首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mineralogical and geochemical study of clay lithologies and a biostratigraphic analysis of the carbonates from the deep-sea Lagonegro Basin (Southern Apennines—Italy) have been carried out to deduce in general the provenance of clay sediments and their paleoenvironmental conditions and particular to recognize the signature of the Paleocene–Eocene climatic global warming. The analysed succession comprising a wide stratigraphic interval of the Sannio Unit, spanning between Albian to the upper Oligocene–lower Miocene, is exposed near Accettura and Stigliano villages. Eighteen clay samples were analysed by XRD, XRF, SEM, TG-DTA. Their age was framed by biostratigraphic analyses carried out on carbonate sediments. Mineral assemblage of the clay sediments includes quartz, carbonates (calcite and dolomite), feldspars (plagioclase and k-feldspars), hematite, randomly illite/smectite mixed layers with a low illite percentage, kaolinite, discrete illite–muscovite, chlorite, palygorskite and sepiolite. The low illite percentage in randomly illite/smectite mixed layers indicates low diagenetic conditions for the studied successions. These features are unique for the Cretaceous–Tertiary successions of the Lagonegro domain and are particularly significant for the preservation of the native mineralogical assemblage useful to determine the provenance and paleoenvironmental conditions of the clayey sediments. Palygorskite and sepiolite are concentrated in the upper Paleocene–middle Eocene stratigraphic interval and particularly in the upper part of the early Eocene—lower part of the middle Eocene (biozone of Blow P 9–12). Clay sediments rich in palygorskite and sepiolite show a higher P2O5 amount and a lower kaolinite percentage, compatible with warm and arid climatic conditions typical of the global warming event well recorded in the southern tethyan margin. Likely palygorskite and sepiolite formed in lagoonal environment in nearby carbonate platform margins and then they were transported into the Lagonegro Basin as indicated by the well developed habitus of palygorskite. During the Paleogene the Lagonegro Basin and the nearby carbonate platforms represented a key sector the southern paleodomains of the Tethys. The discovery of these minerals gives a contribution to the reconstruction paleoenvironmental conditions of the Tethian paleo-margin during the early–middle Eocene.  相似文献   

2.
Burial Metamorphism of the Ordos Basin in Northern Shaanxi   总被引:1,自引:0,他引:1  
Burial metamorphism has been found in the Ordos basin of northern Shaanxi. On the basis of a rather intensive study of burial metamorphism of sandstone, it has been shown that the evolution from diagenesis to metamorphism involves four stages: cementation of clay minerals, regrowth of pressolved quartz and feldspar, cementation of carbonates and formation of laumontite. On that basis it has been put forward that the laumontite is formed by burial metamorphism of clay and carbonate minerals. According to the thermodynamic data of minerals, the conditions under which laumontite is formed are T<250℃ and X_(CO_2)<0.17. High-resolution SEM and TEM studies of clay minerals in mudstone show that there occur a mixed layer assemblage of bertherine and illite/chlorite and transformation from bertherine to chlorite. On that basis coupled by the X-ray diffraction analysis the author suggests the following transformation of clay minerals during burial metamorphism: the earliest smectite-kaolinite assemblage changes into the bertherine-illite mixture with increasing depth, then into the illite/chlorite mixed layer assemblage and finally into dispersed individual illite and chlorite. The reaction of the transformation is:smectite+kaolinite+K~+=illite+chlorite+quartz According to the study of the oxygen isotope thermometry of the coexisting illitequartz pair, the temperature of the above transformation is lower than 180℃.  相似文献   

