首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
GIS based spatial data analysis for landslide susceptibility mapping   总被引:5,自引:4,他引:1  
Landslide susceptibility map delineates the potential zones for landslides occurrence. The paper presents a statistical approach through spatial data analysis in GIS for landslide susceptibility mapping in parts of Sikkim Himalaya. Six important causative factors for landslide occurrences were selected and corresponding thematic data layers were prepared in GIS. Topographic maps,satellite image,field data and published maps constitute the input data for thematic layer preparation. Numerical weights for different categories of these factors were determined based on a statistical approach and the weighted thematic layers were integrated in GIS environment to generate the landslide susceptibility map of the area. The landslide susceptibility map classifies the area into five different landslide susceptible zones i.e.,very high,high,moderate,low and very low. This map was validated using the existing landslide distribution in the area.  相似文献   

2.
A comprehensive landslide inventory and susceptibility maps are prerequisite for developing and implementing landslide mitigation strategies. Landslide susceptibility maps for the landslides prone regions in northern Pakistan are rarely available. The Hunza-Nagar valley in northern Pakistan is known for its frequent and devastating landslides. In this paper, we have developed a landslide inventory map for Hunza-Nagar valley by using the visual interpretation of the SPOT-5 satellite imagery and mapped a total of 172 landslides. The landslide inventory was subsequently divided into modelling and validation data sets. For the development of landslide susceptibility map seven discrete landslide causative factors were correlated with the landslide inventory map using weight of evidence and frequency ratio statistical models. Four different models of conditional independence were used for the selection of landslide causative factors. The produced landslides susceptibility maps were validated by the success rate and area under curves criteria. The prediction power of the models was also validated with the prediction rate curve. The validation results shows that the success rate curves of the weight of evidence and the frequency models are 82% and 79%, respectively. The prediction accuracy results obtained from this study are 84% for weight of evidence model and 80% for the frequency ratio model. Finally, the landslide susceptibility index maps were classified into five different varying susceptibility zones. The validation and prediction result indicates that the weight of evidence and frequency ratio model are reliable to produce an accurate landslide susceptibility map, which may be helpful for landslides management strategies.  相似文献   

3.
Rudraprayag in Garhwal Himalayan division is one of the most vulnerable districts to landslides in India. Heavy rainfall, steep slope and developmental activities are important factors for the occurrence of landslides in the district. Therefore, specific assessment of landslide susceptibility and its accuracy at regional level is essential for disaster management and proper land use planning. The article evaluates effectiveness of frequency ratio, fuzzy logic and logistic regression models for assessing landslide susceptibility in Rudraprayag district of Uttarakhand state, India. A landslide inventory map was prepared and verified by field data. Fourteen landslide parameters and generated inventory map were utilized to prepare landslide susceptibility maps through frequency ratio, fuzzy logic and logistic regression models. Landslide susceptibility maps generated through these models were classified into very high, high, medium, low and very low categories using natural breaks classification. Receiver operating characteristics (ROC) curve, spatially agreed area approach and seed cell area index (SCAI) method were used to validate the landslide models. Validation results revealed that fuzzy logic model was found to be more effective in assessing landslide susceptibility in the study area. The landslide susceptibility map generated through fuzzy logic model can be best utilized for landslide disaster management and effective land use planning.  相似文献   

4.
Wudu County in northwestern China frequently experiences large-scale landslide events.High-magnitude earthquakes and heavy rainfall events are the major triggering factors in the region.The aim of this research is to compare and combine landslide susceptibility assessments of rainfalltriggered and earthquake-triggered landslide events in the study area using Geographical Information System(GIS) and a logistic regression model.Two separate susceptibility maps were produced using inventories reflecting single landslide-triggering events,i.e.,earthquakes and heavy rain storms.Two groups of landslides were utilized: one group containing all landslides triggered by extreme rainfall events between 1995 and 2003 and the other group containing slope failures caused by the 2008 Wenchuan earthquake.Subsequently,the individual maps were combined to illustrate the locations of maximum landslide probability.The use of the resulting three landslide susceptibility maps for landslide forecasting,spatial planning and for developing emergency response actions are discussed.The combined susceptibility map illustrates the total landslide susceptibility in the study area.  相似文献   

