首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The bulk transfer coefficient for latent heat flux (Ce) has been estimated over the Arabian Sea from the moisture budget during the pre-monsoon season of 1988.The computations have been made over two regions (A: 0–8 ° N; 60–68 ° E; B: 0–4 ° N; 56–60 ° E) with the upper computational boundary fixed at the 300 mb level. The precipitation amount (P) was negligible for region A while the observed values of P have been used for region B. The Ce estimates have been compared with those obtained with other available schemes (Kondo, 1975: Bunker, 1976). which are based on wind speed and atmospheric stability within the surface layer. Our value of Ce is higher in region A and lower in region B than the other estimates.  相似文献   

2.
The vertical and horizontal temperature structure of the atmospheric boundary layer (ABL) were studied using aircraft observations made in the lowest 2.4 km above ground level during the summer monsoon.The vertical temperature structure of the ABL in the region may be classified into the following four categories.Category The ABL consisted of two layers of thickness 700–900 m separated by a thin transition layer. The lapse rates in the former two layers were dry adiabatic.Category The lowest layer of the ABL of thickness 400–600 m was adiabatically stratified and the overlying layer was stable with gradients of potential temperature 4–5°C km–1. The stable layer contained a thin adiabatic stratified layer of 200–300 m thickness at a height of 1.5 km.Category The lowest 200–400 m layer of the ABL was adiabatically stratified and the overlying layer was stable with potential temperature gradients of 5–6 °C km1.Category The ABL was mainly stable with potential temperature gradients of 6 °C km–1 or greater. Occasionally thin layers with adiabatic stratification were found embedded in the ABL.The temperature distribution of the horizontal temperature at 900 m was mainly normal. The high-frequency portion of the spectra lying between 0.05 and 0.16 Hz (corresponding to wave length 1 km to 300 m) oscillated around the –\2/3 power law line. The spectral curve showed a significant peak at 0.011 Hz having a wave-length of 5 km.Department of Geoscience, North Carolina State University, Raleigh, NC, 27650, U.S.A.  相似文献   

3.
Aerological observations carried out on board ORV Sagarkanya at a stationary location (20° N, 89° E) over the Head Bay of Bengal during August 18–21, 1990 were analysed to study the thermodynamic structure of the marine boundary layer in relation to a monsoon depression which formedin situ with its centre at 20° N, 88° E. The q(mixing ratio) reversal observed at 850 hPa prior to formation of the low pressure area shifted to a higher level (h<700 hPa) with the formtion of the low. Positive buoyancy below 850 hPa prior to the formation of the low indicated conditions favourable for deep convection. When the low pressure area intensified into a depression, negative buoyancy was observed at lower levels.  相似文献   

4.
Summary As revealed from the interannual variation of outgoing longwave radiation in the western Pacific, deep cumulus convection along the Meiyü-Baiu front and ITCZ is modulated by the anomalous summer circulation in the following manner: when the sea surface temperatures on the eastern tropical Pacific are anomalously warm (cold), cumulus convection is enhanced (suppressed) along the equator east of 150° E and along the Meiyü-Baiu front, but is suppressed (enhanced) along the equator west of 150° E and along a longitudinal zone (10° N–30° N) extending from the northern section of the South China Sea to the International Dateline. Since tropical deep cumulus convection exhibits a pronounced diurnal variation, the diurnal convection cycle in the western Pacific may undergo an interannual variation coherent with that of deep tropical cumulus convection. This inference is substantiated by our analysis of the diurnal convection cycle for 1980–1993 with 3-hour equivalent black-body temperature observed by the Japanese Geostationary Meteorological Satellite (GMS). As expected, the diurnal convection cycle in the western Pacific is subjected to an interannual variation in accordance with deep cumulus convection along the Meiyü-Baiu front and ITCZ. Except along the equator east of 150° E, the diurnal convection cycle does not exhibit a drastic interannual change in phase.  相似文献   