3.
The petrology of 21 seam profiles of Upper Carboniferous age (Westphalian C and B) has been studied in order to determine their depositional environments and diagenetic history. The youngest profile was drilled at a depth of 790 m and is mainly overlain by Cretaceous sediments. The oldest seam was reached at a depth of 1470 m. The seam thicknesses vary from 0.4 to 2.5 m.The main petrographic compounds are vitrinite, intertinite, liptinite, and minerals. The last group occurs as clay bands with illite, kaolinite, minor chlorite, and minor quartz contents, or as crack- or pore-filling calcite, Fe-dolomite, siderite, pyrite, or marcasite, or as syngenetic siderite concretions and pyrite crystals. The percentages of the different macerals and minerals vary mainly because of different depositional environments. Diagenetic loss or genesis of compounds is a less important factor in their distribution.Three types of profiles are distinguished by their different petrologies. Type I is most abundant, and contains much vitrinite, many clay bands, and syngenetic iron sulfides, whereas type III is rich in inertinite and certain characteristic spores. Type II is intermediate but generally contains only low percentages of minerals. Generally, this type is vitrinite-rich in the lower, and inertinite-rich in the central and upper parts of the profiles. Spores and other liptinites are much better preserved in all the seams than in clay partings or in siltstones and sandstones above and below the seams.The seams are interpreted to be former autochthonous peats. Type I profiles are probably derived from swamps which were sometimes inundated and covered by overbank deposits. Type II and III seams represent former peats which were not inundated by rivers, and partly grew under the influence of more oxidizing conditions. Therefore, they contain more inertinite and less sulfide and clay bands. They can be interpreted as former raised bogs.Diagenetic changes are expressed as increases of vitrinite reflectances (from 0.65% to 1.0%), and of liptinite reflectances; a red shift of fluorescence of liptinites was found; increasing amounts of exudatinite (and micrinite) and decreasing amounts of fluorinite and resinite were found. Minerals seem to be less affected by diagenesis; illite crystallinity, for example, remains poor.  相似文献   

4.
The Istanbul Terrane along the Black Sea coast in NW Anatolia, is a Gondwana-derived continental microplate, comprising a well-developed Paleozoic succession. Petrographic and X-ray diffraction studies were performed on rock samples from measured sections throughout Ordovician?CCarboniferous sedimentary units. Diagenetic-very low-grade metamorphic clastic (shale/mudstone, siltstone, sandstone) and calcareous rocks (limestone, dolomite) mainly contain phyllosilicates, quartz, feldspar, calcite, dolomite, hematite and goethite minerals. Phyllosilicates are primarily represented by illite, chlorite, mixed-layered chlorite?Cvermiculite (C?CV), chlorite?Csmectite (C?CS) and illite?Cchlorite (I?CC). Feldspar is commonly present in the Ordovician and Carboniferous units, whereas calcite and dolomite are abundant in the Silurian and Devonian sediments. The most important phyllosilicate assemblage is illite?+?chlorite?+?I?CC?+?C?CV?+?C?CS. Illite and chlorite-bearing mixed layer clays are found in all units. The amounts of illites increase in the upper parts of the Silurian series and the lower parts of the Devonian series, whereas chlorite and chlorite-bearing mixed-layers are dominant in the Ordovician and Carboniferous units. Kübler index values of illites reflect high-grade anchimetamorphism for the Early Ordovician rocks, low-grade metamorphism to high-grade diagenesis for the Middle Ordovician?CEarly Silurian rocks and high-grade diagenesis for the Late Silurian?CDevonian units. The K-white micas b cell dimensions indicate intermediate pressure conditions in the Early Ordovician?CEarly Silurian units, but lower pressure conditions in the Middle Silurian?CDevonian units. Illites are composed of 2M 1?±?1M d polytypes in all units, except for Upper Ordovician?CLower Silurian units which involve 1M polytype in addition to 2M 1 and 1M d polytypes. The 2M 1/(2M 1?+?1Md) ratios rise from Devonian to Ordovician together with the increasing diagenetic-metamorphic grade. Chlorites have IIb polytype. In general, crystal-chemical data of clay minerals in the Istanbul Terrane show a gradual increase in the diagenetic/metamorphic grade together with increasing depth. The new data presented in this work indicate that the diagenetic/metamorphic grade of the Paleozoic of the Istanbul Terrane is higher than that of the neighboring Zonguldak Terrane and generated by a single metamorphic phase developed at the end of Carboniferous. This finding contrasts with the metamorphic history of the neighboring Zonguldak Terrane that displays a distinct Early Devonian unconformity and a thermal event.  相似文献   

