or between enriched and depleted MORB. Yet, the iron red-ox state ratio shows a broad increase during fractional crystallization. Detailed study of magmatic suites highlights the lack of systematic Fe3+/ΣFe ratio fractionation during differentiation. Despite the large variations of inferred partial melting degrees (from 5 to 20%), the present data set does not provide any evidence of Fe3+/ΣFe relationships with partial melting proxies such as Na8.0.Based on the Fe3+ systematics during partial melting, it is suggested that the oxidation state of MORB reflects a “buffered mantle melting process” resulting in the apparent compatible behavior of Fe3+ during partial melting, and in the relatively constant Fe3+/ΣFe ratio irrespective of the extent of melting. This result implies that partial melting processes may be open relative to oxygen. We propose a model where the Fe3+/ΣFe ratio in the melt is buffered during partial melting. The MORB Fe2O3 systematics can be accounted for by using a fO2 of FMQ-1 that is equivalent to the average fO2 reported for abyssal peridotites.  相似文献   

13.
A new thermodynamic formulation of the Fe–Ti oxide geothermometer/oxygen barometer is developed. The method is based upon recently calibrated models for spinel solid solutions in the quinary system (Fe2+, Mg)(Al,Fe3+,Cr)2O4–(Fe2+, Mg)2TiO4 by Sack and Ghiorso, and rhombohedral oxides in the quaternary system (Fe2+,Mg,Mn)TiO3–Fe2O3 (this paper). The formulation is internally consistent with thermodynamic models for (Fe2+,Mg)-olivine and -orthopyroxene solid solutions and end-member thermodynamic properties tabulated by Berman. The constituent expressions account for compositional and temperature dependent cation ordering and reproduce miscibility gap features in all of the component binaries. The calibration does not account for the excess Gibbs energy resulting from compositional and temperature dependent magnetic ordering in either phase. This limits application of the method to assemblages that equilibrated at temperatures above 600° C. Practical implementation of the proposed geothermometer/oxygen barometer requires minimal use of projection algorthms in accommodating compositions of naturally occurring phases. The new formulation is applied to the estimation of temperature and oxygen fugacity in a wide variety of intermediate to silicic volcanic rocks. In combination with previous work on olivine and orthopyroxene thermodynamics, equilibration pressures are computed for a subset of these volcanics that contain the assemblage quartz, oxides and either ferromagnesian silicate. The calculated log10 f O 2-T relations are reflected in coexisting ferromagnesian mineral assemblages. Volcanics with the lowest relative oxygen fugacity (log10 f O 2) are characterized by the assemblage olivine-quartz, those with slightly higher log10 f O 2 s, by the assemblage orthopyroxene-quartz. The sequence proceeds with the necessary phases biotite-feldspar, then hornblende-quartz-clinopyroxene, and finally at the highest log10 f O 2 s, sphene-quartz-clinopyroxene. Quantitative analysis of these trends, utilizing thermodynamic data for the constituent phases, establishes that, in most cases, the T-log10 f O 2value computed from the oxides is consistent with the compositions of coexisting silicate phases, indicating that phenocryst equilibrium was achieved prior to eruption. There is, however, considerable evidence of oxide-silicate disequilibrium in samples collected from more slowly cooled domes and obsidians. In addition, T-log10 f O 2trends from volcanic rocks that contain biotite and orthopyroxene are interpreted to imply a condition of Fe2+–Mg exchange disequilibrium between orthopyroxene and coexisting ferromagnesian silicates and melt. It is suspected that many biotite-feldspar-quartz-orthopyroxene bearing low temperature volcanic rocks inherit orthopyroxene xenocrysts which crystallized earlier in the cooling history of the magma body.The problem is probably at least as complex as that of the feldspars... A.F. Buddington (1956)  相似文献   

14.
Direct measurements of liquid heat capacity, using a Setaram HT1500 calorimeter in step-scanning mode, have been made in air on six compositions in the Na2O-FeO-Fe2O3-SiO2 system, two in the CaO-FeO-Fe2O3-SiO2 system and four of natural composition (basanite, andesite, dacite, and peralkaline rhyolite). The fitted standard deviations on our heat capacity measurements range from 0.6 to 3.6%. Step-scanning calorimetry is particularly useful when applied to iron-bearing silicate liquids because: (1) measurements are made over a small temperature interval (10K) through which the ferric-ferrous ratio of the liquid remains essentially constant during a single measurement; (2) the sample is held in equilibrium with an atmosphere that can be controlled; (3) heat capacity is measured directly and not derived from the slope of enthalpy measurements with temperature. Liquid compositions in the sodic and calcic systems were chosen because they contain large concentrations of Fe2O3 (up to 19 mol%), and their equilibrium ferric-ferrous ratios were known at every temperature of measurement. These measurement have been combined with heat capacity (Cp) data in the literature on iron-free silicate liquids to fit Cp as a function of composition. A model assuming no excess heat capacity (linear combination of partial molar heat capacities of oxide components) reproduces the liquid data within error (±2.2% on average). The derived partial molar heat capacity of the Fe2O3 component is 240.9 ±7.9 J/g.f.w.-K, with a standard error reduced by more than a factor of two from that in earlier studies. The model equation, based primarily on simple, synthetic compositions, predicts the heat capacity of the four magmatic liquids within 1.8% on average.  相似文献   

