首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low pressure-high temperature (LPHT) metamorphism, with geothermal gradients in the order of 50–100°C/km, is a common feature of the late evolution of collisional orogens. These abnormal thermal conditions may be the results of complex interactions between magmatism, metamorphism and deformation. The Agly massif, in the French Pyrenees, preserves the metamorphic footprints of the late Variscan thermal structure of an almost continuous section from the upper and middle continental crust. The upper crust is characterized by a very high geothermal gradient of ~55°C/km, evolving from greenschist to amphibolite facies, while the middle crust, exposed in a gneissic core, exhibits granulite facies conditions with a near isothermal geothermal gradient (<8°C/km) between 740 and 790°C. The abnormal and discontinuous crustal geothermal gradient, dated at c. 305 Ma on syn-granulitic monazite by LA-ICP-MS, is interpreted to be the result of magmatic intrusions at different structural levels in the crust: the Ansignan charnockite (c. 305 Ma) in the deepest part of the gneissic core, the Tournefort granodiorite (c. 308 Ma) at the interface between the gneissic core and the upper crust and the Saint-Arnac granite (c. 304 Ma) in the upper section of the massif. The heat input from these magmas combined with the thermal buffering effect of the biotite dehydration-melting reaction resulted in the near isothermal geothermal gradient in the gneissic core (melt-enhanced geotherm). The higher geothermal gradient (>50°C/km) in the upper crust is only due to conduction between the hot middle crust and the Earth's surface. The estimated maximum finite pressure range suggests that ~10 to 12 km of crust are exposed in the Agly massif while the present-day thickness does not exceed 5–6 km. This pressure/depth gap is consistent with the presence of several normal mylonitic shear zones that could have contributed to the subtraction of ~5 km of the rock pile. Monazite U–Th–Pb ages carried out on monazite overgrowths from a highly mylonitized sample suggest that this vertical thinning of the massif occurred at c. 296–300 Ma. This later Variscan extension might have slightly perturbed the 305 Ma geothermal gradient, resulting in an apparent higher conductive geothermal gradient in the upper crust. Although the Agly massif has been affected by Cretaceous extension and Eocene Alpine compression, we suggest that most of the present-day thickness of the column rock was acquired by the end of the Palaeozoic.  相似文献   

2.
Small oval‐shaped, unshielded monazite grains found in a Variscan garnet–muscovite‐bearing mylonitic paragneiss from the Liegendserie unit of the Münchberg Metamorphic Complex in the northwestern Bohemian Massif, central Europe, yield only pre‐Variscan ages. These ages, determined with the electron microprobe, have maxima at c. 545, 520 and 495 Ma and two side‐maxima at 455 and 575 Ma, and are comparable with previously determined ages of detrital zircon reported from paragneisses elsewhere in the NW Bohemian Massif. The pressure (P)–temperature (T) history of this mylonitic paragneiss, determined from contoured P–T pseudosections, involved an initial stage at 6 kbar/600 °C, reaching peak P–T conditions of 12.5 kbar/670 °C with partial melting, followed by mylonitization and retrogression to 9 kbar/610 °C. The monazite, representing detrital grains derived from igneous rocks of a Cadomian provenance between 575 and 455 Ma, has survived these Variscan metamorphic/deformational events unchanged because this mineral has probably never been outside its P–T stability field during metamorphism.  相似文献   

3.
The pre-Mesozoic, mainly Variscan metamorphic basement of the Col de Bérard area (Aiguilles Rouges Massif, External domain) consists of paragneisses and micaschists together with various orthogneisses and metabasites. Monazite in metapelites was analysed by the electron microprobe (EMPA-CHIME) age dating method. The monazites in garnet micaschists are dominantly of Variscan age (330–300 Ma). Garnet in these rocks displays well developed growth zonations in Fe–Mg–Ca–Mn and crystallized at maximal temperatures of 670°C/7 kbar to the west and 600°C/7–8 kbar to the east. In consequence the monazite is interpreted to date a slightly pressure-dominated Variscan amphibolite-facies evolution. In mylonitic garnet gneisses, large metamorphic monazite grains of Ordovician–Silurian (~440 Ma) age but also small monazite grains of Variscan (~300 Ma) age were discovered. Garnets in the mylonitic garnet gneisses display high-temperature homogenized Mg-rich profiles in their cores and crystallized near to ~800°C/6 kbar. The Ordovician–Silurian-age monazites can be assigned to a pre-Variscan high-temperature event recorded by the homogenised garnets. These monazite age data confirm Ordovician–Silurian and Devonian–Carboniferous metamorphic cycles which were already reported from other Alpine domains and further regions in the internal Variscides.  相似文献   