5.
水银洞金矿上二叠统龙潭组一段(P_3l~1)中矿体主要为生产探矿中新发现,地质勘探中未发现该类金矿体的大规模存在;主要以构造控制的白云石石英脉粉砂质粘土岩型为主,灰岩类及白云石化钙质砂岩类含金矿体为辅,白云石石英脉粘土岩型矿体是以品位高、厚度薄、稳定为特征,该矿体受灰家堡背斜轴附近的东西走向隐伏逆冲断层控制,主要分布于F_(301)断层上下盘,含金热液沿东西走向隐伏逆冲断层向上运移(刘建中.2003)、再向有利的层间滑动及北东向陡倾斜次级隐伏逆冲断裂构造富集成矿,东西走向隐伏逆冲断层是导矿构造又是容矿构造,其上盘层间白云石英脉为明显找矿标志,对灰家堡背斜深部找矿及和生产具有一定的指导有意义。  相似文献   

6.
邯邢地区高岭石、伊利石粘土矿赋存于石炭系本溪组、太原组,二叠系山西组、下石盒子组、上石盒子组的7个层位.矿体主要呈层状产出,厚度变化较大.矿石主要由片状高岭石组成,次要和少量矿物为绢云母、石英、黑云母等.矿床成因包括沉积矿床(如石炭-二叠系高岭石伊利石粘土矿)、风化残积矿床(如软质高岭石粘土矿床).该地区可划分出临城竹...  相似文献   

7.
This work focuses on the relationship between the coal deposition and explosive volcanism of the Miocene basin, NW central Anatolia, Turkey. The coal-bearing Hirka Formation was deposited over the Galatian Andesitic Complex and/or massive lagoonal environments during the Miocene. The investigated lignite is a high ash (from 32 to 58%) and sulphur (from 1.43 to 3.03%) lignite which is petrographically characterised by a high humunite content. The mineral matter of the studied lignite samples is made up of mainly clay minerals (illite-smectite and kaolinite), plagioclase and quartz in Bolu coal field, clay minerals (illite-smectite, smectite and illite), quartz, calcite, plagioclase and gypsum in Seben coal field, quartz, K-feldspar, plagioclase and clay minerals (kaolinite and illite) in K?br?sc?k, and dolomite, quartz, clinoptilolite, opal CT and gypsum in Çaml?dere coal field. The differences in these four types of lignite with specific mineralogical patterns may be due to the explosive volcanic events and depositional conditions which changed from one coal field to the others. There is a zonation from SW to SE in the studied area for zeolites such as Opal CT+smectite-clinoptilolite-analcime-K-feldspar. Carbonate minerals are commonly calcite in Seben and K?br?sc?k coal fields. In Bolu, coal samples are devoid of calcite and dolomite. These analyses show that there is an increase in the amount of Mg and a decrease in the amount of Na from the northwestern part to the southern part in the study area.  相似文献   