5.
Rainfall induced landslides are a common threat to the communities living on dangerous hill-slopes in Chittagong Metropolitan Area, Bangladesh. Extreme population pressure, indiscriminate hill cutting, increased precipitation events due to global warming and associated unplanned urbanization in the hills are exaggerating landslide events. The aim of this article is to prepare a scientifically accurate landslide susceptibility map by combining landslide initiation and runout maps. Land cover, slope, soil permeability, surface geology, precipitation, aspect, and distance to hill cut, road cut, drainage and stream network factor maps were selected by conditional independence test. The locations of 56 landslides were collected by field surveying. A weight of evidence (WoE) method was applied to calculate the positive (presence of landslides) and negative (absence of landslides) factor weights. A combination of analytical hierarchical process (AHP) and fuzzy membership standardization (weighs from 0 to 1) was applied for performing a spatial multi-criteria evaluation. Expert opinion guided the decision rule for AHP. The Flow-R tool that allows modeling landslide runout from the initiation sources was applied. The flow direction was calculated using the modified Holmgren’s algorithm. The AHP landslide initiation and runout susceptibility maps were used to prepare a combined landslide susceptibility map. The relative operating characteristic curve was used for model validation purpose. The accuracy of WoE, AHP, and combined susceptibility map was calculated 96%, 97%, and 98%, respectively.  相似文献   

6.
基于信息量模型和数据标准化的滑坡易发性评价   总被引:1,自引:0,他引:1  
本文以北川曲山-擂鼓片区为研究区,将坡度、坡向、高程、地层、距断层的距离、距水系的距离和距道路的距离作为该区域滑坡易发性评价因子。采用信息量模型计算了各项评价因子的信息量值,并运用4种标准化模型对信息量值进行标准化处理。各评价因子的权重由层次分析法(AHP)确定。在GIS中将权重值和各评价因子的标准化信息量值,进行叠加计算得到区域滑坡总信息量值,并基于自然断点法对其进行重分类,将研究区划分为极高易发区、高易发区、中易发区、低易发区和极低易发区5级易发区。将基于4种标准化模型和信息量模型得到的滑坡易发性评价结果进行了对比分析,结果表明:基于最值标准化信息量模型的滑坡易发性评价结果的ROC曲线下面积AUC值为0.807,高于其余模型的AUC值,说明最值标准化信息量模型的滑坡易发性评价效果最好。极高易发区面积占研究区面积的20.03%,离断层和水系较近,主要分布地层为寒武系、志留系和三迭系。研究结果可为区内滑坡风险评价和灾害防治提供参考。  相似文献   

7.
A detailed landslide susceptibility map was produced in the Youfang catchment using logistic regression method with datasets developed for a geographic information system(GIS).Known as one of the most landslide-prone areas in China, the Youfang catchment of Longnan mountain region,which lies in the transitional area among QinghaiTibet Plateau, loess Plateau and Sichuan Basin, was selected as a representative case to evaluate the frequency and distribution of landslides.Statistical relationships for landslide susceptibility assessment were developed using landslide and landslide causative factor databases.Logistic regression(LR)was used to create the landslide susceptibility maps based on a series of available data sources: landslide inventory; distance to drainage systems, faults and roads; slope angle and aspect; topographic elevation and topographical wetness index, and land use.The quality of the landslide susceptibility map produced in this paper was validated and the result can be used fordesigning protective and mitigation measures against landslide hazards.The landslide susceptibility map is expected to provide a fundamental tool for landslide hazards assessment and risk management in the Youfang catchment.  相似文献   

8.
Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence, a comprehensive map of landslide susceptibility is required which may be significantly helpful in reducing loss of property and human life. In this study, an integrated model of information value method and logistic regression is proposed by using their merits at maximum and overcoming their weaknesses, which may enhance precision and accuracy of landslide susceptibility assessment. A detailed and reliable landslide inventory with 1587 landslides was prepared and randomly divided into two groups, (i) training dataset and (ii) testing dataset. Eight distinct landslide conditioning factors including lithology, slope gradient, aspect, elevation, distance to drainages, distance to faults, distance to roads and vegetation coverage were selected for landslide susceptibility mapping. The produced landslide susceptibility maps were validated by the success rate and prediction rate curves. The validation results show that the success rate and the prediction rate of the integrated model are 81.7 % and 84.6 %, respectively, which indicate that the proposed integrated method is reliable to produce an accurate landslide susceptibility map and the results may be used for landslides management and mitigation.  相似文献   