4.
New petrographic and microstructural observations, mineral equilibria modelling and U/Pb (monazite) geochronological studies were carried out to investigate the relationships between deformation and metamorphism across the Rehamna massif (Moroccan Variscan belt). In this area, typical Barrovian (muscovite to staurolite) zones developed in Cambrian to Carboniferous metasedimentary rocks that are distributed around a dome‐like structure. First assemblages are characterized by the presence of locally preserved andalusite, followed by prograde evolution culminating at 6 kbar and 620 °C in the structurally deepest staurolite zone rocks. This Barrovian sequence was subsequently uplifted to supracrustal levels, heterogeneously reworked at greenschist facies conditions, which was followed locally by static growth of andalusite, indicating heating to 2.5–4 kbar and 530–570 °C. The 206Pb/238U monazite age of 298.3 ± 4.1 Ma is interpreted as minimum age of peak metamorphic conditions, whereas the ages of 275.8 ± 1.7 Ma and 277.0 ± 1.1 Ma date decompression and heating at low pressure, in agreement with previous dating of Permian granitoids intruding the Rehamna massif. The prograde metamorphism occurred during thickening and associated horizontal flow in the deeper crust (S1 horizontal schistosity). The horizontally disposed metamorphic zones were subsequently uplifted by a regional scale antiform during ongoing N–S compression. The re‐heating of the massif follows late massive E–W shortening, refolding and retrograde shearing of all previous fabrics coevally with regionally important intrusions of Permian granitoids. We argue that metamorphic evolution of the Rehamna massif occurred several hundred kilometres from the convergent plate boundaries in the interior of continental Gondwanan plate. The tectonometamorphic history of the Rehamna massif is put into Palaeozoic plate tectonic perspective and Late Carboniferous reactivation of (Devonian)–Early Carboniferous basins formed during stretching of the north Gondwana margin and formation of the Palaeotethys Ocean. The inherited heat budget of these magma‐rich basins plays a role in the preferential location of this intracontinental orogen. It is shown that rapid transition from lithospheric stretching to compression is characterized by specific HT type of Barrovian metamorphism, which markedly differs from similar Barrovian sequences along Palaeozoic plate boundaries reported from Variscan Europe.  相似文献   

5.
For a long time the Moslavačka Gora Massif in Croatia has been regarded as a major outcrop of Variscan crystalline basement of the South Tisia block. However, new geochronological data indicate that this massif consists of a Cretaceous S-type granite pluton intruding a Cretaceous low-pressure/high-temperature (LP/HT) metamorphic envelope. The age of the LP/HT metamorphism is estimated at ~90–100 Ma using the method of electron microprobe based monazite dating. The Central Granite was dated at 82 ± 1 Ma (LA-SF-ICP-MS zircon age). The metamorphic complex comprises mainly felsic anatexites and orthogneisses of granitic composition, some metapelites (paragneisses and mica schists) and amphibolites. Zircons from three different samples of metagranite were dated at 486 ± 6, 483 ± 6, and 491 ± 1 Ma, suggesting that most of the metamorphic complex represents an Early Ordovician granitic series. The Cretaceous regional metamorphism culminated in granulite facies conditions of ~750°C and 3–4 kbar. A retrograde metamorphic event at lower amphibolite facies conditions overprinted the metamorphic complex. This event is probably related to the intrusion of the Central Granite. The southeastern sector of the massif was additionally affected by post-granitic, predominantly NE oriented shearing at greenschist facies conditions. As yet there is no clear evidence for Variscan events in the Moslavačka Gora Massif. Mineral relics of a medium-pressure amphibolite facies metamorphism are preserved in amphibolites. They are older than the Cretaceous LP/HT regional metamorphism, but their age is presently unknown. Some indications for a Permian regional metamorphic event are provided by inherited zircons in the Central Granite that have been dated with a Permian age, and by Permian monazite relics in metapelites. The Cretaceous high heat flow regime recorded in the Moslavačka Gora Massif is unique in the subcrop of the Pannonian Basin and may be a local feature triggered by a mafic intrusion in the lower crust.  相似文献   