8.
A continuous shallow marine 10 m thick succession within the Langpar Formation in the Um Sohryngkew river section of Meghalaya, containing late Maastrichtian through early Danian planktonic foraminiferal zones – CF4, CF3, CF2, CF1, P0, Pα and P1a and the K/Pg boundary (between CF1 and P0) that makes unique of its kind. The section has been re-studied and sampled for clay mineralogy to understand the palaeoenvironmental conditions prevalent in the region and to assess the K/Pg transition. The relative abundances of the clay mineral phases permitted a threefold sub-division of the studied section with a illite, illite/ smectite dominated lower part, illite, kaolinite and abundance of montmorillonite dominated middle part and kaolinite–montmorillonite dominated upper part. Enriched HREEs in the lower part of the succession suggest variations in the pH of alteration solutions. Most of the samples show positive cerium (δCe) and europium (δEu) anomalies, the former reflecting oxidizing conditions at the time of clay formation. Illite dominated clays present a positive Eu anomaly, formed at relatively higher temperatures than the clays with less illite and without Eu anomalies, whereas clays occurring in the lower and upper parts exhibit a prominent negative Eu anomaly. Shifts in the redox condition found in this section are more or less similar to the foraminiferal changes and Au, Pt, Pd anomalies. Clay mineralogical attributes and REE patterns, comparable to those of the known K/Pg boundaries, appeared within the CF3 and CF2 zones in the Um Sohryngkew river section. The sample at the boundary between CF3 and CF2 is marked by a negative <delta>Ce anomaly, high La/Yb and TOC values, suggesting that sea level rise during the upper part of CF3 was caused by tectonism rather than warming. The similar characteristics of clay minerals and REE patterns, attributed to the initiation of tectonic events during the CF3 zone, indicate environmental changes that affected the shelf area and the provenance of these sediments.  相似文献   

9.
Despite a great interest in Brazilian Equatorial Margin exploration, very little was published on the diagenesis of sandstones from that area. A wide recognition petrographic study was performed to identify the major diagenetic processes that impacted the porosity of Lower Cretaceous sandstones of the Pará-Maranhão, São Luís, Bragança-Viseu and Barreirinhas basins. Arkoses from the Pará-Maranhão Basin show neoformed or infiltrated clay coatings, mica replacement and expansion by kaolinite and vermiculite, and precipitation of grain-replacive and pore-filling quartz, kaolinite, albite, chlorite, calcite, dolomite, siderite, pyrite and titanium oxides. Compaction, quartz and calcite cementation were the main porosity-reducing processes. Barreirinhas Basin lithic arkoses and subarkoses display clay coatings, compaction of metamorphic fragments into pseudomatrix, and precipitation of grain-replacive and pore-filling kaolinite, quartz, albite, chlorite, calcite, dolomite, TiO2 and pyrite. The main porosity-reducing processes were calcite cementation in the subarkoses, and compaction and quartz cementation in lithic arkoses. Quartzarenites from this basin were early- and pervasively cemented by dolomite. Arkoses and lithic arkoses of the São Luís and Bragança-Viseu basins show clay coatings, pseudomatrix from mud intraclasts compaction, and precipitation of pore-filling and grain-replacive kaolinite, vermiculite, smectite, quartz, albite, chlorite, illite, calcite, dolomite, hematite, TiO2 and pyrite. Compaction of mud intraclasts and dissolution of feldspars and heavy minerals were the main porosity-modification processes. These preliminary results may contribute to the understanding of the spatial and temporal distribution of the diagenetic processes and their impacts on the porosity of the sandstones from these basins.  相似文献   

10.
淮北白浆土发育与晚第四纪古地理环境变化   总被引:3,自引:0,他引:3       下载免费PDF全文
本文从淮北白浆土的剖面二段性出发,根据土壤性质的剖面变化,剖析了这种土壤中存在着的土壤发生间断性,并通过化学成分、粘土矿物组成、铁锰结核的地球化学、土壤薄片及石英颗粒形态、抱粉以及年龄等分析、鉴定和测定,结合土壤与地貌的关系,揭示了这种土壤上、下部土体间不同的发育状态。研究表明,淮北白浆土的形成并非全新世以来某种单一成土过程的结果,而是本区晚第四纪以来不同阶段地貌演变和气候变化造成的土壤演变的外在表现,它还记录了本区多次抬升-剥蚀-堆积-土壤发育的交替演变。  相似文献   