5.
The fluxes of ozone and NOx out of the atmospheric boundary layer (ABL) over Europe are calculated in a mesoscale chemical transport model (MCT) and compared with the net chemical production or destruction of ozone and the emissions of precursors within the ABL for two 10 days' periods which had quite different synoptic situations and levels of photochemical activity (1–10 July 1991 (JUL91) and 26 October–4 November 1994 (ON94)). Over the European continent, about 8% of the NOx emissions were brought from the ABL to the free troposphere as NOx, while about 15% of the NOx emissions were brought to the free troposphere as NOy–NOx, i.e. as PAN or HNO3. The convection dominates over the synoptic scale vertical advection as a transport mechanism both for NOx and NOy out of the boundary layer in the summertime high pressure situation (JUL91), while in the fall situation (ON94) the convective part was calculated to be the smallest. NOx was almost completely transformed to NOy–NOx or removed within the ABL. Also for NOy the major part of the atmospheric cycle is confined to the ABL both for JUL91 and ON94. The vertical transport time out of the ABL is of the order of 100h both for the total model domain and over the European continent. The net convective exchange of ozone from the ABL is not a dominant process for the amount of ozone in the ABL averaged over 10 days and the whole domain, but convection reduces the maximum ozone concentration in episodes significantly. The ozone producing efficiency of NOx is calculated to increase with height to typically 15–20 in the upper half of the troposphere from around 5 in the ABL, but in the middle free troposphere the concentration of NOx is often too low to cause net chemical formation of ozone there.  相似文献   

6.
Summary Tropical cyclones (TC) in the data-sparse SW Indian Ocean region are studied through climatological and statistical associations and case study structure. Differences between summers with more and less TC are identified with a view to the prediction of seasonal frequencies. In summers with more TC, upper easterlies and lower westerlies over the equatorial zone north of Madagascar form a Walker cell anomaly in conjunction with the east phase of the stratospheric quasi-biennial oscillation (QBO), while sea surface temperatures (SST) are above normal in the preceding spring (>28°C). In the sub-tropics, easterly trade winds strengthen while mid-latitude westerlies shift polewards and SST are below normal (<23°C). OLR departures in more TC summers are <–15 Wm–2 over region frequented by tropical cyclones.Two tropical cyclone events are selected for analysis which rank highest in terms of rainfall on Mauritius. Danielle formed near 13°S, 65°E and tracked southwest across Mauritius on 19 January 1964. A radiosonde time-height section is analysed for departures from climatology and thermodynamic structure. The profile of equivalent potential temperature is rather uniform near the center of the TC, decreasing from 350°K near the surface. Dry stable air is present in the 600hPa layer around the perimeter. TC Hyacinthe was quasistationary to the east of Madagascar causing rainfall in excess of 500 cm on Reunion Island from 15–27 January 1980. OLR anomaly plots and satellite imagery indicate that Hyacinthe was spawned in association with an eastward moving convective wave and reached maximum intensity (–92 Wm–2) and radius (>1000 km) from 21 to 26 January 1980.With 14 Figures  相似文献   

7.
Analysis of the radiosonde observations over the Arabian sea region during MONSOON-77 and MONEX-79 has revealed a reversal in the mixing ratio (QR) above the inversion/stable layer in the atmospheric boundary layer. The reversal could be attributed to the detrainment of cloudy air originating in the deep moist convection which has penetrated the inversion layer in nearby areas. It was noticed that the soundings in which a reversal of mixing ratio was not observed, were associated with meteorological conditions favourable for deep convection.  相似文献   

8.
Development and structure of a maritime continent thunderstorm   总被引:4,自引:0,他引:4  
Summary The evaluation of a maritime continent thunderstorm complex (Hector) occurring over Bathurst and Melville Islands north of Darwin, Australia (12° S, 131° E) is investigated primarily using Doppler radar data. Thunderstorm formation follows the development of sea breeze circulations and a period of shallow non-precipitating convection. Evidence exists for initiation of long-lived and organised convection on the sea breeze fronts, although short-lived, scattered convection is apparent earlier in the day. Merging of the convective systems is observed in regions of enhanced low-level convergence related to sea breeze circulations. The merged convective complex is initially aligned in an almost east-west direction consistent with the low-level forcing. The merged complex results in rapid vertical development with updraughts reaching 40 m s and echo tops reaching 20 km height. Maximum precipitation production occurs during this merger phase. On the perimeter of the merged convective complex, evidence exists for front-to-rear updraughts sloped over lower-level downdraughts with rear-to-front relative flow and forward propagating cold pools. The mature phase is dominated by this convection and the complex re-orientates in the prevailing easterly vertical shear to an approximate north-south direction, then moves westward off the islands with the classic multicellular squall-like structure.The one-dimensional cloud model of Ferrier and Houze (1989) used with a four class ice formulation reproduced the cloud top height, updraught structure and echo profile very well. To test the importance of ice physics upon thunderstorm development, several sensitivity tests were made removing the effects of the ice phase. All of these model clouds reached nearly 20 km, although simulations without the effects of ice had updraughts reduced from about 40 m s–1 to 30 m s–1. The simulated convection was more sensitive to changes in environmental conditions and parameterised cloud dynamics. The strong intensity of the convection was largely accounted for by increasing equivalent potential temperatures due to diurnal heating of the surface layer. The vertical velocity and radar structure of the island thunderstorm has more similarity with continental rather than oceanic convection. Maximum vertical velocities, in particular are almost an order of magnitude greater than typical of oceanic convection. With the intense updraughts, even in the low shear environment, there is evidence for mesoscale circulations within the convection.With 17 Figures  相似文献   