6.
Hot collisional orogens are characterized by abundant syn-kinematic granitic magmatism that profoundly affects their tectono-thermal evolutions. Voluminous granitic magmas, emplaced between 360 and 270 Ma, played a visibly important role in the evolution of the Variscan Orogen. In the Limousin region (western Massif Central, France), syntectonic granite plutons are spatially associated with major strike–slip shear zones that merge to the northwest with the South Armorican Shear Zone. This region allowed us to assess the role of magmatism in a hot transpressional orogen. Microstructural data and U/Pb zircon and monazite ages from a mylonitic leucogranite indicate synkinematic emplacement in a dextral transpressional shear zone at 313 ± 4 Ma. Leucogranites are coeval with cordierite-bearing migmatitic gneisses and vertical lenses of leucosome in strike–slip shear zones. We interpret U/Pb monazite ages of 315 ± 4 Ma for the gneisses and 316 ± 2 Ma for the leucosomes as the minimum age of high-grade metamorphism and migmatization respectively. These data suggest a spatial and temporal relationship between transpression, crustal melting, rapid exhumation and magma ascent, and cooling of high-grade metamorphic rocks.Some granites emplaced in the strike–slip shear zone are bounded at their roof by low dip normal faults that strike N–S, perpendicular to the E–W trend of the belt. The abundant crustal magmatism provided a low-viscosity zone that enhanced Variscan orogenic collapse during continued transpression, inducing the development of normal faults in the transpression zone and thrust faults at the front of the collapsed orogen.  相似文献   

7.
A structural, petrological and geochronological (U‐Th‐Pb of zircon and monazite) study reveals that the lower crust sequences of the Variscan high‐grade basement cropping out between Solenzara and Porto Vecchio, south‐east Corsica (France) have been tectonically juxtaposed along with middle crustal rocks during the extrusion of the orogenic root of the Variscan chain. We propose that a system of high‐temperature, orogen‐parallel shear zones that developed under a transpressive dextral tectonic regime caused the exhumation of the entire sequence. This tectonic complex is thus made up of rocks having undergone different P–T conditions (eclogite‐?, high‐pressure granulite facies and amphibolite facies) at different times, reflecting the progressive foreland migration of the orogenic front. The Solenzara granulites were derived from burial of continental crust to high‐pressure (1.8–1.4 GPa) and high‐ to ultrahigh‐temperature conditions (900–1000 °C) during the Variscan convergence: U–Pb ELA‐ICPMS zircon dating constrained the timing of this metamorphism at c. 360 Ma. The gneisses cropping out at Porto Vecchio are middle crustal‐level rocks that reached their peak temperature conditions (700–750 °C at <1.0 GPa) at c. 340 Ma. The diachronism of the metamorphic events, the foliation patterns and their geometry suggest that the granulites were exhumed to middle crustal levels through channel flow tectonics under continuous compression. The amphibolite facies gneisses of Porto Vecchio and the granulites of Solenzara were accreted through the development of a major dextral mylonitic zone forming under amphibolite facies conditions: in situ monazite isotope dating (ELA‐ICPMS) revealed that this deformation occurred at c. 320 Ma and was accompanied by the emplacement of syntectonic high‐K melts. A final HTLP static overprint, constrained at 312–308 Ma by monazite U‐Th‐Pb isotope dating, is related to the emplacement of the igneous products of the Sardinia‐Corsica batholith and marks the transition from the Variscan orogenic event to the Permian extension.  相似文献   

8.
《Gondwana Research》2011,19(4):653-673
In France, the Devonian–Carboniferous Variscan orogeny developed at the expense of continental crust belonging to the northern margin of Gondwana. A Visean–Serpukhovian crustal melting has been recently documented in several massifs. However, in the Montagne Noire of the Variscan French Massif Central, which is the largest area involved in this partial melting episode, the age of migmatization was not clearly settled. Eleven U–Th–Pbtot. ages on monazite and three U–Pb ages on associated zircon are reported from migmatites (La Salvetat, Ourtigas), anatectic granitoids (Laouzas, Montalet) and post-migmatitic granites (Anglès, Vialais, Soulié) from the Montagne Noire Axial Zone are presented here for the first time. Migmatization and emplacement of anatectic granitoids took place around 333–326 Ma (Visean) and late granitoids emplaced around 325–318 Ma (Serpukhovian). Inherited zircons and monazite date the orthogneiss source rock of the Late Visean melts between 560 Ma and 480 Ma. In migmatites and anatectic granites, inherited crystals dominate the zircon populations. The migmatitization is the middle crust expression of a pervasive Visean crustal melting event also represented by the “Tufs anthracifères” volcanism in the northern Massif Central. This crustal melting is widespread in the French Variscan belt, though it is restricted to the upper plate of the collision belt. A mantle input appears as a likely mechanism to release the heat necessary to trigger the melting of the Variscan middle crust at a continental scale.  相似文献   