11.
The results of the study of clay mineral alterations in Upper Pleistocene sediments of the southern trough in the Guaymas Basin (Gulf of California) due to the influence of hydrothermal solutions and heat produced by sill intrusions are discussed. Core samples from DSDP Holes 477 and 477A were taken for the analysis of clay minerals. Application of the method of modeling X-ray diffraction patterns of oriented specimens of the finely dispersed particles made it possible to establish the phase composition of clay minerals, determine their structural parameters, and obtain reliable quantitative estimates of their contents in natural mixtures. The modeling data allowed us to characterize reliably the transformation of clay minerals in sediments of the hydrothermally active southern trough in the Guaymas Basin. In Upper Pleistocene sandy–clayey sediments of the southern trough, changes in the composition of clay minerals occurred under the influence of a long-living hydrothermal system. Its lower part (interval 170.0–257.5 m) with maximum temperatures (~300°C) was marked by the formation of chlorite. Terrigenous clay minerals are not preserved here. Saponite appears at a depth of 248 m in the chlorite formation zone. Higher in the sedimentary section, the interval 146–170 m is also barren of terrigenous clay minerals. Sediments of this interval yielded two newly formed clay minerals (chlorite and illite), which were formed at lower temperatures (above 180°C and below 300°C, approximately up to ~250°C), while the relatively low-temperature upper part (110–146 m) of the hydrothermal system (from ~140°C to ~180°C) includes the mixture of terrigenous and newly formed clay minerals. Terrigenous illite is preserved here. Illitization of the mixed-layer illite–smectite was subjected to illitization. The terrigenous montmorillonite disappeared, and chlorite–smectite with 5–10% of smectite layers were formed. In the upper interval (down to approximately 110 mbsf), the composition of terrigenous clay minerals remains unchanged. They are composed of the predominant mixed-layer illite–smectite and montmorillonite, the subordinate illite, mixed-layer chlorite–smectite with 5% of smectite layers, mixed-layer kaolinite–smectite with 30% of smectite layers, and kaolinite. This composition of clay minerals changed under the influence of sill intrusions into the sedimentary cover at 58–105 m in the section of Hole 477. The most significant changes are noted in the 8-m-thick member above the sill at 50–58 m. The upper part of this interval is barren of the terrigenous mixed-layer illite–smectite, which is replaced by the newly formed trioctahedral smectite (saponite). At the same time, the terrigenous dioctahedral smectite (montmorillonite) is preserved. The composition of terrigenous clay minerals remains unchanged at the top of the unit underlying the sill base.  相似文献   

12.
The present work aimed to determine the mineralogical composition of Ypresian series and to clarify the influence of the dissolution of siliceous frustules on the genesis of fibrous clay minerals. The specimens sampled from CPG trench are mainly constituted of silica-rich rocks at Mides area located at the western part of Gafsa-Metlaoui basin. The samples were investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM) in order to determine texture of constituents. The data obtained indicate that the bulk rock samples are mainly made up of opal CT and clay minerals. The latter consists of palygorskite-sepiolite minerals associated with smectite and few amount of illite. The trend of mineralogical composition indicates that fibrous clay minerals are more concentrated at the upper part. SEM observations indicated that palygorskite mineral appears as thread-like facies, which surround foliated texture of smectite in the lower part of the Mides section, although with the low Mg activity confirmed by the absence of dolomite. But, at the upper part of the Mides section, SEM observations revealed the occurrence of siliceous frustules, which have numerous dissolved areas and replacement of carbonate tests by silica. The dissolution saturated the depositional environment with silica which is required for the formation of palygorskite and sepiolite minerals, in addition to high Mg activity confirmed by the presence of dolomite in the bulk rock, which is required basically for the formation of sepiolite. Although the genesis mode of palygorskite and sepiolite is similar with very little difference, the genesis of sepiolite needs a high alkalinity than the formation of palygorskite.  相似文献   