9.
Earthquake induced landslides are one of the most severe geo-environmental hazards that cause enormous damage to infrastructure, property, and loss of life in Nuweiba area. This study developed a model for mapping the earthquake-induced landslide susceptibility in Nuweiba area in Egypt with considerations of geological, geomorphological, topographical, and seismological factors. An integrated approach of remote sensing and GIS technologies were applied for that target. Several data sources including Terra SAR-X and SPOT 5 satellite imagery, topographic maps, field data, and other geospatial resources were used to model landslide susceptibility. These data were used specifically to produce important thematic layers contributing to landslide occurrences in the region. A rating scheme was developed to assign ranks for the thematic layers and weights for their classes based on their contribution in landslide susceptibility. The ranks and weights were defined based on the knowledge from field survey and authors experiences related to the study area. The landslide susceptibility map delineates the hazard zones to three relative classes of susceptibility: high, moderate, and low. Therefore, the current approach provides a way to assess landslide hazards and serves for geo-hazard planning and prediction in Nuweiba area.  相似文献   

10.
不同的易发性评价模型可以得到有差异的滑坡空间预测结果,选取最优模型甚至综合各模型的优势是提高易发性评价精度的有效方法。为检验模型融合思路的有效性,以鄂西地区五峰县渔洋关镇为研究区,提取坡度、地层、断层、河流、公路等7个滑坡成因条件,分别采用信息量模型、证据权模型和频率比模型进行滑坡易发性评价;并将3种模型分别进行归一化、主成分分析(PCA,Principal component analysis)和优势融合,得到了6幅易发性分区图。结果表明:优势耦合模型精度最高(90.3%),频率比模型次之(89.7%),归一化融合模型和PCA融合模型分别为89.3%和89.1%,以上4种结果的精度均高于证据权模型(87.7%)和信息量模型(87.6%);6幅预测图对应的评价结论与历史滑坡空间分布的实际情况相符。空间一致性对比结论表明,主成分融合模型与优势耦合模型的同格率高达68%,其预测结果避免了单个模型预测结论带来的偶然性和片面性,说明多模型融合方法与优势耦合模型在提高滑坡易发性预测精度上是可行性的,该思路对其他地区滑坡灾害易发性评价具有借鉴意义。   相似文献   

11.
The primary objective of landslide susceptibility mapping is the prediction of potential landslides in landslide-prone areas.The predictive power of a landslide susceptibility mapping model could be tested in an adjacent area of similar geoenvironmental conditions to find out the reliability.Both the 2008 Wenchuan Earthquake and the 2013 Lushan Earthquake occurred in the Longmen Mountain seismic zone,with similar topographical and geological conditions.The two earthquakes are both featured by thrust fault and similar seismic mechanism.This paper adopted the susceptibility mapping model of co-seismic landslides triggered by Wenchuan earthquake to predict the spatial distribution of landslides induced by Lushan earthquake.Six influencing parameters were taken into consideration: distance from the seismic fault,slope gradient,lithology,distance from drainage,elevation and Peak Ground Acceleration(PGA).The preliminary results suggested that the zones with high susceptibility of coseismic landslides were mainly distributed in the mountainous areas of Lushan,Baoxing and Tianquan counties.The co-seismic landslide susceptibility map was completed in two days after the quake and sent to the field investigators to provide guidance for rescue and relief work.The predictive power of the susceptibility map was validated by ROC curve analysis method using 2037 co-seismic landslides in the epicenter area.The AUC value of 0.710 indicated that the susceptibility model derived from Wenchuan Earthquake landslides showed good accuracy in predicting the landslides triggered by Lushan earthquake.  相似文献   

12.
This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR.  相似文献   

13.
Ethiopia has a mountainous landscape which can be divided into the Northwestern and Southeastern plateaus by the Main Ethiopian Rift and Afar Depression. Debre Sina area is located in Central Ethiopia along the escarpment where landslide problem is frequent due to steep slope, complex geology, rift tectonics, heavy rainfall and seismicity. In order to tackle this problem, preparing a landslide susceptibility map is very important. For this, GISbased frequency ratio(FR) and logistic regression(LR) models have been applied using landslide inventory and the nine landslide factors(i.e. lithology, land use, distance from river fault, slope, aspect, elevation, curvature and annual rainfall). Database construction, weighting each factor classes or factors, preparing susceptibility map and validation were the major steps to be undertaken. Both models require a rasterized landslide inventory and landslide factor maps. The former was classified into training and validation landslides. Using FR model, weights for each factor classes were calculated and assigned so that all the weighted factor maps can be added to produce a landslide susceptibility map. In the case of LR model, the entire study area is firstly divided into landslide and non-landslide areas using the training landslides. Then, these areas are changed into landslide and non-landslide points so as to extract the FR maps of the nine landslide factors. Then a linear relationship is established between training landslides and landslide factors in SPSS. Based on this relationship, the final landslide susceptibility map is prepared using LR equation. The success-rate and prediction-rate of FR model were 74.8% and 73.5%, while in case of LR model these were 75.7% and 74.5% respectively. A close similarity in the prediction and validation rates showed that the model is acceptable. Accuracy of LR model is slightly better in predicting the landslide susceptibility of the area compared to FR model.  相似文献   