9.
SHRIMP U–Pb geochronology and monazite EPMA chemical dating from the southeast Gawler Craton has constrained the timing of high-grade reworking of the Early Paleoproterozoic (ca 2450 Ma) Sleaford Complex during the Paleoproterozoic Kimban Orogeny. SHRIMP monazite geochronology from mylonitic and migmatitic high-strain zones that deform the ca 2450 Ma peraluminous granites indicates that they formed at 1725 ± 2 and 1721 ± 3 Ma. These are within error of EPMA monazite chemical ages of the same high-strain zones which range between 1736 and 1691 Ma. SHRIMP dating of titanite from peak metamorphic (1000 MPa at 730°C) mafic assemblages gives ages of 1712 ± 8 and 1708 ± 12 Ma. The post-peak evolution is constrained by partial to complete replacement of garnet–clinopyroxene-bearing mafic assemblages by hornblende–plagioclase symplectites, which record conditions of ~600 MPa at 700°C, implying a steeply decompressional exhumation path. The timing of Paleoproterozoic reworking corresponds to widespread deformation along the eastern margin of the Gawler Craton and the development of the Kalinjala Shear Zone.  相似文献   

10.
In Rogaland, South Norway, a polycyclic granulite facies metamorphic domain surrounds the late‐Sveconorwegian anorthosite–mangerite–charnockite (AMC) plutonic complex. Integrated petrology, phase equilibria modelling, monazite microchemistry, Y‐in‐monazite thermometry, and monazite U–Th–Pb geochronology in eight samples, distributed across the apparent metamorphic field gradient, imply a sequence of two successive phases of ultrahigh temperature (UHT) metamorphism in the time window between 1,050 and 910 Ma. A first long‐lived metamorphic cycle (M1) between 1,045 ± 8 and 992 ± 11 Ma is recorded by monazite in all samples. This cycle is interpreted to represent prograde clockwise P–T path involving melt production in fertile protoliths and culminating in UHT conditions of ~6 kbar and 920°C. Y‐in‐monazite thermometry, in a residual garnet‐absent sapphirine–orthopyroxene granulite, provides critical evidence for average temperature of 931 and 917°C between 1,029 ± 9 and 1,006 ± 8 Ma. Metamorphism peaked after c. 20 Ma of crustal melting and melt extraction, probably supported by a protracted asthenospheric heat source following lithospheric mantle delamination. Between 990 and 940 Ma, slow conductive cooling to 750–800°C is characterized by monazite reactivity as opposed to silicate metastability. A second incursion (M2) to UHT conditions of ~3.5–5 kbar and 900–950°C, is recorded by Y‐rich monazite at 930 ± 6 Ma in an orthopyroxene–cordierite–hercynite gneiss and by an osumilite gneiss. This M2 metamorphism, typified by osumilite paragenesis, is related to the intrusion of the AMC plutonic complex at 931 ± 2 Ma. Thermal preconditioning of the crust during the first UHT metamorphism may explain the width of the aureole of contact metamorphism c. 75 Ma later, and also the rarity of osumilite‐bearing assemblages in general.  相似文献   

11.
Collision‐related granitoid batholiths, like those of the Hercynian and Himalayan orogens, are mostly fed by magma derived from metasedimentary sources. However, in the late Neoproterozoic calcalkaline (CA) batholiths of the Arabian–Nubian Shield (ANS), which constitutes the northern half of the East African orogen, any sedimentary contribution is obscured by the juvenile character of the crust and the scarcity of migmatites. Here, we use paired in situ LASS‐ICP‐MS measurements of U–Th–Pb isotope ratios and REE contents of monazite and xenotime and SHRIMP‐RG analyses of separated zircon to demonstrate direct linkage between migmatites and granites in the northernmost ANS. Our results indicate a single prolonged period of monazite growth at 640–600 Ma, in metapelites, migmatites and peraluminous granites of three metamorphic suites: Abu‐Barqa (SW Jordan), Roded (S Israel) and Taba–Nuweiba (Sinai, Egypt). The distribution of monazite dates and age zoning in single monazite grains in migmatites suggest that peak thermal conditions, involving partial melting, prevailed for c. 10 Ma, from 620 to 610 Ma. REE abundances in monazite are well correlated with age, recording garnet growth and garnet breakdown in association with the prograde and retrograde stages of the melting reactions, respectively. Xenotime dates cluster at 600–580 Ma, recording retrogression to greenschist facies conditions as garnet continued to destabilize. Phase equilibrium modelling and mineral thermobarometry yield P–T conditions of ~650–680°C and 5–7 kbar, consistent with either water‐fluxed or muscovite‐breakdown melting. The expected melt production is 8–10 vol.%, allowing a melt connectivity network to form leading to melt segregation and extraction. U–Pb ages of zircon rims from leucosomes indicate crystallization of melt at 610 ± 10 Ma, coinciding with the emplacement of a vast volume of CA granites throughout the northern ANS, which were previously considered post‐collisional. Similar monazite ages (c. 620 Ma) retrieved from the amphibolite facies Elat schist indicate that migmatites are the result of widespread regional rather than local contact metamorphism, representing the climax of the East African orogenesis.  相似文献   