13.
In the margin of southern Junggar basin, there is a potential of shale gas with the upper Permian l.uoaogou Formation. For a detailed understanding and evaluation with the shale gas geological characteristics of l.uoaogou Formation, the petrologic characteristics of the carbonaceous shale was researched, and the results show that: ( 1 ) in l.ucaogou Formation, the mean value of the brittle mineral percentages of the upper member, the middle member and the lower member are all more than 50%, but it is the highest in the middle member, and it is second in the lower member. At the same time, in the lower member, the mean value of the brittle mineral percentages is significantly lower than the upper and middle members; (2)the main brittle mineral in each member are quartz+feldspar, and there is a same change rule between the quartz+feldspar content and the total brittle mineral, that is; The quartz + feldspar content is the highest in the middle member, followed with the lower member, and it is obviously low in the upper member; (3 )from the lower member to the upper member, the content of carbonate in the carbonaceous shale are gradually reduced; (4) the clay mineral content of the carbonaceous shale of the upper member is far higher than the lower and middle members. And the clay mineral in each member are mainly constituted with illite and illite/Mongolia inter layer; ( 5 ) in the northern margin of the western part of the Bogda Mountain, south Junggar Basin, the brittle mineral content of the carbonaceous shale generally present as a decreasing trend from west to east to Fu Rang.  相似文献   

14.
A red soil profile in Xuancheng, Anhui province, southern China, in the middle to lower reaches of the Yangtze River, was investigated using X‐ray diffraction, X‐ray fluorescence spectrometer, and scanning electron microscopy. The mobile components K2O and Na2O and trace elements Ba and Sr of the Xuancheng section exhibit a general trend of decrease downward along the red soil profile, together with an increase downward of chemical index of alteration (CIA) values, suggesting more intense depletion in the lower portion than in the upper portion. The major components SiO2, Al2O3 and Fe2O3, as well as SiO2/Al2O3, SiO2/Fe2O3 and Al2O3/Fe2O3 ratios, show notable fluctuations along the soil profile, indicating intense climatic oscillations in the area during the Pleistocene age. The clay mineral assemblage of the Xuancheng section can be generally subdivided into three groups, suggesting a general trend of three stages of climate changes. The lower portion of ~10.4–6.3 m depth has a lower illite content and higher abundance of kaolinite and illite–smectite (I/S) clays, indicating that a warm and wet climate prevailed over the episode of ca. 600–350 ka BP. A decrease in abundance of kaolinite and I/S clays and increase in illite content at a depth of ~6.3–2.2 m probably indicate a transition stage of climate change from warm/humid to cool/dry in the period ca. 350–80 ka BP. The higher illite content and lower abundance of kaolinite and I/S clays in the upper portion of ~2.2–0 m depth suggest that a relatively cool and dry climate dominated since ca. 80 ka BP. Based on changes in clay mineralogy and chemical indices of the sediments, seven warm/cold fluctuations were determined in the area since the Middle Pleistocene. Climate changes documented in the Xuancheng section are in agreement with the δ18O records of sediments from the equatorial Pacific Core V28‐238 and the loess–palaeosol sequences in the Loess Plateau of northwestern China. Correlated to the episode of S4 and S5 soil units in the Loess Plateau, the period of ca. 600–350 ka BP in the Xuancheng area was dominated by the particularly strong East Asia summer monsoon, as indicated by its most abundant kaolinite and I/S clays. Fluctuations in clay mineralogy along the Xuancheng soil profile were mainly controlled by both the East Asia summer and winter monsoons in response to the global changes in the Middle–Late Pleistocene. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The Lower Krol sediments consist of intercalations of dolomite with shales in the marginal areas (Solan and Nainital), while limestones are interbedded with marls in the central part of the basin (Massoorie). The Upper Krols are largely composed of dolomites with subordinate limestones and shales.The non-carbonate detrital fraction is dominated by quartz with minor amounts of orthoclase, microcline and plagioclase feldspars. Illite and chlorite constitute the dominant clay minerals, lesser amounts of corrensite and kaolinite are sometimes present. An eastward increase in illite and decrease in chlorite has been ascribed to the supply and distribution of the terrigenum.Zirconium, rubidium, strontium, zinc, nickel and manganese were determined by X-ray fluorescence. Early diagenetic dolomites contain Sr, Zn, Ni and Mn in trace amounts, while the late diagenetic dolomites are characterized by an absence of these elements. The posttectonic dolomites are unusually rich in iron, manganese and sometimes in zinc.Authigenic formation of alkali feldspars, chlorite, illite, quartz and pyrite is not uncommon. The feldspars appear to have formed at early and late diagenetic stages. Potash feldspars dominate over albite in association with dolomite, whereas albite tends to be more common in the limestones.The Krol sedimentation seems to have started in a shallow coastal lagoon behind a barrier beach, upwards changing into tidal-flat deposits.  相似文献   