9.
Summary The climatology and variability of summer convection and circulation over the tropical southwest Indian Ocean is investigated using satellite imagery, routine synoptic observations, outgoing longwave radiation (OLR) data, sea surface temperatures (SST) and areal averaged rainfall departures. OLR has a –0.90 correlation with rainfall departures and the OLR minimum (ITCZ) in January and February lies across the 10°S latitude, extending further south near Madagascar. The intensity of ITCZ convection is greatest in the longitudes 20–35°E over northern Zambia and is considerably reduced over the SW Indian Ocean. Spatial correlations are analyzed for standardized departures of OLR, rainfall and SST. The correlations change sign in a coherent fashion, creating a climatic dipole between southern Africa and the SW Indian Ocean. Interannual trends are examined through analysis of January–February zonal and meridional wind indices constructed from significantly correlated variables at Zimbabwe, Madagascar and Mauritius. Circulation variability is dominated by quasi-decadal cycles and a trend of inereasing westerly winds. Zonal wind shear alternates from easterly (barotropic) to westerly and together with SST appears to regulate the frequency and intensity of tropical cyclogenesis. Areally averaged rainfall departures exhibit 6.25 year cycles in NE Madagascar and 12.5 and 18.75 year cycles in SW Madagascar and Zimbabwe, respectively. Summer rainfall and meridional winds in NE Madagascar and Zimbabwe are out of phase and negatively correlated in most summers. The presence of synoptic weather systems is assessed using daily Hovmoller-type satellite imagery composites. Convective structure is dominated by transient waves in the 10°–20°S latitude band, with periods of 15–20 days common. The waves are more prominent in summers with increased easterly shear and contribute to fluctuations in rainfall over SE Africa.With 8 Figures  相似文献   

10.
Summary The interannual variability of the monthly mean upper layer thickness for the central Arabian Sea (5°N-15° N and 60° E-70° E) from a numerical model of the Indian Ocean during the period 1954–1976 is investigated in relation to Indian monsoon rainfall variability. The variability in the surface structure of the Somali Current in the western Arabian Sea is also briefly discussed. It is found that these fields show a great deal of interannual variability that is correlated with variability in Indian monsoon rainfall. Model upper layer thickness (H) is taken as a surrogate variable for thermocline depth, which is assumed to be correlated with sea surface temperature. In general, during the period 1967 to 1974, which is a period of lower than normal monsoon rainfall, the upper ocean warm water sphere is thicker (deeper thermocline which implies warmer surface water); in contrast, during the period 1954–1966, which is a period of higher than normal monsoon rainfall, the upper warm water sphere is thinner (shallower thermocline which implies cooler surface water). The filtered time series of uppper layer thickness indieates the presence of a quasi-biennial oscillation (QBO) during the wet monsoon period, but this QBO signal is conspicuously absent during the dry monsoon period.Since model H primarily responds to wind stress curl, the interannual variability of the stress curl is investigated by means of an empirical orthogonal function (EOF) analysis. The first three EOF modes represent more than 72% of the curl variance. The spatial patterns for these modes exhibit many elements of central Arabian Sea climatology. Features observed include the annual variation in the intensity of the summer monsoon ridge in the Arabian Sea and the annual zonal oscillation of the ridge during pre- and post-monsoon seasons. The time coefficients for the first EOF amplitude indicate the presence of a QBO during the wet monsoon period only, as seen in the ocean upper layer thickness.The variability in the model upper layer thickness is a passive response to variability in the wind field, or more specifically to variability in the Findlater Jet. When the winds are stronger, they drive stronger currents in the ocean and have stronger curl fields associated with them, driving stronger Ekman pumping. They transport more moisture from the southern hemisphere toward the Indian subcontinent, and they also drive a greater evaporative heat flux beneath the Findlater Jet in the Arabian Sea. It has been suggested that variability in the heat content of the Arabian Sea drives variability in Indian monsoon rainfall. The results of this study suggest that the opposite is true, that the northern Arabian Sea responds passively to variability in the monsoon system.With 10 Figures  相似文献   