12.
In France, the Devonian–Carboniferous Variscan orogeny developed at the expense of continental crust belonging to the northern margin of Gondwana. A Visean–Serpukhovian crustal melting has been recently documented in several massifs. However, in the Montagne Noire of the Variscan French Massif Central, which is the largest area involved in this partial melting episode, the age of migmatization was not clearly settled. Eleven U–Th–Pbtot. ages on monazite and three U–Pb ages on associated zircon are reported from migmatites (La Salvetat, Ourtigas), anatectic granitoids (Laouzas, Montalet) and post-migmatitic granites (Anglès, Vialais, Soulié) from the Montagne Noire Axial Zone are presented here for the first time. Migmatization and emplacement of anatectic granitoids took place around 333–326 Ma (Visean) and late granitoids emplaced around 325–318 Ma (Serpukhovian). Inherited zircons and monazite date the orthogneiss source rock of the Late Visean melts between 560 Ma and 480 Ma. In migmatites and anatectic granites, inherited crystals dominate the zircon populations. The migmatitization is the middle crust expression of a pervasive Visean crustal melting event also represented by the “Tufs anthracifères” volcanism in the northern Massif Central. This crustal melting is widespread in the French Variscan belt, though it is restricted to the upper plate of the collision belt. A mantle input appears as a likely mechanism to release the heat necessary to trigger the melting of the Variscan middle crust at a continental scale.  相似文献   

13.
Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir‐like body of high‐P granulite below from low‐P metasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high‐P amphibolite facies metamorphism in the mid‐ to late‐Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar–Ar biotite ages with published PTt data for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of ~8 mm/year and ~80°C/Ma, with a drop in exhumation rate from ~20 to ~2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag of c. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90°C/Ma when all units had assembled into the massif. A two‐plate model of the Variscan orogeny in which the above evolution is related to a short‐lived intra‐Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale of c. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.  相似文献   

14.
Several metamorphic complexes in Southeast Asia have been interpreted as Precambrian basement, characterized by amphibolite to granulite facies metamorphism. In this paper, we re-evaluate the timing of this thermal event based on the large-scale geochronology and compositional variation of monazites from amphibolite to granulite facies metamorphic terranes in central Vietnam. Most of the samples in this study are from metamorphic rocks (n = 38) and granitoids (n = 11) in the Kontum Massif. Gneisses (n = 6) and granitoids (n = 5) from the Hai Van Migmatite Complex and the Truong Son Belt, located to the north of the massif, were also studied. Two distinct thermal episodes (245–230 Ma and 460–430 Ma) affected Kontum Massif gneisses, while a single dominant event at 240–220 Ma is recorded in the gneisses from the Hai Van Complex and the Truong Son Belt. Monazites from granitoids commonly yield an age of 240–220 Ma. Mesoproterozoic ages (1530–1340 Ma) were obtained only from monazite cores that are surrounded by c. 440 Ma overgrowths. Thermobarometric results, combined with concentrations of Y2O3, Ce2O3, and heavy rare earth elements in monazite, and recently reported pressure–temperature paths suggest that Triassic ages correspond to retrograde metamorphism following decompression from high- to medium-pressure/temperature conditions. Ordovician–Silurian ages reflect low-pressure/temperature metamorphism accompanied by isobaric heating during prograde metamorphism. Some samples were affected by both metamorphic events. We conclude that high-grade metamorphism observed in so-called Precambrian basement terranes in central Vietnam occurred during both the Permian–Triassic and the Ordovician–Silurian, while peraluminous granitoid magmatism is Triassic. Additionally, our preliminary analyses for U–Pb zircon age and whole-rock chemistry of granitic gneisses from the Truong Song Belt suggests the presence of the Ordovician–Silurian volcanic arc magmatism in the region. Based on the pressure–temperature–time–protolith evolutions, metamorphic rocks from central Vietnam provide a continuous record of subduction–accretion–collision tectonics between the South China and Indochina blocks: in the Ordovician–Silurian, the region was characterized by active continental margin tectonics, followed by continental collision during the Late Permian to Early Triassic and subsequent exhumation during the Late Triassic. The results also suggest that the timing of metamorphism and protolith formation as well as the geochemical features in other Southeast Asian terranes should be verified to achieve a better understanding of the Precambrian to Early Mesozoic tectonic history in Asia.  相似文献   