16.
Upper Cretaceous phosphorite beds of the Duwi Formation, Upper Egypt, are intercalated with limestone, sandy limestone, marl, calcareous shales, and calcareous sandstone. Calcareous intercalations were subjected to field and detailed petrographic, mineralogical and geochemical investigations in order to constrain their rock composition and origin. Mineralogically, dolomite, calcite, quartz, francolite and feldspars are the non-clay minerals. Smectite, kaolinite and illite represent the clay minerals. Major and trace elements can be classified as the detrital and carbonate fractions based on their sources. The detrital fraction includes the elements that are derived from detrital sources, mainly clay minerals and quartz, such as Si, Al, Fe, Ti, K, Ba, V, Ni, Co, Cr, Zn, Cu, Zr, and Mo. The carbonate fraction includes the elements that are derived from carbonates, maily calcite and dolomite, such as Ca, Mg and Sr. Dolomite occurs as being dense, uniform, mosaic, very fine-to-fine, non-ferroan, and non-stoichiometrical, suggesting its early diagenetic formation in a near-shore oxidizing shallow marine environment. The close association and positive correlation between dolomite and smectite indicates the role of clay minerals in the formation of dolomite as a source of Mg^2+ -rich solutions. Calcareous rocks were deposited in marine, oxidizing and weakly alkaline conditions, marking a semi-arid climatic period. The calcareous/argillaceous alternations are due to oscillations in clay/carbonate ratio.  相似文献   

17.
为揭示伦坡拉盆地渐新世—中新世之交黏土矿物蕴含的古气候信息,探讨其与青藏高原隆升及全球气候响应过程的关系,利用X射线衍射和荧光光谱分析对蒋日阿错剖面的黏土矿物特征进行了深入研究。结果表明:区内泥质岩中黏土矿物以伊/蒙混层矿物为主,伊利石次之,仅含有少量绿泥石和蒙脱石。黏土矿物的垂向组合特征显示伊利石和绿泥石含量在剖面下部低、上部高,伊/蒙混层含量与之相反,伊/蒙混层和伊利石在剖面中部呈明显波动变化,蒙脱石只出现在剖面中下部,可能为区域火山喷发产物在碱性环境中蚀变而成。伊利石结晶度变化于0.24°~0.48°,平均值为0.41°,表明样品未发生明显成岩蚀变,主微量元素比值指示研究区物源位置未发生较大改变,因此研究剖面黏土矿物特征可以有效反映伦坡拉盆地古气候演化过程。根据自生黏土矿物的习性指出伦坡拉盆地在渐新世—中新世之交出现了一次明显的降温事件,并且这次降温在青藏高原内部及周缘地区普遍存在,但造成这次降温事件的根本原因仍值得进一步探讨。  相似文献   