15.
Quaternary basalts in the Cerro del Fraile area contain two types of mantle xenoliths; coarse-grained (2–5 mm) C-type spinel harzburgites and lherzolites, and fine-grained (0.5–2 mm) intensely metasomatized F-type spinel lherzolites. C-type xenoliths have high Mg in olivine (Fo = 90–91) and a range in Cr# [Cr/ (Cr + Al) = 0.17–0.34] in spinel. Two C-type samples contain websterite veinlets and solidified patches of melt that is now composed of minute quenched grains of plagioclase + Cr-spinel + clinopyroxene + olivine. These patches of quenched melts are formed by decompression melting of pargasitic amphibole. High Ti contents and common occurrence of relic Cr-spinel in the quenched melts indicate that the amphibole is formed from spinel by interaction with the Ti-rich parental magma of the websterite veinlets. The fO2 values of these two C-type xenoliths range from ΔFMQ −0.2 to −0.4, which is consistent with their metasomatism by an asthenospheric mantle-derived melt. The rest of the C-type samples are free of “melt,” but show cryptic metasomatism by slab-derived aqueous fluids, which produced high concentrations of fluid-mobile elements in clinopyroxenes, and higher fO2 ranging from ΔFMQ +0.1 to +0.3. F-type lherzolites are intensely metasomatized to form spinel with low Cr# (∼0.13) and silicate minerals with low MgO, olivine (Fo = ∼84), orthpyroxene [Mg# = Mg/(Mg + ΣFe) = ∼0.86] and clinopyroxene (Mg# = ∼0.88). Patches of “melt” are common in all F-type samples and their compositions are similar to pargasitic amphibole with low TiO2 (<0.56 wt%), Cr2O3 (<0.55 wt%) and MgO (<16.3 wt%). Low Mg# values of silicate minerals, including the amphibole, suggest that the metasomatic agent is most likely a slab melt. This is supported by high ratios of Sr/Y and light rare earth elements (REE)/heavy REE in clinopyroxenes. F-type xenoliths show relatively low fO2 (ΔFMQ −0.9 to −1.1) compared to C-type xenoliths and this is explained by the fusion of organic-rich sediments overlying the slab during the slab melt. Trench-fill sediments in the area are high in organic matter. The fusion of such wet sediments likely produced CH4-rich fluids and reduced melts that mixed with the slab melt. High U and Th in bulk rocks and clinopyroxene in F-type xenoliths support the proposed interpretation.  相似文献   

16.
On the basis of experimental works in the FeS-FeO-SiO2(-Fe3O4 or -Na2O) system with synthetic ZnS or PbS, the partition of zinc and lead between silicate and sulfide liquids is shown to be affected by the oxygen content of the sulfide liquids. The partition coefficients K, metal wt. % in sulfide liquid / metal wt. % in silicate liquid, for zinc and lead go through a minimum at relatively low oxygen contents of the sulfide liquids. KZn and KPb for natural sulfide liquids in equilibrium with basic magmas near the earth's surface are estimated at 0.1–0.5 and greater than 10, respectively. Although KZn and KPb change appreciably with oxygen content of the sulfide liquids, they never become sufficiently high to concentrate zinc and lead in economic amounts in magmatic sulfide ores.  相似文献   