15.
The Variscan metamorphism in the Pyrenees is dominantly of the low‐pressure–high‐temperature (LP‐HT) type. The relics of an earlier, Barrovian‐type metamorphism that could be related to orogenic crustal thickening are unclear and insufficiently constrained. A microstructural and petrological study of micaschists underlying an Ordovician augen orthogneiss in the core of the Canigou massif (Eastern Pyrenees, France) reveals the presence of two syntectonic metamorphic stages characterized by the crystallization of staurolite (M1) and andalusite (M2), respectively. Garnet is stable during the two metamorphic stages with a period of resorption between M1 and M2. The metamorphic assemblages M1 and M2 record similar peak temperatures of 580°C at different pressure conditions of 5.5 and 3 kbar, respectively. Using chemical zoning of garnet and calculated P–T pseudosections, a prograde P–T path is constrained with a peak pressure at ~6.5 kbar and 550°C. This P–T path, syntectonic with respect to the first foliation S1, corresponds to a cold gradient (of ~9°C/km), suggestive of crustal thickening. Resorption of garnet between M1 and M2 can be interpreted either in terms of a simple clockwise P–T path or a polymetamorphic two‐stage evolution. We argue in favour of the latter, where the medium‐pressure (Barrovian) metamorphism is followed by a period of significant erosion and crustal thinning leading to decompression and cooling. Subsequent advection of heat, probably from the mantle, leads to a new increase in temperature, coeval with the development of the main regional fabric S2. LA‐ICP‐MS U–Th–Pb dating of monazite yields a well‐defined date at c. 300 Ma. Petrological evidence indicates that monazite crystallization took place close to the M1 peak pressure conditions. However, the similarity between this age and that of the extensive magmatic event well documented in the eastern Pyrenees suggests that it probably corresponds to the age of monazite recrystallization during the M2 LP‐HT event.  相似文献   

16.
Quartz-in-garnet inclusion barometry integrated with trace element thermometry and calculated phase relations is applied to mylonitized schists of the Pinkie unit cropping out on the island of Prins Karls Forland, western part of the Svalbard Archipelago. This approach combines conventional and novel techniques and allows deciphering of the pressure–temperature (P–T) evolution of mylonitic rocks, for which the P–T conditions could not have been easily deciphered using traditional methods. The results obtained suggest that rocks of the Pinkie unit were metamorphosed under amphibolite facies conditions at 8–10 kbar and 560–630°C and mylonitized at ~500 to 550°C and 9–11 kbar. The P–T results are coupled with in-situ Th–U-total Pb monazite dating, which records amphibolite facies metamorphism at c. 359–355 Ma. This is the very first evidence of late Devonian–early Carboniferous metamorphism in Svalbard and it implies that the Ellesmerian Orogeny on Svalbard was associated with metamorphism up to amphibolite facies conditions. Thus, it can be concluded that the Ellesmerian collision between the Franklinian margin of Laurentia and Pearya and Svalbard caused not only commonly accepted brittle deformation and weak greenschist facies metamorphism, but also a burial and deformation of rock complexes at much greater depths at elevated temperatures.  相似文献   