18.
Metasedimentary and sedimentary rocks that represent the allochthonous Bolkardagi Unit crop out in the Central Taurus Belt. Devonian units include mainly slate, metadolomite, metadolomitic limestone, and metasandstone. Slates with slaty cleavage and chlorite-mica stacks are characterized by phyllosilicate, quartz, calcite, dolomite, feldspar, and goethite. Phyllosilicates consist of 2M1 and lesser amounts of 1M muscovite, IIb chlorite, pyrophyllite, paragonite. PM, C-V, C-S. rectorite, and dickite, and reflect conditions of the low epizone-anchizone. In the Carboniferous-Triassic units, limestone, clayey limestone, dolomitic limestone, marl, shale, and sandstone retaining primary textures are composed of calcite, dolomite, quartz,1Md illite, chlorite, and I-S, and locally smaller quantities of 2M1 muscovite, PM, paragonite, pyrophyllite, and rectorite. In contrast, the Triassic formation is made up of calcite, 1Md illite, I-S, kaolinite, smectite, chlorite, C-S, C-V, dolomite, and quartz. Textural and mineralogical data indicate that development of the diagenetic-metamorphic grade in the Central Taurus was related to sedimentary burial and thrusting; moreover, the metasedimentary rocks were metamorphosed in a typical anticlockwise P-T-t pathway in an extensional setting.  相似文献   

19.
Mineralogical and chemical investigations (<2μm clay separates) of shale samples from the Neogene-age Surma Group obtained from four wells (Habiganj-11, Shahbazpur-1, Titas-11, Titas-15) in the Bengal basin, Bangladesh, were carried out in order to reveal the clay mineral composition as reservoir exploration and exploitation requires a good understanding of the clay minerals. The samples were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-Ray fluorescence spectrometry (XRF). Mineralogically, the sub-surface Surma Group shales comprise predominantly quartz, plagioclase, illite, chlorite, kaolinite, with lesser amounts of K-feldspar, dolomite and smectite, and minor to trace amounts of calcite, siderite and pyrite. The chemical composition of the <2 μm clay separates also suggests an illite and chlorite-rich composition. With increasing burial depth, the Surma Group shales are enriched in illite. The gradual decreasing of the smectite clays with depth and ultimate disappearance at greater depths (≥ 3000 m) may have been responsible for the presence of the diagenetic illite. Based on the mineralogical composition it is most likely that the illite-chlorite associations together with quartz and feldspar were predominantly detrital in origin and thus reflect the presence of a rapidly-rising source terrain not subjected to intense weathering.  相似文献   

20.
Seventy-six samples of formation waters were collected from oil wells producing from the Aux Vases or Cypress Formations in the Illinois Basin. Forty core samples of the reservoir rocks were also collected from the two formations. Analyses of the samples indicated that the total dissolved solids content (TDS) of the waters ranged from 43,300 to 151,400 mg/L, far exceeding the 35,400 mg/L of TDS found in typical seawater. Cl-Br relations suggested that high salinities in the Aux Vases and Cypress formation waters resulted from the evaporation of original seawater and subsequent mixing of the evaporated seawater with concentrated halite solutions. Mixing with the halite solutions increased Na and Cl concentrations and diluted the concentration of other ions in the formation waters. The elemental concentrations were influenced further by diagenetic reactions with silicate and carbonate minerals. Diagenetic signatures revealed by fluid chemistry and rock mineralogy delineated the water-rock interactions that took place in the Aux Vases and Cypress sandstones. Dissolution of K-feldspar released K into the solution, leading to the formation of authigenic illite and mixed-layered illite/smectite. Some Mg was removed from the solution by the formation of authigenic chlorite and dolomite. Dolomitization, calcite recrystallization, and contribution from clay minerals raised Sr levels significantly in the formation waters. The trend of increasing TDS of the saline formation waters with depth can be explained with density stratification. But, it is difficult to explain the combination of the increasing TDS and increasing Ca/Na ratio with depth without invoking the controversial 'ion filtration' mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号