11.
Eight years (1980–1987) of Wake Island rawinsonde data are used to derive atmospheric boundary layer (ABL) depth, integrated boundary-layer moisture, and a measure of boundary-layer ageostrophy. The variability in these processes controls the accumulation of moisture and heat in the tradewind regions and their transport to regions of intense convection. Preliminary analyses using different methods reveal quasi-periodic signals in these data in the 30–60 days range. Cross correlation calculations in this intraseasonal range show that these ABL variables are coherent with each other and with the low-level flow. The integrated ABL variables and the ABL height exhibit local in-phase relationships. At higher frequencies, the analyses show intense diurnal variation of boundary-layer height but only a weak diurnal signal in integrated ABL properties. At the lower frequency range, the analyses show a significant reduction in the amplitude of the seasonal and intraseasonal variation in ageostrophy during the strong El-Niño event of 1982/1983. The results clearly establish a relationship between integrated water vapour and divergent ABL processes (Ekman pumping/suction) in which shallower (deeper) ABLs are associated with mass and moisture divergence (convergence) and higher (lower) sea-level pressure. A possible interpretation in terms of a remote dynamic response of the trade inversion and ABL processes to equatorial deep convection is suggested.  相似文献   

12.
Summary This study has used low Outgoing Longwave Radiation (OLR) values to study the structure and evolution of the active convection across Equatorial Eastern Africa (EEA) region (5° N to 10° S, 28° E to 42° E) during the northern hemisphere spring season. This involved the examination of the map patterns and cross-sections of OLR data as derived from once-daily NOAA's Operational Polar Orbiting satellites within the period June 1974 to May 1991.The results from the study indicated that before March the mean ITCZ was active over the west Indian Ocean and Central Africa. The migration northwards of the zone of active ITCZ was associated with pre-season evolution patterns over the extratropics. The time-longitude cross-sections further indicated evidence that low OLR values were already occurring over central Africa to the west of 35° E before March. Such low OLR values penetrated to the east of 35° E in some occasions. Theresults from the study suggest that behind the surges of extratropical frontal systems strong meridional flow does occur and that these are associated with the advance of the ITCZ further northwards from extratropical regions of southern Africa. Then, active convection occurred over EEA region and this extended westwards to cover West Africa as well. The withdrawal of the ITCZ from the EEA region was however associated with the establishment of a centre of low OLR values to the southwest of Peninsula India.The results from the study further revealed that the years 1981/1984 has the lowest/highest mean OLR values in the region within the period 1974 to 1991. The time-latitude cross-sections of the anomalous years indicated that active convection crossed the EEA region from south to north of the equator early/late during the anomalous wet/dry years of 1981/1984. The number of pentads with low OLR were also more/less during 1981/1984 respectively.With 9 Figures  相似文献   

13.
Summary Interest in the potential climatic consequences of the continued buildup of anthropo-generated greenhouse gases has led many scientists to conduct extensive climate change studies at the global, hemispheric, and regional scales. In this investigation, analyses are conducted on long-term historical climate records from the Arabian Peninsula region. Over the last 100 years, temperatures in the region increased linearly by 0.63 °C. However, virtually all of this warming occurred from 1911–1935, and over the most recent 50 years, the Arabian Peninsula region has cooled slightly. In addition, the satellite-based measurements of lower-tropospheric temperatures for the region do not show any statistically significant warming over the period 1979–1991. While many other areas of the world are showing a decrease in the diurnal temperature range, the Arabian Peninsula region reveals no evidence of a long-term change in this parameter. Precipitation records for the region show a slight, statistically insignificant decrease over the past 40 years. The results from this study should complement the mass of information that has resulted from similar regional climate studies conducted in the United States, Europe, and Australia.With 5 Figures  相似文献   