17.
Polymetamorphic units are important constituents of continent–continent collisional orogens, and rift metamorphic assemblages are often overprinted by subsequent metamorphism during subduction and collision. This study reports the metamorphic conditions and evolution of the Dorud–Azna metamorphic units in the central part of the Sanandaj–Sirjan zone (SSZ), Iran. Here, new geothermobarometry results are integrated with 40Ar/39Ar mineral and Th–U–Pb monazite and thorite ages to provide new insight of polyphase metamorphism in the two different basement units of the SSZ, the lower Galeh-Doz orthogneiss and higher Amphibolite-Metagabbro units. In the Amphibolite-Metagabbro unit, staurolite micaschist underwent a prograde P–T evolution from 640 ± 20 °C/6.2 ± 0.8 kbar in garnet cores (M1) to 680 ± 20 °C/7.2 ± 1.0 kbar in garnet rims (M2). Three Th–U–Pb monazite ages of 306 ± 5 Ma, 322 ± 28 Ma and 336 ± 39 Ma from the garnet-micaschists testify the Carboniferous age of M1 metamorphism. In the same unit, the metagabbro records P–T conditions of 4.0 ± 0.8 kbar and 580 ± 50 °C in the (magmatic) amphibole core (Late Carboniferous intrusion) to 7.5 ± 0.7 kbar and 700 ± 20 °C in the amphibole rim indicating a prograde P–T path during subsequent burial (M1). New 40Ar/39Ar dating of white mica from the staurolite micaschist yielded a staircase pattern ranging from 36 ± 12 Ma to 170 ± 2 Ma. This implies polymetamorphism with a minimum Late Jurassic cooling age through the Ar retention temperature of ca. 425 ± 25 °C after M2 metamorphism and a Paleogene low-grade metamorphic overprint (M3), while 40Ar/39Ar white mica dating of garnet micaschist yielded a plateau age of 137.84 ± 0.65 Ma. We therefore interpret the amphibolite-grade metamorphism M2 to have predated 170 Ma and is likely between 180 and 200 Ma. Furthermore, it is overprinted at about 36 Ma under retrogressive low-grade M3 metamorphism (at temperatures of ~350–240 °C) during final shortening and exhumation. In the underlying Galeh-Doz unit, the Panafrican granitic orthogneiss intruded at P–T conditions of 3.2 ± 4 kbar and 700 ± 20 °C, then it was metamorphosed and deformed at 600 ± 50 °C and 2.0 ± 0.8 kbar (metamorphic stage M1) prior to Late Carboniferous intrusion of mafic dikes. 40Ar/39Ar dating of amphibole from the Galeh-Doz orthogneiss gave plateau-like steps between 260 and 270 Ma, representing the age of cooling through ca. 500 °C after the M1 metamorphic event. Interestingly, the results of this study demonstrate polyphase metamorphic histories in both the Galeh-Doz orthogneiss and Amphibolite-Metagabbro units at different P–T conditions and final thick-skinned Paleogene emplacement of these units over the underlying low-grade metamorphic June Complex. Our findings suggest that both units are affected by high-T/low-P Late Carboniferous orogenic metamorphism along with the bimodal magmatism, as result of rifting. We propose that the Early Jurassic amphibolite-grade M2 metamorphism of the SSZ is correlated with the initial subduction of the Neotethyan Ocean. Eventually, the investigated units reflect various stages of a Wilson cycle, from rifting to initiation of the subduction in final plate collision.  相似文献   

18.
Strain localization within shear zones may partially erase the rock fabric and the metamorphic assemblage(s) that had developed before the mylonitic event. In poly‐deformed basements, the loss of information on pre‐kinematic phases of mylonites hinders large‐scale correlations based on tectono‐metamorphic data. In this study, devoted to a relict unit of Variscan basement reworked within the nappe stack of the Northern Apennines (Italy), we investigate the possibility to reconstruct a complete pressure (P)temperature (T)–deformation (D) path of mylonitic micaschist and amphibolite by integrating microstructural analysis, mineral chemistry and thermodynamic modelling. The micaschist is characterized by a mylonitic fabric with fine‐grained K‐white mica and chlorite enveloping mica‐fishes, quartz, and garnet pseudomorphs. Potassic white mica shows Mg‐rich cores and Mg‐poor rims. The amphibolite contains green amphibole+plagioclase+garnet+quartz+ilmenite defining S1 with a superposed mylonitic fabric localized in decimetre‐ to centimetre‐scale shear zones. Garnet is surrounded by an amphibole+plagioclase corona. Phase diagram calculations provide P–T constraints that are linked to the reconstructed metamorphic‐deformational stages. For the first time an early high‐P stage at >11 kbar and 510°C was constrained, followed by a temperature peak at 550–590°C and 9–10 kbar and a retrograde stage (<475°C, <7 kbar), during which ductile shear zones developed. The inferred clockwise P–T–D path was most likely related to crustal thickening by continent‐continent collision during the Variscan orogeny. A comparison of this P–T–D path with those of other Variscan basement occurrences in the Northern Apennines revealed significant differences. Conversely, a correlation between the tectono‐metamorphic evolution of the Variscan basement at Cerreto pass, NE Sardinia and Ligurian Alps was established.  相似文献   