17.
Fe-rich tholeiitic liquids are preserved as chilled pillows and as the chilled base of a 27 meter thick macrorhythmic layer in the Pleasant Bay mafic-silicic layered intrusion. The compositions of olivine (Fo1) and plagioclase (An13−8) in these extremely fine grained rocks suggest that they represent nearly end stage liquids that formed by fractionation of tholeiitic basalt. Their major element compositions (∼17.5 wt% FeOT and 54 wt%SiO2) closely resemble highly evolved glasses in the Loch Ba ring dike and some recent estimates of end-stage liquids related to the Skaergaard layered intrusion, and are consistent with recent experimental studies of tholeiite fractionation. Their trace element compositions are consistent with extensive earlier fractionation of plagioclase, olivine, clinopyroxene, ilmenite, magnetite and apatite. The mineral assemblage of the chilled rocks (olivine, clinopyroxene, quartz, ilmenite and magnetite), apatite saturation temperatures, and very low Fe3+/Fe2+indicate conditions of crystallization at temperatures of about 950 °C and f O 2 about two log units below FMQ. Cumulates that lie about 3 meters above the chilled base of the macrorhythmic layer contain cumulus plagioclase, olivine, clinopyroxene, ilmenite, apatite and zircon. This mineral assemblage and the Fe-Mg ratio in clinopyroxene cores suggest that this cumulate was in equilibrium with a liquid having a composition identical to that of the chilled margin which lies directly beneath it. The high FeOT and low SiO2 concentrations of this cumulate (23.3 and 45.8 wt%, respectively) are comparable to those in late stage cumulates of the Skaergaard and Kiglapait intrusions. This association of a chilled liquid and cumulate in the Pleasant Bay intrusion suggests that late stage liquids in tholeiitic layered intrusions may have been more SiO2-rich than field-based models suggest and lends support to recent experimental studies of tholeiite fractionation at low f O2 which indicate that saturation of an Fe-Ti oxide phase should cause FeOT to decrease in the remaining liquid. Received: 17 January 1997 / Accepted: 10 June 1997  相似文献   

18.
The partitioning of V between orthopyroxene-liquid and spinel-liquid has been investigated in synthetic and natural mafic and ultramafic compositions as a function of temperature and oxygen fugacity (fO2) at 100 kPa and in one experiment at higher pressure. The purpose of the experiments was to understand redox relationships for V in silicate melts with a view to deriving an empirical oxygen barometer for geochemically altered mafic and ultramafic magmas in the geologic record. Partitioning data for both orthopyroxene-liquid and spinel-liquid show profound changes at an fO2 approximately 3 orders of magnitude below the nickel-nickel oxide (NNO) buffer, suggesting changes in the dominant valence state of V in silicate liquids from V3+ to V4+, near this fO2.The results of the experiments on orthopyroxene-liquid are combined with published data for olivine-liquid and are applied to suites of mafic and ultramafic magmas that have equilibrated with a harzburgite residue in the mantle. The results show that Archean alumina-undepleted komatiites could have formed at fairly high oxygen fugacities, near ΔNNO ∼ 0, somewhat higher than Cretaceous komatiites and related picrites in the Caribbean region (between ΔNNO ∼ −1 to −3), and plume-related picrites from West Greenland (ΔNNO ∼ − 3). Picrites and boninites from convergent margins record the highest fO2’s by this method, (ΔNNO = +1 to +2), consistent with other petrological estimates of their redox states. The approach developed in this study can thus provide estimates for the redox states of altered, mantle-derived magmas in the geological record, to which more conventional methods of oxygen barometry cannot be applied.  相似文献   

19.
Oxidation state of mantle xenoliths from British Columbia,Canada   总被引:3,自引:0,他引:3  
Mössbauer spectra for 17 spinels separated from mantle xenoliths from six different eruptive centers in southern British Columbia, Canada were measured in an effort to accurately determine their Fe3+/total Fe ratios, and to examine lateral and vertical variations in oxygen fugacities (f o2's) calculated for these samples using published thermobarometric methods. Spectra acquired at 298 and 77 K suggest that both Fe2+ and Fe3+ are tetrahedrally coordinated in lherzolite spinels from this alkaline province. Calculatedf o2's for spinel lherzolites from British Columbia range from about 0.5 to 1.5 log units below the fayalite-magnetite-quartz (FMQ) oxygen buffer at 15 kbar using the thermobarometric method of O'Neill and Wall. Thesef o2's are on average more reducing than those reported for the upper mantle beneath the Massif Central and Japanese Arc and fall within the range for fresh MORB glasses and for lherzolite xenoliths from the southwestern United States and Mongolia. Significant variations inf o2 between samples from different eruptive centers with varying ages are absent, indicating that the oxidation state of the upper mantle was not affected by Cenozoic magmatism within this alkaline province.  相似文献   

20.
The possible origin of the Moon’s metallic core at the precipitation of iron–sulfide phases during the partial melting of ultramafic material under various redox conditions was experimentally modeled by partially melting the model system olivine (85 wt %) + ferrobasalt (10 wt %) + metallic phase Fe95S5 (wt %) in a high-temperature centrifuge at 1430–1450°C. The oxygen fugacity fO2 was determined from the composition of the quenched experimental silicate melts (glasses). A decrease in fO2 is proved to be favorable for the segregation of iron–sulfide melt from the silicate matrix. The metallic phase is most effectively segregated in the form of melt droplets, and these droplets are accumulated in the lower portions of the samples under strongly reduced conditions, at fO2 ~ 4.5–5.5 orders of magnitude lower than the iron–wüstite buffer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号