14.
The daytime boundary-layer heating process and the air-land heat budget were investigated over the coastal sea-breeze region by means of observations over the Sendai plain in Japan during the summer. In this area, the onset of the sea breeze begins at the coast around 0900 LST, intruding about 35 km inland by late afternoon. The cold sea breeze creates a temperature difference of over 10°C between the coastal and inland areas in the afternoon. On the other hand, warm air advection due to the combination of the counter-sea breeze and land-to-sea synoptic wind occurs in the layer above the cold sea breeze in the coastal region. Owing to this local warm air advection, there is no significant difference in the daytime heating rate over the entire atmospheric boundary layer between the coastal and inland areas. The sensible heat flux from the land surface gradually decreases as distance from the coastline increases, being mainly attributed to the cold sea breeze. The daytime mean cold air advection due to the sea breeze is estimated asQ adv local =–29 W m–2 averaged over the sea breeze region (035 km from the coastline). This value is 17% of the surface sensible heat fluxH over the same region. The results of a two-dimensional numerical model show that the value ofQ adv local /H is strongly affected by the upper-level synoptic wind direction. The absolute value ofQ adv local /H becomes smaller when the synoptic wind has the opposite direction of the sea breeze. This condition occurred during the observations used in the present study.  相似文献   

15.
Summary Variability of the summer climate of Madagascar is studied using area-averaged rainfall (1961–1992) and ECMWF meteorological data (1987–1992). Rainfall time series illustrate a seasonal onset in late December, a convective peak in mid-February and cessation near the end of March. Convective cycles with periods of 10–20 and 40 days are common. The former are contributed by easterly waves and the latter by monsoon surges which may resonate with the Madden Julian Oscillation. Using ECMWF January–February means, the summer climate of the Madagascar region is described. Characteristics of the region include SST>28°C, a quasi-permanent, topographic trade wind trough, sudden cyclogenesis, and distinct circulation regimes with easterly (westerly) shear to the north (south). The most poleward limit of deep convection and sustained uplift is near 20°S, 45°E. A convective vortex embedded in the ITCZ is a prevalent feature owing to the interaction of the NW monsoon and local topography.With 11 Figures  相似文献   

16.
The annual variation in planetary boundary layer (PBL) height is determined from the profiles of conserved thermodynamic variables, i.e., virtual potential temperature ?? v and equivalent potential temperature ?? e, using radiosonde data at per-humid climate region, Ranchi (23°42??N, 85°33??E, 610?m asl) and semi-arid region, Anand (23°35??N, 72°55??E, 45.1?m asl), India. Of all the variables, the ?? v profile seems to provide the most reasonable estimate of the PBL height. This has been supplemented by T-Phi gram analysis for specific days. It has been found that in winter the height of boundary layer is very low due to subsidence and radiational cooling, while pre-monsoon months exhibit the most variable convection. It may be inferred that synoptic conditions accompanied by a variety of weather phenomena such as thunderstorms, onset and withdrawal of monsoons, etc. control the ABL over Ranchi, while daytime solar insolation and nighttime radiative cooling mainly control the ABL over Anand.  相似文献   

17.
Summary This study investigates the circulation anomalies associated with the intraseasonal evolution of wet and dry years over western Tanzania (29–37° E, 11.5–4.75° S) and how the onset and withdrawal of the rainy season as well as its wet spell characteristics are modified. It is found that for wet years, the rains begin earlier and end later, with strong wet spells occurring during the season, and there tend to be a greater number of moderate wet spells (although not necessarily more intense wet spells) than in dry years. In dry years, late onset and early cessation of the rainy season occur, often with an extended dry spell soon after the onset, and there tend to be a greater number of dry spells within the season. Large negative outgoing long wave radiation (OLR) anomaly values tend to be located between 20° and 40° E with anomalous westerly flow at 850 hPa occurring across the continent from 10° E to the tropical western Indian Ocean during wet spells in the anomalously wet seasons. Anomalously dry seasons are characterised by large positive OLR anomalies over 30–50° E as well as easterly anomalies at 850 hPa and westerly anomalies at 200 hPa. Eastward propagating intraseasonal anomalies are slower during the wet years implying that the convection remains over Tanzania longer. On the intraseasonal scale, Hovmoeller analyses of OLR and 850 and 200 hPa zonal wind indicate that convection over western Tanzania may be associated with a flux of moisture from the tropical southeast Atlantic and Congo basin followed by weak easterlies from the tropical western Indian Ocean.On interannual scales, wet (dry) years are characterized over the Indian Ocean by weaker (stronger) equatorial westerlies and weaker (stronger) trades that lead to less (more) export of equatorial moisture away from East Africa and increased (decreased) low-level moisture flux convergence over southern Tanzania, respectively. These anomalies arise from an anticyclonic (cyclonic) anomaly over the tropical western Indian Ocean during wet (dry) austral summers that may be related to cool (warm) SST anomalies there. Large scale modulation of the Indian Ocean Walker cell is also evident in both cases, but particularly for the dry years.Current affiliation: Tanzania Meteorological Agency, P.O. Box 3056, Dar es Salaam, Tanzania  相似文献   