19.
The Palaeo‐Mesoproterozoic metapelite granulites from northern Garo Hills, western Shillong‐Meghalaya Gneissic Complex (SMGC), northeast India, consist of resorbed garnet, cordierite and K‐feldspar porphyroblasts in a matrix comprising shape‐preferred aggregates of biotite±sillimanite+quartz that define the penetrative gneissic fabric. An earlier assemblage including biotite and sillimanite occurs as inclusions within the garnet and cordierite porphyroblasts. Staurolite within cordierite in samples without matrix sillimanite is interpreted to have formed by a reaction between the sillimanite inclusion and the host cordierite during retrogression. Accessory monazite occurs as inclusions within garnet as well as in the matrix, whereas accessory xenotime occurs only in the matrix. The monazite inclusions in garnet contain higher Ca, and lower Y and Th/U than the matrix monazite outside resorbed garnet rims. On the other hand, matrix monazite away from garnet contains low Ca and Y, and shows very high Th/U ratios. The low Th/U ratios (<10) of the Y‐poor garnet‐hosted monazite indicate subsolidus formation during an early stage of prograde metamorphism. A calculated P–T pseudosection in the MnCKFMASH‐PYCe system indicates that the garnet‐hosted monazite formed at <3 kbar/600 °C (Stage A). These P–T estimates extend backward the previously inferred prograde P–T path from peak anatectic conditions of 7–8 kbar/850 °C based on major mineral equilibria. Furthermore, the calculated P–T pseudosections indicate that cordierite–staurolite equilibrated at ~5.5 kbar/630 °C during retrograde metamorphism. Thus, the P–T path was counterclockwise. The Y‐rich matrix monazite outside garnet rims formed between ~3.2 kbar/650 °C and ~5 kbar/775 °C (Stage B) during prograde metamorphism. If the effect of bulk composition change due to open system behaviour during anatexis is considered, the P–T conditions may be lower for Stage A (<2 kbar/525 °C) and Stage B (~3 kbar/600 °C to ~3.5 kbar/660 °C). Prograde garnet growth occurred over the entire temperature range (550–850 °C), and Stage‐B monazite was perhaps initially entrapped in garnet. During post‐peak cooling, the Stage‐B monazite grains were released in the matrix by garnet dissolution. Furthermore, new matrix monazite (low Y and very high Th/U ≤80, ~8 kbar/850–800 °C, Stage C), some monazite outside garnet rims (high Y and intermediate Th/U ≤30, ~8 kbar/800–785 °C, Stage D), and matrix xenotime (<785 °C) formed through post‐peak crystallization of melt. Regardless of textural setting, all monazite populations show identical chemical ages (1630–1578 Ma, ±43 Ma). The lithological association (metapelite and mafic granulites), and metamorphic age and P–T path of the northern Garo Hills metapelites and those from the southern domain of the Central Indian Tectonic Zone (CITZ) are similar. The SMGC was initially aligned with the southern parts of CITZ and Chotanagpur Gneissic Complex of central/eastern India in an ENE direction, but was displaced ~350 km northward by sinistral movement along the north‐trending Eastern Indian Tectonic Zone in Neoproterozoic. The southern CITZ metapelites supposedly originated in a back‐arc associated with subducting oceanic lithosphere below the Southern Indian Block at c. 1.6 Ga during the initial stage of Indian shield assembly. It is inferred that the SMGC metapelites may also have originated contemporaneously with the southern CITZ metapelites in a similar back‐arc setting.  相似文献   

20.
Among the Middle Penninic basements of the Internal NW-Alps, the Ruitor massif shows the best preserved remnants of pre-Permian metamorphic rocks. Their Barrovian-type mineral associations are somewhat masked by the greenschist to blueschist Alpine metamorphism of Tertiary age. Four Ruitor gneisses have been analysed, showing geochemical characters of granitoids from orogenic zones. Zircon morphology also suggests magmatic protoliths and a crustal source; some of the morphological zircon types suggest anatectic granites. The first U-Pb ages on zircon for this massif have been obtained concurrently through conventional multigrain and ion microprobe dating. Two metavolcanic rocks at 471LJ and 468ᆪ Ma could be slightly older than the porphyritic augen gneisses at 465ᆟ and 460lj Ma. Regional data from the other Internal basement massifs suggest that the Variscan event is poorly recorded, except in Ruitor-type units. Ruitor and Sapey gneisses belonged to the same unit (Nappe des Pontis), which was affected by a 480-450-Ma event including volcanism and anatexis and ended with a late calc-alkaline granite emplacement at 460-450 Ma. The distribution of Variscan basement units roughly parallels Alpine zonation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号