14.
Roads constructed in fragile Siwaliks are prone to large number of instabilities. Bhalubang–Shiwapur section of Mahendra Highway lying in Western Nepal is one of them. To understand the landslide causative factor and to predict future occurrence of the landslides, landslide susceptibility mapping(LSM) of this region was carried out using frequency ratio(FR) and weights-of-evidence(W of E) models. These models are easy to apply and give good results. For this, landslide inventory map of the area was prepared based on the aerial photo interpretation, from previously published/unpublished reposts, and detailed field survey using GPS. About 332 landslides were identified and mapped, among which 226(70%) were randomly selected for model training and the remaining 106(30%) were used for validation purpose. A spatial database was constructed from topographic, geological, and land cover maps. The reclassified maps based on the weight values of frequency ratio and weights-of-evidence were applied to get final susceptibility maps. The resultant landslide susceptibility maps were verified andcompared with the training data, as well as with the validation data. From the analysis, it is seen that both the models were equally capable of predicting landslide susceptibility of the region(W of E model(success rate = 83.39%, prediction rate = 79.59%); FR model(success rate = 83.31%, prediction rate = 78.58%)). In addition, it was observed that the distance from highway and lithology, followed by distance from drainage, slope curvature, and slope gradient played major role in the formation of landsides. The landslide susceptibility maps thus produced can serve as basic tools for planners and engineers to carry out further development works in this landslide prone area.  相似文献   

15.
Semi qualitative index based methods using rankings and ratings are commonly used in susceptibility estimations over a wide area. However, generalized ranking and ratings are not applicable for one single landslide. This paper gives an easy and transferable approach to a susceptibility assessment of Huangtupo landslide (P.R. China), using raster addition without taking account for ranking and ratings. Slope, aspect, curvature, location and drainage buffer distance raster data sets have been obtained out of open source digital elevation models using ESRI’s ArcGIS. These conditioning factor raster data sets have been translated into raster data sets including simple yes or no criteria, referring to triggering or not. Subsequently they have been added by raster math to acquire a simple raster overlay map. After that this map is compared to initial displacement measurements, obtained by using a ground based synthetic aperture radar device. Acquired data is recalculated to a raster data set using the same spatial extent, to provide the possibility of comparison of the two raster data sets. The results reveal, that 76.35% of all measured movements occur in areas where raster cells include three or more conditioning factors, indicating that easy raster math operations can lead to satisfying results in local scale.  相似文献   

16.
Landslide database construction is one of the most crucial stages of the landslide susceptibility mapping studies. Although there are many techniques for preparing landslide database in the literature, representative data selection from huge data sets is a challenging, and, to some extent, a subjective task. Thus, in order to produce reliable landslide susceptibility maps, data-driven, objective and representative database construction is a very important stage for these maps. This study mainly focuses on a landslide database construction task. In this study, it was aimed at building a representative landslide database extraction approach by using Chebyshev theorem to evaluate landslide susceptibility in a landslide prone area in the Western Black Sea region of Turkey. The study area was divided into two different parts such as training (Basin 1) and testing areas (Basin 2). A total of nine parameters such as topographical elevation, slope, aspect, planar and profile curvatures, stream power index, distance to drainage, normalized difference vegetation index and topographical wetness index were used in the study. Next, frequency distributions of the considered parameters in both landslide and nonlandslide areas were extracted using different sampling strategies, and a total of nine different landslide databases were obtained. Of these, eight databases were gathered by the methodology proposed by this study based on different standard deviations and algebraic multiplication of raster parameter maps. To evaluate landslide susceptibility, Artificial Neural Network method was used in the study area considering the different landslide and nonlandslide data. Finally, to assess the performances of the so-produced landslide susceptibility maps based on nine data sets, Area Under Curve (AUC) approach was implemented both in Basin 1 and Basin 2. The best performances (the greatest AUC values) were gathered by the landslide susceptibility map produced by two standard deviation database extracted by the Chebyshev theorem, as 0.873 and 0.761, respectively. Results revealed that the methodology proposed by this study is a powerful and objective approach in landslide susceptibility mapping.  相似文献   