18.
The effects of uncertainty in the specification of surface characteristics on simulated atmospheric boundary layer (ABL) processes and structure were investigated using a one-dimensional soil-vegetation-boundary layer model. Observational data from the First International Satellite Land Surface Climatology Project Field Experiment were selected to quantify prediction errors in simulated boundary-layer parameters. Several numerical 12-hour simulations were performed to simulate the convective boundary-layer structure, starting at 0700 LT 6 June 1987.In the control simulation, measured surface parameters and atmospheric data were used to simulate observed boundary-layer processes. In the remaining simulations, five surface parameters – soil texture, initial soil moisture, minimum stomatal resistance, leaf area index, and vegetation cover – were varied systematically to study how uncertainty in the specification of these surface parameters affects simulated boundary-layer processes.The simulated uncertainty in the specification of these five surface parameters resulted in a wide range of errors in the prediction of turbulent fluxes, mean thermodynamic structure, and the depth of the ABL. Under certain conditions uncertainty in the specifications of soil texture and minimum stomatal resistance had the greatest influence on the boundary-layer structure. A lesser but still moderately strong effect on the simulated ABL resulted from (1) a small decrease (4%) in the observed initial soil moisture (although a large increase [40%] had only a marginal effect), and (2) a large reduction (66%) in the observed vegetation cover. High uncertainty in the specification of leaf area index had only a marginal impact on the simulated ABL. It was also found that the variations in these five surface parameters had a negligible effect on the simulated horizontal wind fields. On the other hand, these variations had a significant effect on the vertical distribution of turbulent heat fluxes, and on the predicted maximum boundary-layer depth, which varied from about 1400–2300 m across the 11 simulations. Thus, uncertainties in the specification of surface parameters can significantly affect the simulated boundary-layer structure in terms of meteorological and air quality model predictions.  相似文献   

19.
Observations of temperature, pressure and humidity have been made from an aircraft beneath cumulus clouds which formed over extensive flat country. In fair weather over land, cumulus cloud base is generally above the average top of the well-mixed convection layer so that penetrative convection is necessary to initiate cloud formation. The convective layer does not evolve and deepen uniformly over large areas (say greater than 100-km radius). Rather, it develops a patchy structure at 1–10 km scales. Such patches, close beneath cloud base, have thermodynamic properties very like those of the convection layer and in such regions that layer effectively extends right up to cloud base. Meso-scale effects (e.g., 50 km) seem to be important in determining where clear and cloudy areas occur, and although it appears reasonable to attribute this to local dynamic effects (e.g., subsidence), it is not possible to eliminate other possibilities on the basis of the present data.  相似文献   

20.
Observations from research ships which took part in the Indo-Soviet Monsoon Experiment of 1977 (MONSOON 77) and the International Monsoon Experiments (MONEX 79) over the central Arabian Sea and the north central Bay of Bengal were analyzed to study the mean wind and temperature structure of the monsoon boundary layer during active and break conditions. Mean profiles of wind speed and direction along with virtual potential temperature obtained by averaging data from several research ships during 1977 and 1979 indicate that onset conditions were associated with substantial increases in wind speed over the Arabian Sea and a shift to strong southwest flow. Monsoon onset was also characterized by near-neutral to slightly unstable temperature profiles in the lowest kilometer. Break conditions in 1977 in which the monsoon trough moved northward and substantial (5 mb) pressure rises were noted over the Arabian Sea show wind speeds typically decreasing from approximately 18 m s–1 during active conditions to roughly 8 m s –1. Temperature profiles during break conditions are similar to those observed in pre-monsoon conditions in that the boundary layer is observed to be generally much more stable up to 900 mb. Above 900 mb, profiles of virtual potential temperature show little variation.Analysis of latent and sensible heat fluxes during June 1977 calculated by the bulk aerodynamic method indicates values of latent heat flux during active conditions to be roughly two to three times larger than those during break conditions. Sensible heat flux shows an increase from approximately 20 to 80 W m –1 during the onset of the monsoon. Surface fluxes of water vapor indicate the importance of water vapor transport over the ship observation region in the central Arabian Sea during active conditions. Onset of the monsoon over the Arabian Sea is accompanied by an increase in the surface moisture flux by a factor of about two. Time histories of precipitable water show decreases of approximately 15% from active to break periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号