17.
Nepal was hit by a 7.8 magnitude earthquake on 25th April, 2015. The main shock and many large aftershocks generated a large number of coseismic landslips in central Nepal. We have developed a landslide susceptibility map of the affected region based on the coseismic landslides collected from remotely sensed data and fieldwork, using bivariate statistical model with different landslide causative factors. From the investigation, it is observed that most of the coseismic landslides are independent of previous landslides. Out of 3,716 mapped landslides, we used 80% of them to develop a susceptibility map and the remaining 20% were taken for validating the model. A total of 11 different landslide-influencing parameters were considered. These include slope gradient, slope aspect, plan curvature, elevation, relative relief, Peak Ground Acceleration (PGA), distance from epicenters of the mainshock and major aftershocks, lithology, distance of the landslide from the fault, fold, and drainage line. The success rate of 87.66% and the prediction rate of 86.87% indicate that the model is in good agreement between the developed susceptibility map and the existing landslides data. PGA, lithology, slope angle and elevation have played a major role in triggering the coseismic mass movements. This susceptibility map can be used for relocating the people in the affected regions as well as for future land development.  相似文献   

18.
不同机器学习预测滑坡易发性的建模过程及其不确定性有所差异, 另外如何有效识别滑坡易发性的主控因子意义重大。针对上述问题, 以支持向量机(support vector machine, 简称SVM)和随机森林(random forest, 简称RF)为例探讨了基于机器学习的滑坡易发性预测及其不确定性, 创新地提出了"权重均值法"来综合计算出更准确的滑坡主控因子。首先获取陕西省延长县滑坡编录和10类基础环境因子, 将因子频率比值作为SVM和RF的输入变量; 再将滑坡与随机选择的非滑坡样本划分为训练集和测试集, 用训练好的机器学习预测出滑坡易发性并制图; 最后用受试者工作曲线、均值和标准差等来评估建模不确定性, 并计算滑坡主控因子。结果表明: ①机器学习能有效预测出区域滑坡易发性, RF预测的滑坡易发性精度高于SVM, 而其不确定性低于SVM, 但两者的易发性分布规律整体相似; ②权重均值法计算出延长县滑坡主控因子依次是坡度、高程和岩性。实例分析和文献综述显示RF模型相较于其他机器学习模型属于可靠性较高的易发性模型。   相似文献   

19.
已有滑坡敏感性研究中对评价指标的选取可以归结为气象、水文、地形、地质、植被、人类活动等方面,这些因子指标来源不一,在缺少数据资料地区难以完整收集。针对这个问题,考虑到目前DEM数据的广泛可获得性及其对滑坡评价的重要性,本文仅利用DEM数据及其派生因子,研究土质滑坡敏感性评价的可行性。研究中把评价因子分为2组:第1组数据仅由DEM派生,包括高程、坡度、坡向、地形起伏度、曲率、水流强度指数(Stream Power Index, SPI)、沉积运输指数(Sediment Transport Index, STI)、地形湿度指数(Topographic Wetness Index, TWI);第2组数据作为对照组,除了包括上述DEM派生的8个因子外,同时加入植被覆盖度、土地利用、土壤类型、年均降雨量因子。本文分别选取逻辑回归模型和证据权法,基于上述2组评价因子,以德化县为例对比2组因子评价结果,利用第1组和第2组数据进行滑坡敏感性评价,结果精度分别为73%和83%。结果表明,仅利用DEM数据进行土质滑坡敏感性评价方法可行,可以为缺乏资料区滑坡敏感性评价提供借鉴。  相似文献   

20.
本文以山西省霍西煤矿区为研究区,利用遥感和GIS方法对滑坡灾害的敏感性进行了数值建模与定量评价。利用交叉检验方法构建了径向基核函数支持向量机滑坡敏感性评价模型,并基于拟合精度对模型进行了定量评价;对各评价因子在模型中的重要性进行对比分析;基于空间分辨率为30m的评价因子,通过径向基核函数支持向量机模型获得了霍西煤矿区滑坡敏感性指数值,并利用分位数法将霍西煤矿区的滑坡敏感性分为极高、高、中和低4个等级。结果表明:拟合精度建模阶段和验证阶段分别为87.22%和70.12%;与滑坡敏感性关系最密切的5个评价因子依次是岩性、距道路距离、坡向、高程和土地利用类型;极高和高敏感区域分布了93.49%的滑坡点,面积占总面积的50.99%,是比较合理的分级方案。本研究不仅可以为研究区人工边坡调查和煤矿资源合理开采提供借鉴,对相似矿区的相关工作也具有参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号